Гармоники высшего порядка в гексагональных графеновых квантовых точках

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена генерация высших гармоник в плоских графеновых квантовых точках гексагональной формы в рамках независимого квазичастичного приближения - модели сильной связи. Исследовано, как на такой нелинейный эффект влияют сильное оптическое волновое поле, типичная ширина запрещенной зоны и латеральный размер квантовых точек, а также процессы дефазировки. Уравнение движения для матрицы плотности решается путем интегрирования по времени с помощью алгоритма Рунге - Кутты восьмого порядка. Если частота оптической волны намного меньше собственной ширины запрещенной зоны квантовой точки, то выявляются основные аспекты многофотонного излучения высших гармоник в квантовых точках. В этом случае зависимость энергии фотонов отсечки от напряженности оптической волны накачки практически линейна. Но когда частота волны сравнима с шириной запрещенной зоны квантовой точки, энергия отсечки фотонов при увеличении напряженности поля волны насыщается.

Об авторах

Х. В. Седракян

Ереванский государственный университет

Email: amarkos@ysu.am
Ереван, 0025 Армения

А. Г. Казарян

Ереванский государственный университет

Email: amarkos@ysu.am
Ереван, 0025 Армения

Б. Р. Авчян

Ереванский государственный университет

Email: amarkos@ysu.am
Ереван, 0025 Армения

К. С. Погосян

Ереванский государственный университет

Email: amarkos@ysu.am
Ереван, 0025 Армения

Т. М. Маркосян

Институт синхротронных исследований «КЕНДЛ»

Автор, ответственный за переписку.
Email: amarkos@ysu.am
Ереван, 0022 Армения

Список литературы

  1. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, Phys.Rev.A 52, R25(R) (1995).
  2. P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F.N. Walsh, J. S. Wark, and A.E. Dangor, Phys.Rev.Lett. 76, 1832 (1996).
  3. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D.A. Reis, Nat.Phys. 7, 138 (2011).
  4. G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C.R.McDonald, T.Brabec, and P.B.Corkum, Nature 522, 462 (2015).
  5. H.K. Avetissian, Relativistic Nonlinear Electrodynamics, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields, Springer, Berlin (2015).
  6. G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K. J. Schafer, M. B. Gaarde, and D.A. Reis, Nature, 534, 520 (2016).
  7. Y. L. Li, Y. S. You, S. Ghimire, T. F. Heinz, H. Z. Liu, and D.A. Reis, Nat.Phys. 13 262 (2017).
  8. Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam- Mirzaei, M. Chini, Z. Chang, Y. S. You, and S. Ghimire, Nat.Commun. 8, 724 (2017).
  9. N. Klemke, N. Tancogne-Dejean, G.M. Rossi, Y. Yang, F. Scheiba, R.E. Mainz, G. Di Sciacca, A. Rubio, F.X. Kartner, and O.D. Mucke, Nat. Commun. 10, 1319 (2019).
  10. D. Golde, T. Meier, and S.W. Koch, Phys.Rev.B 77, 075330 (2008).
  11. N. Klemke, O.D. Mucke, A. Rubio, F.X. Kartner, and N. Tancogne-Dejean, Phys.Rev.B 102, 104308 (2020).
  12. I. Kilen, M. Kolesik, J. Hader, J.V. Moloney, U. Huttner, M.K. Hagen, and S.W. Koch, Phys.Rev.Lett. 125, 083901 (2020).
  13. J. L. Krause, K. J. Schafer, and K.C. Kulander, Phys.Rev.Lett. 68, 3535 (1992).
  14. R.C. Ashoori, Nature, 379, 413 (1996).
  15. T. Chakraborty, Quantum Dots, Elsevier, Amsterdam (1999).
  16. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv.Mater. 22, 734 (2010).
  17. S. Chung, R.A. Revia, and M. Zhang, Adv.Mater. 33, 1904362 (2021).
  18. H. Sun, L. Wu, W. Wei, and X. Qu, Mater.Today 16, 433 (2013).
  19. M. Bacon, S. J. Bradley, and T. Nann, Part.Part. Syst.Charact. 31, 415 (2014).
  20. K.K. Hansen, D. Bauer, and L.B. Madsen, Phys. Rev.A 97, 043424 (2018).
  21. R. Ganeev, L. Bom, J. Abdul-Hadi, M. Wong, J. Brichta, V. Bhardwaj, and T. Ozaki, Phys.Rev. Lett. 102, 013903 (2009).
  22. R. Ganeev, L.E. Bom, M.C.H. Wong, J. P. Brichta, V. Bhardwaj, P. Redkin, and T. Ozaki, Phys.Rev.A 80, 043808 (2009).
  23. R.A. Ganeev, J.Mod.Opt. 59, 409 (2012).
  24. G. P. Zhang, Phys.Rev.Lett. 95, 047401 (2005).
  25. G. P. Zhang and T. F. George, Phys.Rev.A 74, 023811 (2006).
  26. G. P. Zhang and T. F. George, J.Opt. Soc.Amer. B 24, 1150 (2007).
  27. L. Jia, Zh. Zhang, D.Z. Yang, Y. Liu, M. S. Si, G. P. Zhang, and Y. S. Liu, Phys.Rev.B 101, 144304 (2020).
  28. G. P. Zhang and Y.H. Bai, Phys.Rev.B 101, 081412 (2020).
  29. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L'Huillier, and P.B. Corkum, Phys.Rev.A 49, 2117 (1994).
  30. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys. 81, 109 (2009).
  31. S. Gnawali, R. Ghimire, K.R. Magar, S. J. Hossaini, and V. Apalkov, Phys.Rev.B 106, 075149 (2022).
  32. P.R. Wallace, Phys.Rev. 71, 622 (1947).
  33. A.D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots, Springer, Berlin (2014).
  34. H. Yoon, M. Park, J. Kim, T.G. Novak, S. Lee, and S. Jeon, Chem. Phys.Rev. 2, 031303 (2021).
  35. E. Goulielmakis and T. Brabec, Nat.Photon. 16, 411 (2022).
  36. A.H.C. Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys 81, 109 (2009).
  37. H.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, J. Phys.B 45, 025402 (2012).
  38. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys.Rev.A 84, 013418 (2011).
  39. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys. Lett.A 375, 3699 (2011).
  40. G. Vampa, C.R. McDonald, G. Orlando, D.D. Klug, P.B. Corkum, and T. Brabec, Phys.Rev.Lett. 113, 073901 (2014).
  41. G. Vampa, C.R. McDonald, G. Orlando, P.B. Corkum, and T. Brabec, Phys.Rev.B 91, 064302 (2015).
  42. H.K. Avetissian, A.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, Phys.Rev.B 100, 035434 (2019).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».