DEMONSTRATION OF THE THIRD-ORDER NONLINEAR HALL EFFECT IN TOPOLOGICAL DIRAC SEMIMETAL NiTe2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We experimentally investigate third-order nonlinear Hall effect for three-dimensional NiTe2 single crystal samples. NiTe2 is the recently discovered type-II Dirac semimetal, so both the inversion and the time-reversal symmetries are conserved in the bulk. As a result, the well known second-order nonlinear Hall effect does not expected for this material, which we confirm as negligibly small second-harmonic transverse Hall voltage response to the longitudinal ac electric current. As the main experimental result, we demonstrate the unsaturated third-harmonic Hall response in NiTe2, which well corresponds to the theoretically predicted third-order nonlinear Hall effect in Dirac semimetals. We also demonstrate, that the third harmonic signal does not depend on the external magnetic field, in contrast to the field-depended first-order and second-order Hall effects.

Sobre autores

V. Esin

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: 2018esin@issp.ac.ru
Chernogolovka, Moscow District, Russia

A. Timonina

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Moscow District, Russia

N. Kolesnikov

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Moscow District, Russia

E. Deviatov

Yu. A. Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Moscow District, Russia

Bibliografia

  1. I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
  2. Yuan-Dong Wang, Zhen-Gang Zhu, and Gang Su, arXiv:2303.03579v1 (2023).
  3. Jia-Liang Wan, Ying-Li Wu, Ke-Qiu Chen, and XiaoQin Yu, arXiv:2501.05698v1 (2025).
  4. Y. Zhang, J. van den Brink, C. Felser, and B. Yan, 2D Mater. 5, 044001 (2018).
  5. C. Xiao, Z. Z. Du, and Qian Niu, Phys. Rev. B 100, 165422 (2019).
  6. An-Qi Wang, D. Li, Tong-Yang Zhao, Xing-Yu Liu, J. Zhang, X. Liao, Q. Yin, Zhen-Cun Pan, P. Yu, and Zhi-Min Liao, Phys. Rev. B 110, 155434 (2024).
  7. O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Jetp Lett. 109, 715 (2019).
  8. A. Tiwari, F. Chen, Sh. Zhong, E. Drueke, J. Koo, A. Kaczmarek, C. Xiao, J. Gao, X. Luo, Q. Niu, Y. Sun, B. Yan, L. Zhao, and A. W. Tsen, Nat. Commun. 12, 2049 (2021).
  9. N. N. Orlova, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Chin. Phys. Lett. 40, 077302 (2023).
  10. V. D. Esin, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Chin. Phys. Lett. 39, 097303 (2022).
  11. T. Low, Y. Jiang, and F. Guinea, Phys. Rev. B 92, 235447 (2015).
  12. J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805 (2010).
  13. Y. Zhang, Y. Sun, and B. Yan, Phys. Rev. B 97, 041101, (2018).
  14. Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 112, 166601 (2014).
  15. Y. Gao S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405 (2015).
  16. H. Liu, J. Zhao, Yue-Xin Huang, X. Feng, C. Xiao, W. Wu, S. Lai, Wei-bo Gao, and S. A. Yang, Phys. Rev. B 105, 045118 (2022).
  17. T. Nag, S. K. Das, C. Zeng, and S. Nandy, Phys. Rev. B 107, 245141 (2023).
  18. L. Xiang, C. Zhang, L. Wang, and J. Wang, Phys. Rev. B 107, 075411 (2023).
  19. S. Roy and A. Narayan, J. Phys. Condens. Matter 34, 385301 (2022).
  20. S. Lai, H. Liu, Z. Zhang, J. Zhao, X. Feng, N. Wang, C. Tang, Y. Liu, K. S. Novoselov, S. A. Yang, and Wei-bo Gao, Nat. Nanotechnol. 16, 869 (2021).
  21. As a recent review see N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 15001 (2018).
  22. Tong-Yang Zhao, An-Qi Wang, Xing-Guo Ye, XingYu Liu, X. Liao, and Zhi-Min Liao, Phys. Rev. Lett. 131, 186302 (2023).
  23. D. Kumar, Chuang-Han Hsu, R. Sharma, Tay-Rong Chang, P. Yu, J. Wang, G. Eda, G. Liang, and H. Yang, Nature Nanotechnology 16, 421 (2021).
  24. L. Min, H. Tan, Z. Xie, L. Miao, R. Zhang, S. H. Lee, V. Gopalan, Chao-Xing Liu, N. Alem, B. Yan, and Z. Mao, Nature Commun. 14, 364 (2023).
  25. Y. Zhang, and L. Fu, Proc. Nat. Acad. Sci. 118, e2100736118 (2021).
  26. Xing-Guo Ye, H. Liu, Peng-Fei Zhu, Wen-Zheng Xu, S. A. Yang, N. Shang, K. Liu, and Zhi-Min Liao, Phys. Rev. Lett. 130, 016301 (2023).
  27. S. Sarkar and A. Agarwal, arXiv:2501.17460v1.
  28. B. Ghosh, D. Mondal, C. N. Kuo, C. S. Lue, J. Nayak, J. Fujii, I. Vobornik, A. Politano, and A. Agarwal, Phys. Rev. B 100, 195134 (2019).
  29. S. Mukherjee, S. W. Jung, S. F. Weber, C. Xu, D. Qian, X. Xu, P. K. Biswas, T. K. Kim, L. C. Chapon, M. D. Watson, J. B. Neaton, and C. Cacho, Sci. Rep. 10, 12957 (2020).
  30. V. D. Esin, O. O. Shvetsov, A. V. Timonina, N. N. Kolesnikov and E. V. Deviatov, Nanomaterials 12(23), 4114 (2022).
  31. C. Xu, B. Li, W. Jiao, W. Zhou, B. Qian, R. Sankar, N. D. Zhigadlo, Y. Qi, D. Qian, F. C. Chou, and X. Xu, Chem. Mater. 30, 4823 (2018).
  32. Q. Liu, F. Fei, B. Chen, X. Bo, B. Wei, S. Zhang, M. Zhang, F. Xie, M. Naveed, X.Wan, F. Song, and B. Wang, Phys. Rev. B 99, 155119 (2019).
  33. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov, JETP Lett. 107, 774779 (2018).
  34. O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 99, 125305 (2019).
  35. O. O. Shvetsov, A. Kononov, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov, EPL, 124, 47003 (2018).
  36. O.O. Shvetsov, V.D. Esin, Yu.S. Barash, A.V. Timonina, N.N. Kolesnikov, and E.V. Deviatov, Phys. Rev. B 101, 035304 (2020).
  37. O. O. Shvetsov, Yu. S. Barash, A. V. Timonina, N. N. Kolesnikov, E. V. Deviatov, JETP Lett. 115, 267 (2022).
  38. V. D. Esin, D. Yu. Kazmin, Yu. S. Barash, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, JETP Lett. 118, 847 (2023).
  39. C. Fu, Th. Scaffidi, J. Waissman, Y. Sun, R. Saha, S. J. Watzman, A. K. Srivastava, G. Li, W. Schnelle, P. Werner, M. E. Kamminga, S. Sachdev, S. S. P. Parkin, S. A. Hartnoll, C. Felser, and J. Gooth, arXiv:1802.09468v1.
  40. T. Zhou, Ch. Zhang, H. Zhang, F. Xiu, and Zh. Yang, Inorg. Chem. Front. 3, 1637 (2016).
  41. C. K. Barman, A. Chattopadhyay, S. Sarkar, JianXin Zhu, S. Nandy. arXiv:2409.07993v1.
  42. Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Z. Zang, Y. Ye, and Zhi-Min Liao, Phys. Rev. B 106, 045414 (2022).
  43. S. Li, X. Wang, Z. Yang, L. Zhang, S. L. Teo, M. Lin, R. He, N. Wang, P. Song, W. Tian, X. J. Loh, Q. Zhu, B. Sun, and X. R. Wang, arXiv:2401.17808v1.
  44. A. Gao, Yu-Fei Liu, Jian-Xiang Qiu, B. Ghosh, T. V. Trevisan, Y. Onishi, C. Hu, T. Qian, HungJu Tien, Shao-Wen Chen, M. Huang, D. Berube, H. Li, C. Tzschaschel, T. Dinh, Z. Sun, Sheng-Chin Ho, Shang-Wei Lien, B. Singh, K. Watanabe, T. Taniguchi, D. C. Bell, H. Lin, Tay-Rong Chang, C. Rita Du, A. Bansil, L. Fu, N. Ni, P. P. Orth, Q. Ma, and Su-Yang Xu, Science, 381, 181 (2023).
  45. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  46. Hiroki Isobe, Su-Yang Xu, and Liang Fu, Sci. Adv. 6, eaay2497 (2020).
  47. Jian-Feng Zhang, Y. Zhao, K. Liu, Y. Liu, and Zhong-Yi Lu, Phys. Rev. B 104, 035111 (2021).
  48. D. Mandal, K. Das, and A. Agarwal, Phys. Rev. B 106, 035423 (2022).
  49. A. A. Zyuzin, and A. Yu. Zyuzin, Phys. Rev. B 95, 085127 (2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Nota

In the print version, the article was published under the DOI: 10.31857/S004445102506015X


Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).