PHASE TRANSITION AND CROSSOVERS IN THE CAIRO LATTICE OF ISING DIPOLES

Capa

Citar

Resumo

The thermodynamics of finite-number Ising spin systems on the Cairo spin ice lattice is investigated using Monte Carlo numerical calculations in the model of long-range dipole-dipole interaction with limited radius. The Cairo lattice consists of vertices combining three or four nearest neighboring spins. A parameter is added to the model, the variation of which allows changing the balance of interaction energies between vertices with three and four nearest spins without changing the geometry of the Cairo lattice. It is shown that the variational parameter affects the nature of the phase transition process from short-range order to disorder. At low values of this parameter, the transition is a crossover, while at its high values, it is a second-order phase transition.

Sobre autores

Yu. Shevchenko

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: shevchenko.yuriy.a@gmail.com

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

E. Lobanova

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: nefedev.kv@dvfu.ru

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

I. Trefilov

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: nefedev.kv@dvfu.ru

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

V. Strongin

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: nefedev.kv@dvfu.ru

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

P. Ovchinnikov

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Email: nefedev.kv@dvfu.ru

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

K. Nefedev

Department of Theoretical Physics and Intelligent Technologies, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nefedev.kv@dvfu.ru

Департамент теоретической физики и интеллектуальных технологий

Rússia, 690922, Vladivostok; 690041, Vladivostok

Bibliografia

  1. R. F. Wang, C. Nisoli, R. S. Freitas et al., Nature 439, 303 (2006).
  2. C. Nisoli, R. Moessner, P. Schiffer, Rev.Mod.Phys. 85, 1473 (2013)
  3. Y. Shevchenko, A. Makarov, and K. Nefedev, Phys. Lett.A 381, 428 (2017).
  4. Y. Shevchenko, K. Nefedev, and Y. Okabe, Phys. Rev.E 95, 052132 (2017).
  5. A. Farhan, P.M. Derlet, A. Kleibert et al., Nature Phys. 9, 375 (2013).
  6. A. Han, P.M. Derlet, A. Kleibert et al., Phys.Rev. Lett. 111, 057204 (2013).
  7. M. Saccone, K. Hofhuis, Y. Huang et al., Phys.Rev. Mater. 3, 104402 (2019).
  8. M. J. Morrison, T.R. Nelson, and C. Nisoli, New J. Phys. 15, 045009 (2013).
  9. S.H. Skjærvø, C.H. Marrows, R. L. Stamps et al., Nat.Rev.Phys. 2, 13 (2020).
  10. J. Park, B. L. Le, J. Sklenar et al., Phys.Rev.B 96, 024436 (2017).
  11. Y. Li, T.X. Wang, Z.T. Hou et al., Phys. Lett.A 380, 2013 (2016).
  12. G.W. Chern, M. J. Morrison, and C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013).
  13. I. Gilbert, G.W. Chern, S. Zhang et al., Nature Phys. 10, 670 (2014).
  14. I. Gilbert, Y. Lao, I. Carrasquillo et al., Nature Phys. 12, 162 (2015).
  15. X. Zhang, A. Duzgun, Y. Lao et al., Nature Communications 12, (2021).
  16. H. Stopfel, U.B. Arnalds, A. Stein et al., Phys.Rev. Mater. 5, 114410 (2021).
  17. G.W. Chern, P. Mellado, and O. Tchernyshyov, Phys.Rev. Lett. 106, 207202 (2011).
  18. G.W. Chern and O. Tchernyshyov, Phil.Trans.Royal Soc.A: Math., Phys.Engin. Sci. 370, 5718 (2012).
  19. G. M¨oller and R. Moessner, Phys.Rev.B 80, 140409 (2009).
  20. A.G. Makarov, K. Makarova, Y.A. Shevchenko et al., JETP Lett. 110, 702 (2019).
  21. U.B. Arnalds, A. Farhan, R.V. Chopdekar et al., Appl.Phys. Lett. 101, 112404 (2012).
  22. I. Rousochatzakis, A.M. L¨auchli, and R. Moessner, Phys.Rev.B 85, 104415 (2012).
  23. A.M. Abakumov, D. Batuk, A.A. Tsirlin et al., Phys. Rev.B 87, 024423 (2013).
  24. M. Rojas, O. Rojas, and S.M. Souza, Phys.Rev.E 86, 051116 (2012).
  25. A.A. Tsirlin, I. Rousochatzakis, D. Filimonov et al., Phys.Rev.B 96, 094420 (2017).
  26. C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).
  27. Ю.А.Шевченко, А. Г. Макаров, П.Д. Андрющенко и др., ЖЭТФ 151, 1146 (2017).
  28. R.G. Melko, B.C. Hertog, and M. J. P. Gingras, Phys.Rev. Lett. 87, 067203 (2001).
  29. R.G. Melko and M. J. P. Gingras, J. Phys.: Cond. Matt. 16, 1277 (2004).
  30. Y. Shevchenko, V. Strongin, V. Kapitan et al., Phys. Rev.E 106, 064105 (2022).
  31. K. Makarova, V. Strongin, I. Titovets et al., Phys. Rev.E 103, 042129 (2021).
  32. E.C. Stoner and E.P. Wohlfarth, Phil.Trans.Royal Soc. London. Series A, Math.Phys. Sci. 240, 599 (1948).
  33. S. Gliga, A.K´akay, L. J. Heyderman et al., Phys. Rev.B 92, 060413 (2015).
  34. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth et al., J.Сhem. Phys. 21, 1087 (1953).
  35. W.K. Astings, Biometrika 57, 97 (1970).
  36. K. Makarova, A. Makarov, V. Strongin et al., J.Comp.Appl.Math. 427, 115153 (2023).
  37. H. Gould and J. Tobochnik, Comp. Phys. 3, 82 (1989).
  38. А.А. Гухман, Об основаниях термодинамики, ЛКИ (2010).
  39. S. Gluzman and V. I. Yukalov, Phys.Rev.E 58, 4197 (1998).
  40. H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena, Oxford University Press (2010).
  41. C.A.F. Vaz, J.A.C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71 056501 (2008).
  42. T. Bourdel, L. Khaykovich, J. Cubizolles et al., Phys. Rev. Lett. 93, 050401 (2004).
  43. W.G. Van der Wiel, S.D. Franceschi, T. Fujisawa et al., Science 289, 2105 (2000).
  44. P. Lubitz, M. Rubinstein, JJ. Krebs et al., J.Appl. Phys. 11, 6901 (2001).
  45. A. Farhan, A. Scholl, C. Petersen et al., Nature Commun. 1, 12635 (2016).
  46. W. F. Brown Jr. and A.H. Morrish, Phys.Rev. 4, 1198 (1957).
  47. J.A. Osborn, Phys.Rev. 11–12 , 351 (1945).
  48. A. Aharoni, J.Appl.Phys. 6, 3432 (1998).
  49. M. Saccone, A. Scholl, S. Velten et al., Phys.Rev.B 22, 224403 (2019).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).