CRYSTALLIZATION OF A COMBUSTION-DERIVED MULLITE PRECURSOR

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mullite precursor was synthesized via combustion of a xerogel obtained from a mixture of aluminum nitrate, highly dispersed silica (AEROSIL), urea as the fuel (reducing agent), and hydrogen peroxide as an auxiliary additive. The crystallization process of the precursor — its transformation into mullite 3Al2O3·2SiO2 — was studied by thermal analysis, X- ray diffraction, IR spectroscopy, and NMR. The synthesized powder was amorphous and crystallized upon heat treatment at 1100 °C. Firing at 1200 °C yielded well-crystallized single-phase mullite. The combustion product contained AlO4, AlO5, and AlO6 groups. Using thermal analysis of the precursor at different heating rates, the effective activation energy of mullite crystallization was estimated from the positions of the exothermic peaks corresponding to this transition.

Sobre autores

N. Filatova

Ivanovo State University of Chemistry and Technology

Email: zyanata@mail.ru
Ivanovo, Russia

N. Kosenko

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

M. Badanov

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

Bibliografia

  1. Mullite. / Ed.H. Schneider, S. Komarneni. WileyVCH Verlag GmbH & Co. KGaA, 2005. 487 p. doi: 10.1002/3527607358
  2. Roy R., Das D., Rout P.K. // Eng. Sci. 2022. V. 18. P. 20. https://dx.doi.org/10.30919/es8d582
  3. Lima L.K.S.,. Silva K.R,. Menezes R.R, et al. // Cerâmica. 2022. V. 68. P. 126. http://dx.doi.org/10.1590/0366-69132022683853184
  4. Schneider H., Schreuer J., Hildmann B. // J. Eur. Cer. Soc. 2008. V. 28. P. 329. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
  5. Duval D.J., Risbud S.H., Shackelford J.F. Mullite. Chapter 2. In Book: Ceramic and Glass Materials: Structure, Properties and Processing / Ed. J.F. Shackelford, R.H. Doremus. Springer, 2008. P. 27. http://dx.doi.org/10.1007/978-0-387-73362-3_2
  6. Behera P.S., Bhattacharyya S. // Bulletin of Materials Science. 2022. V. 45. Art. 104. https://doi.org/10.1007/s12034-022-02684-7
  7. Vargas F., Restrepo E., Rodríguez J.E., et. al. // Cer. Int. 2017. V. 44. Is. 4. P. 3556. https://doi.org/10.1016/j.ceramint.2017.11.044
  8. Ilić S., Babić B., Bjelajac A., et al. // Ceramics International. 2020. V. 46. Is. 9. P. 13107. https://doi.org/10.1016/j.ceramint.2020.02.083
  9. Filatova N.V., Kosenko N.F., Badanov M.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. № 11. P. 97. http://dx.doi.org/10.6060/ivkkt.20216411.6478
  10. Patil K.C., Aruna S.T., Mimani T. // Curr. Opin. Solid State Mater. Sci. 2002. V. 6. Is. 6. P. 507. https://doi.org/10.1016/S1359-0286(02)00123-7
  11. Novitskaya E., Kelly J.P., Bhaduri S., et al. // Intern. Materials Reviews. 202. V. 66. Is. P. 188. https://doi.org/10.1080/09506608.2020.1765603
  12. Burgos-Montes O., Moreno R., Colomer M.T., et al. // J. Am. Ceram. Soc. 2006. V. 89. Is. 2. P. 484. https://doi.org/10.1111/j.1551-2916.2005.00771.x
  13. Burgos-Montes O., Moreno R., Colomer M.T., et al. // J. Eur. Cer. Soc. 2006. V. 26. Is. 15. P. 3365. https://doi.org/10.1016/j.jeurceramsoc.2005.08.006
  14. Burgos-Montes O., Moreno R. // Ibid. 2007. V. 27. Is. 16. P. 4751. https://doi.org/10.1016/j.jeurceramsoc.2007.03.039
  15. Hmelov A.V. // Refractories and Industrial Ceramics. 2015. V. 56. P. 72. http://dx.doi.org/10.1007/s11148-015-9786-4
  16. Yeh C.L., Kang C.H. // Ceramics International. 2017. V. 43. Is. 13. P. 9968. https://doi.org/10.1016/j.ceramint.2017.05.008
  17. Yeh C.L., Kang C.H. // Ibid. 2016. V. 42. Is. 9. P. 11015. https://doi.org/10.1016/j.ceramint.2016.03.242
  18. ГОСТ 6691-77. Карбамид. Технические условия. М.: Стандартинформ, 2009. 10 с.
  19. Braga A.N.S., Simões V.N., Lira H.L. et al. // Cerâmica. 2019. V. 65. P. 388. http://dx.doi.org/10.1590/0366-69132019653752635
  20. Зимичев А.М., Варрик Н.М. // Тр/ ВИАМ. 2014. № 6. С. 6.
  21. Филатова Н.В., Артюшин А.С., Косенко Н.Ф. // РХЖ. 2025. Т. 69. № 2. С.
  22. Yang J., Wang Q., Wang T. et al. // J. Porous Mater. 2017. V. 24. P. 889. https://doi.org/10.1007/s10934-016-0328-3
  23. Jaymes I., Douy A. // J. Eur. Cer. Soc. 1996. V. 16. P. 155.
  24. Walkley B., Provis J.L. Materials Today Advances. 2019. V. 1. Art. 100007. https://doi.org/10.1016/j.mtadv.2019.100007
  25. Moya J.S., Cabal B., Lopez-Esteban S., et al. // Ceram. Int. 2024. V. 50. Is. 1. Part B.P. 1329. https://doi.org/10.1016/j.ceramint.2023.10.304
  26. Schnieder H., Voll D., Saruhan B., et al. // J. NonCryst. Solids. 1994. V. 178. P. 262. https://doi.org/10.1016/0022-3093(94)90295-X
  27. Filatova N.V., Kosenko N.F., Artyushin A.S. // Rus. J. of Phys. Chem. A. 2025. V. 99. № 4. P. 669. https://doi.org/10.1134/S0036024425700281
  28. Li D.X., Thomson W.J. // J. Mater. Res. 1990. V. 5. P. 1963. https://doi.org/10.1557/JMR.1990.1963
  29. Sung Y.-M. // Acta Mater. 2000. V. 4. Is. 9. P. 2157. https://doi.org/10.1016/S1359-6454(00)00032-X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).