THERMOCHEMICAL AND STRUCTURAL PROPERTIES OF K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) SOLID SOLUTIONS WITH NASICON AND LANGBEINITE STRUCTURES
- Autores: Koryttseva A.K1, Knyazev A.V1, Syrov E.V1, Fukina D.G1, Bazhenova I.A2, Cheverikin V.V2, Kuzovchikov S.V2
-
Afiliações:
- Lobachevsky State University of Nizhny Novgorod
- Lomonosov Moscow State University
- Edição: Volume 99, Nº 10 (2025)
- Páginas: 1447-1460
- Seção: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- ##submission.dateSubmitted##: 27.01.2026
- ##submission.datePublished##: 15.10.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/376372
- DOI: https://doi.org/10.7868/S3034553725100012
- ID: 376372
Citar
Resumo
Solid solutions K2–2x Na2x Fe1.5Nb0.5(PO4)3 (0 ≤ x ≤ 1) are studied to determine the stability ranges of the NASICON and langbeinite structural types and to evaluate the mixing energetics. The materials under investigation may be used as cathodes for Na-ion batteries. Powder samples were obtained by a solid-state method and characterized by X-ray microanalysis, X-ray diffraction, and differential scanning calorimetry. Structural refinement was carried out by the Rietveld method using powder X-ray diffraction data at room temperature. It was established that phases isostructural to the mineral langbeinite (K2Mg2(SO4)3, space group P213) crystallize in the range 0 ≤ x ≤ 0.4, while phases isostructural to NASICON NaZr2(PO4)3 (space group R3-c) crystallize in the range 0.9 ≤ x ≤ 1. Standard enthalpies of formation were determined by high-temperature molten-salt calorimetry in a sodium molybdate melt (3Na2O·4MoO3) at 800°C using a Tian–Calvet-type isoperibolic differential calorimeter. The trends in the obtained energetic characteristics are discussed in relation to the structural evolutions across the indicated composition range of the solid solutions. This study expands current knowledge on the isomorphism of alkali cations in framework structures demonstrating possible pathways for changing properties within the investigated series.
Palavras-chave
Sobre autores
A. Koryttseva
Lobachevsky State University of Nizhny Novgorod
Autor responsável pela correspondência
Email: koak@chem.unn.ru
Nizhny Novgorod, Russia
A. Knyazev
Lobachevsky State University of Nizhny Novgorod
Email: koak@chem.unn.ru
Nizhny Novgorod, Russia
E. Syrov
Lobachevsky State University of Nizhny Novgorod
Email: koak@chem.unn.ru
Nizhny Novgorod, Russia
D. Fukina
Lobachevsky State University of Nizhny Novgorod
Email: koak@chem.unn.ru
Nizhny Novgorod, Russia
I. Bazhenova
Lomonosov Moscow State University
Email: koak@chem.unn.ru
Moscow, Russia
V. Cheverikin
Lomonosov Moscow State University
Email: koak@chem.unn.ru
Moscow, Russia
S. Kuzovchikov
Lomonosov Moscow State University
Email: koak@chem.unn.ru
Moscow, Russia
Bibliografia
- Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
- Воронков А.А., Илюхин В.В., Белов Н.В. // Докл. АН СССР. 1974. Т. 219. № 3. С. 600.
- Орлова А.И., Корытцева А.К. // Кристаллография. 2004. Т. 49. № 5. C. 811.
- Орлова А.И., Корытцева А.К., Борцова Е.В. и др. // Там же. 2006. Т. 51. № 3. C. 391.
- Isasi J., Daidouh A. // Solid State Ionics. 2000. V. 133. P. 303. doi: 10.1016/S0167-2738(00)00677-9.
- Luo Y., Sun T., Shui M., Shu J. // Materials Chemistry and Physics. 2019. V. 233. P. 339. https://doi.org/10.1016/j.matchemphys.2019.05.079.
- Driscoll. L.L., Driscoll. E.H., Slater. P.R. // J. Sol. State Chem. 2020. V. 287. P. 121363. doi: 10.1016/j.jssc.2020.121363
- Marshenya S., Scherbakov A., Dembitskiy A. et al. // Dalton Trans. 2024. V. 53. Iss. 38. Р. 15928. doi: 10.1039/D4DT02288B.
- Trussov I., Driscoll L., Male L., et al. // J. Solid State Chem. 2019. V. 276. P. 37. doi: 10.1016/j.jssc.2019.04.036
- Zatovsky I., Strutynska N., Ogorodnyk I., et al. // Acta Cryst., Sec. E: Cryst. Commun. 2021. V. 77. P. 1299. doi: 10.1107/s2056989021011877
- Zatovsky I.V., Strutynska N.Yu., Hizhnyi Yu.A., et. al. // Chemistry Open. 2018. V. 7. P. 504. doi: 10.1002/open.201800059
- Strutynska N., Bondarenko M., Slobodyanik N. et al. // Cryst. Res. Tech. 2016. V. 51. P. 627. doi: 10.1002/crat.201600207
- Pet′kov V.I., Alekseev A A., Asabina E.A. // Solid State Sciences. 2024. V.149. P. 107481. doi: 10.1016/j.solidstatesciences.2024.107481
- Doebelin N., Kleeberg R. // J. Appl. Cryst. 2015. V. 48. P. 1573. doi: 10.1107/S1600576715014685.
- Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. doi: 10.1107/S0021889811038970.
- Brown I.D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, 2006. https://doi.org/10.1093/acprof:oso/9780199298815.001.0001.
- Zhang H., Li N., Li K., Xue D. // Acta Cryst. 2007. V. B63. P. 812. https://doi.org/10.1107/S0108768107046174.
- Rodriguez-Carvajal J. // Physica B: Condensed Matter. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I.
- Блатов В.А., Шевченко А.П., Сережкин В.Н. // Координац. химия. 1999. Т. 25. № 7. С. 483.
- Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
- Navrotsky A. // J. Am. Ceram. Soc. 2014. V. 97. P. 3349.
- Robie R., Hemingway B., Fisher J. Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 bar (105Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. Washington, 1995. 456 p.
- Chase M.W., NIST-JANAF Thermochemical Tables, J. Physical and Chemical Reference Data, N9, ACS/ AIP/NIST, 1998.
- Yang S., Anderko A., Riman R.E., Navrotsky A. // Acta Mater. 2021. V. 220. P. 117289.
- Navrotsky A., Koryttseva A. // Molecules. 2023. V. 28. P. 4623. https://doi.org/10.3390/molecules28124623
- Gibson, L. D.; Jayanthi, K.; Yang, S. et al. // J. Phys. Chem. C. 2022. V. 126. P. 18952.
- McCormack S.J., Navrotsky A. // Acta Materialia. 2021. V. 202. P. 1. doi: 10.1016/j.actamat.2020.10.043.
Arquivos suplementares

