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Мы исследуем полевую эмиссию в резонансно-туннельных гетероструктурах с одной квантовой ямой и

двумя барьерами, а также влияние на нее времен жизни резонансных метастабильных уровней, обра-

зующихся в яме. Также рассмотрена задача о времени туннелирования квантовой частицы (электрона)

через структуру с барьером и двумя барьерами и ямой. Использованы стационарное и нестационарное

уравнения Шредингера. Время установления процесса туннелирования всегда конечно, но может быть

меньше времени пролета структуры частицей со скоростью Ферми. Определенны времена жизни мета-

стабильных уровней и исследовано их влияние на туннельный ток. Он возрастает при увеличении ширин

ям и выравнивании высот барьеров.

DOI: 10.31857/S0044451025010018

1. ВВЕДЕНИЕ

Резонансно-туннельные структуры (РТС), пред-
ставляющие собой наноразмерные гетероструктуры
с полевой эмиссией, широко используются в элек-
тронике как источники весьма высоких плотностей
тока (до 1014 А/м2) [1–3]. Они также являются осно-
вой при проектировании резонансно-туннельных ди-
одов (РТД), транзисторов, квантово-каскадных ла-
зеров (ККЛ) типа «штарковской лестницы», ТГЧ
транзисторов и переключателей [4–11], а также дру-
гих устройств. Для всех них важны времена пе-
реключения, срабатывания и вообще времена пере-
ходных процессов [11,12]. РТС характеризуется тем,
что имеет одну, две или несколько квантовых ям,
разделенных барьерами, в которых могут возникать
квазистационарные резонансные уровни [13]. Будем
называть имитирующий электроны левый электрод
катодом (и обозначать все относящиеся к нему ве-
личины индексом c), а правый — анодом (индекс

* E-mail: davidovichmv@info.sgu.ru

a). Для промежуточного электрода (сетки) исполь-
зуем индекс g. В случае одинаковых электрохими-
ческих потенциалов электродов μc = μa квантовый
потенциал V (x ) между двумя электродами (в диод-
ной структуре) похож на перевернутую параболу на
постаменте, и может быть строго описан бесконеч-
ным рядом изображений, в котором учтены работы
выхода электронов [1]. Аппроксимация этого ряда
перевернутой параболой весьма грубая [1,14]. Более
точна аппроксимация перевернутой параболой чет-
вертого порядка [1,2]. Мы будем использовать еще
более точную аппроксимацию для потенциала в ди-
оде 0 < x < d с анодным напряжением Ua:

V (x) = EFc +Wc
(1− α/d) (1 + δ/d)2

(1− δ/d)
2
ε

×

×
[
1− δd

(x+ δ (1− x/d)) (d− x+ xδ/d)

]
− eUax

d
.

(1)

В этой формуле α = δ (2 ln (2) + 1), работы выхо-
да (РВ) катода и анода считаются одинаковыми
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Wc = Wa и связаны с параметром (размером) δ

формулой
Wa = e2/ (16πε0δ) .

Также для упрощения далее считаем одинаковыми
энергии Ферми (ЭФ) EFc = EFa электродов. Для
потенциала (1) на катоде V (0) = EFa, а на аноде

V (d) = EFa − eUa = μa,

т. е. квантовый потенциал V совпадает с электро-
химическими потенциалами. В случае разных РВ
(и материалов катода и анода) надо в (1) доба-
вить член (EFa − EFc)x/d. Точность формулы (1)
не хуже 1%. Диодная структура не позволяет по-
лучать очень большие плотности тока. Увеличение
тока происходит за счет резонансного туннелирова-
ния (РТ), когда имеется одна или насколько кванто-
вых ям, окруженных барьерами [1–3]. Отражения от
барьеров интерферируют, и полный коэффициент
отражения погашается. Далее для упрощения рас-
сматриваем одноямную структуру с тремя электро-
дами: катодом (истоком), сеткой (затвором) и ано-
дом (стоком). Формула (1) применима как к вакуум-
ному промежутку (ε=1), так и к диэлектрическому
промежутку между электродами. При отсутствии
анодного напряжения Ua = 0 она дает в центре про-
межутка значение

V (d/2) = EFc +
Wc (1− α/d) (1 + δ/d)

2

(1− δ/d)
2
ε

.

РВ 3.6 эВ соответствует величина δ = 0.1 нм, по-
этому в обычном диапазоне РВ веществ 2–5 эВ
и обычных размерах электродов и зазоров РТС
порядка нм имеют место неравенства δ/d << 1,
α/d << 1, при этом в отсутствии анодного напря-
жения V (d/2) ≈ EFc +Wc/ε. Диэлектрик с диэлек-
трической проницаемостью (ДП) ε снижает барьер
в ε раз.

Хорошими и удобными диэлектриками для РТС
является CVD (Chemical Vapor Deposition) алмаз
(ε = 5.6, ширина запрещенной зоны 2.5 эВ) [15] и
окись бериллия BeO (ε = 6.7, ширина запрещенной
зоны 10.6 эВ). Эти диэлектрики сильно снижают ба-
рьер и обладают самой высокой теплопроводностью,
что важно при высоких плотностях тока [2,3]. Хотя
плотность CVD алмаза с 88% sp3-гибридизацией со-
ставляет 88.2 % от плотности кристаллического ал-
маза, его ДП можно брать такой же 5.6 из-за нали-
чия небольшой графитовой фазы. Для электродов
можно использовать металлы и легированные по-
лупроводники. Наибольшей ЭФ обладает бериллий
14.6 эВ. Кроме того, он имеет относительно низкую

РВ 3.92 эВ, и самую высокую из металлов тепло-
проводность. Для построения сложного профиля V
рис. 1 формулу (1) используем дважды, применяя к
промежутку катод-сетка (заменяя Ua → Ug) и к про-
межутку сетка-анод, полагая в (1) EFc → EFc−eUg.
На сетке квантовый потенциал постоянный и опре-
деляется ее электростатическим потенциалом Ug. В
РТД и ККЛ обычно хорошо проводящие слои вы-
полняют электрически свободными, т. е. потенциал
вдоль них не фиксирован и спадает [4–12]. На рис.
1 изображены типичные профили V (x ) диодных и
триодных структур при разных анодных Ua и сеточ-
ных Ug напряжениях для медных электродов. Для
образования ямы взято Ug = EFc/e. Энергия E от-
считывается от дна зоны проводимости катода. Оно
в данном случае совпадает с дном ямы. Если в об-
разованной квантовой яме существует уровень энер-
гии En, то он квазистационарный, поскольку как на
катоде, так и на аноде всегда есть точно такой же
уровень, и электрон из ямы может на него перей-
ти. Возможно туннелирование как влево на катод,
так и вправо на анод. Далее с этого уровня электрон
переходит на уровень Ферми (УФ) соответствующе-
го электрода. Такой электрон далее может попасть
в источник питания, поскольку только электроны
вблизи УФ участвуют в переносе диффузионного
тока проводимости.

Вопросу времени жизни (распада) квазистацио-
нарного уровня в сферически симметричной кван-
товой яме посвящено несколько работ, например,
[16–18]. Время жизни квазистационарных уровней
РТС в одномерном декартовом рассмотрении стро-
го не исследовалось. Это время тесно связано с во-
просом о времени туннелирования одиночной час-
тицы через структуру (временем ее пребывания в
ней). Вопросам введения различных подобных вре-
мен посвящена обширная литература (см., напри-
мер, список литературы в работе [19]). Относитель-
но времен туннелирования до сих пор идет дискус-
сия. Имеет место ряд парадоксов. Времена тунне-
лирования тесно связаны с временами срабатыва-
ния туннельных приборов [11]. Обычно РТД, ККЛ и
другие РТС моделируют, используя прямоугольные
потенциалы, измененные членом −eUax/d [11], что
является грубым приближением, поскольку боль-
шие напряжения приводят к форме барьера близ-
кой к треугольнику, поставленному на постамент [1].
Расчет на основе уравнения Шредингера (УШ) по-
казывает, что прозрачность такого барьера на по-
рядки лучше, чем прямоугольного той же высоты и
с тем же основанием. Часто используют квазиклас-
сическое приближение [16], которое для треуголь-
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Рис. 1. Форма потенциального барьера V (эВ) в зависимо-

сти от расстояния x (нм) в вакуумном диоде (кривые 0, 3,

5, 7) и в вакуумном триоде (1, 2, 4, 6). Номер кривых для

диода соответствует анодному напряжению Ua в В. Для

триодных кривых 2, 4 напряжение на сетке Ug = EFc/e,

а их номер соответствует анодному напряжению. Для кри-

вой 1 Ua = 0, Ug = Wc/e. Для кривой 6 Ua = 4 В, Ug = 3

В. EFc = 7 эВ, Wc = 4.36 эВ (медные электроды)

ного барьера точно интегрируется [20]. Однако оно
определено с точностью до предэкспоненциального
множителя и весьма неточное в верхней узкой ча-
сти барьера, поскольку для его получения отброше-
на обратная электронная волна [20]. Для узкого ба-
рьера эта волна вносит существенный вклад. При
анализе РТС на основе двух и более прямоуголь-
ных барьеров обычно резонансные уровни опреде-
ляют как проникновение частицы через одинаковые
барьеры влево или вправо с той же энергией, что и
в яме [13]. В реальных РТС это не так. Попадая на
катод или анод с некой энергией, частица переходит
на УФ электрода, отдавая или поглощая квант энер-
гии, и далее уходит от структуры с этой энергией,
поскольку любой ток в проводниках создается элек-
тронами на УФ. При стационарном туннелировании
(постоянном напряжении на аноде) число туннели-
рующих с катода электронов экспоненциально боль-
ше, чем число туннелирующих с анода, и получа-
ем постоянный эмиссионный ток, замыкающийся че-
рез источник питания. Возникновение резонансных
уровней E′

n приводит к резонансному туннелирова-
нию (РТ), сопровождающемуся усилением тока, по-
скольку для электронов с энергией E = E′

n барьер

полностью прозрачный. Квазистационарные уровни
возникают с увеличением ширины ямы. Эти уровни
энергии комплексные:Ẽn = E′

n − iE′′
n . Величина E′′

n

определяет время жизни уровня τn = 2�/E′′
n. Чем

оно меньше, тем более уширяется уровень, тем боль-
шая область энергий соответствует условиюE ≈ E′

n,
и тем больше электронов резонансно туннелиру-
ют. Поэтому важным является определение времен
жизни (комплексных энергий Ẽn) квазистационар-
ных уровней и влияние на них конфигураций кван-
тового потенциала, что является целью работы. При
полевой эмиссии число набегающих в секунду на ба-
рьер электронов в интервале скоростей vz , vz + dvz
будет

dν (vz) = n+ (k) vzdvz,

где

n+ (k) =
m2

ekBT

2π2�3
×

× ln

(
1 + exp

(
EFc − E (k)

kBT

))
vz . (2)

Формула (2) получается усреднением по всем по-
перечным скоростям Ферми-газа электронов метал-
лического катода и приведена для конечной тем-
пературы. При холодной эмиссии (T=0) спектр
ограничен ЭФ:

n+ (k) = m2
e (EFc − E (k)) /

(
2π2

�
3
)
vz .

Хотя реально туннелирует многоскоростной поток
электронов, и он определяет полную туннельную
плотность тока

J+ (Ua) =
−eme

2π2�3

μc∫
0

D+ (E,Ua) (μc − E) dE, (3)

задачу можно рассматривать как одночастичное
туннелирование электронов с заданной энергией E.
Заряд электрона взят как qe = −e, поэтому по-
ложительный поток электронов с катода приводит
к положительному анодному току −J+ (Ua) через
единичное сечение. Верхний предел в (3) порядка
нескольких ЭВ, что вполне соответствует нереля-
тивистской квантовой механике. При термополевой
эмиссии (температурыT∼2000 K) следует использо-
вать (2), и верхний предел в (3) из-за сильного убы-
вания логарифма достаточно увеличить на несколь-
ко эВ. Далее рассматриваем случай T=0. Полная
плотность тока J = J+ − J− определяется туннели-
рованием в обоих направлениях с коэффициентами
туннелирования (прозрачности) D± (E) = 1−|R±|2,

7
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которые определяются на основе вычисления коэф-
фициентов отражения R±. Для определения R± ре-
шаем УШ. Формула для J− получается заменой
μc → μa,D+ → D−. Для симметричного потенциала
(Ua=0) всегда D+ = D−. Для слабо несимметрич-
ного потенциала D+ ≈ D−, причем слабое отличие
наблюдается при малых энергиях.

2. ВРЕМЯ ЖИЗНИ УРОВНЯ НА ОСНОВЕ
РЕШЕНИЯ СТАЦИОНАРНОГО УШ

Стационарное УШ(
− (�∂x)

2

2me
+ V (x)

)
ψ (x) = 0

для потенциала V (x ) удобнее всего решать методом
трансформации волнового импеданса. При постоян-
ном в области xn < x < xn+1 потенциале Vn волно-
вой импеданс вводим как

zn (E) = −iψ (x) /ψ′ (x) = 1/kn,

где
ψ (x) = A exp (iknx)

— волновая функция (ВФ) движущегося в направ-
лении x электрона,

kn =
√
2me (E − Vn)/�.

Пусть z0 (xn+1) — импеданс справа. Он трансфор-
мируется во входной импеданс слева по формуле

Zi (xn) = zn
z0 − izn tg (kn (xn+1 − xn))

zn − iz0 tg (kn (xn+1 − xn))
. (4)

Полагая z0 = Zi (xn), снова применяем указанную
формулу для другого участка, пока не получим
входной импеданс на катоде Zic (0) и коэффициент
отражения со стороны катода

R+ = (1− k0Zic (0)) / (1 + k0Zic (0)) .

Здесь
k0 = kc =

√
2meE/�.

Для начала итераций на аноде берем

ka =
√
2me (E − EFc + eUa)/�,

z0 = 1/ka.

Следует отметить, что обычно при туннелировании
через барьер берут ka = k0, т. е. рассматривают

движение до точки поворота. Такие прозрачности
равны D̃+ = D̃−. Но после прохождения этой точ-
ки электрон движется квазиклассически, приобре-
тая энергию eUa. Это приводит к опусканию УФ на
аноде на eUa и к необходимости использования ве-
личины ka. Указанное иллюстрирует бесконечно уз-
кий барьер в виде ступеньки: V = 0 на катоде при
x < 0 и V = −eUa при x > 0 на аноде. Для него ква-
зиклассическое приближение дает полную прозрач-
ность D = 1, R = 0. Однако при строгом решении
отражение от ступеньки есть

R = (k0 − ka) / (k0 + ka)

и D < 1. Применение формулы (4) эквивалентно
сшиванию ВФ и ее производной. Очевидно, уровни

En = E′
n − iE′′

n

можно определить как комплексные корни
уравнения

R+ (En) = 0.

Прозрачность с анода на катодD− определяется об-
ратным пересчетом, при этом на аноде следует взять

ka =
√
2meE/�,

z0 = 1/ka

и
R− = (1− k0Zia (d)) / (1 + k0Zia (d)) .

Отличие D+ и D− тем больше, чем больше Ua. При
eUa > EFc туннелирование с анода невозможно. По-
сле туннелирования электрон всегда переходит на
УФ соответствующего электрода, отдавая ему или
забирая у него энергию e

∣∣E − EF (a,c)

∣∣ в зависимо-
сти от знака разности. Этот процесс диффузионный.
Он происходит на длине порядка длины свободно-
го пробега и не влияет на волновой процесс тун-
нелирования. При туннелировании с уровня ниже
УФ происходит нагрев соответствующего электрода
(эффект Ноттингема): уходящий электрон замеща-
ется электроном с УФ. При Ua = 0 имеем симмет-
ричную структуру в виде ямы между двумя барье-
рами (рис. 1, кривые 0, 1 ). В этом случае условие

R+ (En) = R− (En) = 0

приводит к уровням, с которых частица одинаково
туннелирует влево или вправо. В противном случае
условие R+ (En) = 0 дает уровни, с которых части-
ца может уйти на анод, а условие R− (En) = 0 соот-
ветствует уровням перехода на катод. Вычисления

8
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показывают, что уровни примерно совпадают в пре-
делах их ширины. Пусть, например, eUa > EFA. Все
уровни энергии на аноде становятся отрицательны-
ми, и с них невозможны переходы на положитель-
ные уровни энергии катода. Нетрудно видеть, что
для E < 0 в этом случае |R− (E)| ≡ 1, т. е. нет ре-
шений уравнения R− (E) = 0. В этом случае импе-
данс катода 1/kc мнимый, и катод для анода высту-
пает как бесконечно длинная полностью отражаю-
щая ступенька. Положительными энергии на аноде
могут быть только при ненулевой температуре, т. е.
при термоэмиссии. Решения уравнения R+ (E) = 0

всегда существуют для уровней на катоде. Таким об-
разом, для несимметричного потенциала существу-
ют два типа уровней. Реально РТ рассматривается
для несимметричных потенциалов, поскольку толь-
ко в этом случае существует полный ток.

Другой возможный подход к решению стацио-
нарного УШ может состоять в использовании мат-
риц переноса [1–3] T̂ (E). Матрица структуры опре-
деляется путем кусочно-постоянной аппроксима-
ции потенциала V и перемножения матриц участ-
ков. Характеристическое уравнение для определе-
ния уровней туннелирования на анод принимает
вид [1, 3]

ikc (E) =
T21 (E)− ika (E)T22 (E)

T11 (E)− ika (E)T12 (E)
. (5)

Еще один способ решения УШ состоит в использо-
вании метода прогонки. Кроме нахожденияR± (E)

и D± (E) он позволяет определить амплитуды
A±

nψ (±ikn (x− xn)) у волновых функций и рас-
пределение заряда в области барьера и ямы при
известном входном потоке падающих частиц с
катода n+ (k) vzdvz и с анода n− (k) vzdvz . Это,
в свою очередь, позволяет оценить изменение
квантового потенциала V за счет влияния про-
странственного заряда при сильном токе [2]. Такая
оценка требует совместного итерационного решения
уравнения Пуассона (УП) и УШ. Для наших целей
анализа влияния резонансных уровней на эмиссию
вышеупомянутые численные методы не удобны.

Получим строгое решение УШ для модельного
потенциала Ṽ (x), описываемого двумя прямоуголь-
ными барьерами высоты Vc у катода и Va у ано-
да рис. 2. Для лучшего соответствия реальному по-
тенциалу размеры барьеров tc и ta берем пример-
но в два раза меньше, чем основания реальных по-
чти треугольных барьеров на прямоугольном по-
стаменте (рис. 1, кривые 2, 4, 6 ), при этом раз-
мер ямы tw соответственно увеличиваем. Можно по-
лучить строгое соответствие ширины треугольного

x

V

V =

V

c

EFFc

Fa

E -eUF

Va

a

0

E2
‘

E1
‘

tw

k

tc ta

kc

~
ka

kc

ka

~

Рис. 2. Схематическое распределение потенциала V в од-

ноямной РТС при Ug = EF /e. Штриховыми линиями обо-

значены уровни на катоде, аноде и два метастабильных

уровня

барьера и ширины прямоугольного барьера c оди-
наковыми высотами, приравнивая их прозрачности
Drec (E) = Dtre (E). Такое соответствие зависит от
энергии. Усредняя по энергиям, получим коэффи-
циент примерно trec ≈ 0.5ttre. В яме решение УШ
имеет вид

ψ (x) = A+
w exp (ik0 (x− tc)) +A−

w exp (−ik0 (x− tc)) .

В барьере у катода имеем ВФ

ψ (x) = A+
c exp

(
−k̃Ax

)
+A−

c exp
(
k̃Ax
)
,

а в барьере у анода ВФ принимает вид

ψ (x) = A+
a exp

(
−k̃a (x− tc − tw)

)
+

+A−
a exp

(
k̃a (x− tc − tw)

)
.

Здесь обозначено

k̃c =
√
2me (Vc − E),

k̃a =
√
2me (Va − E),

k0 =
√
2meE.

ВФ на катоде есть уходящая от него волна

ψ (x) = Ac exp (−ik0x) .

Аналогично на аноде

ψ (x) = Aa exp (ik0 (x− d)) .

9
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Здесь Aa = k0, d = tc + tw + ta — размер структу-
ры. Задача, как обычно, состоит в сшивании ВФ и
их производных. Всего неизвестных восемь, границ
четыре, и условий тоже восемь. Вычислять опреде-
литель восьмого порядка без использования числен-
ных методов — задача не из легких. Будем последо-
вательно исключать неизвестные. Результаты тако-
го исключения приведены в Приложении. Опреде-
ляя функцию f (E) по формуле (П2) Приложения,
имеем характеристическое уравнение

E = Va
(f (E)− 1)2

(f (E)− 1)
2 − (f (E) + 1)

2 . (6)

для итерационного поиска комплексных корней Ẽn.
Считая функцию f большой по модулю (барьеры
широкими), получим E ≈ −Vcf (E) /4. При расши-
рении ямы от весьма узкой сначала уровень возни-
кает около Va [21]. Для такого уровня k̃a ≈ 0. В этом
случае должно быть

tg (k0tw) ≈ k0/k̃a.

Пусть имеется такой уровень

Ẽ1 = Va (1− δ1) ,

где δ1 — малая величина. Пусть также

δ << Δ = Vc/Va − 1.

Вычислим функцию f. Имеем

k̃c ≈ k̃ (1 + δ/ (2Δ)) ,

exp
(
2k̃ctc

)
≈ exp

(
2k̃tc

)
(1 + δ/ (2Δ)) ,

где обозначена величина

k̃ =
√

2meVaΔ/�.

Также
k0 ≈ k̃ (1− δ/2) /

√
Δ,

k0/k̃c ≈
(
1− δ1 (1 + 1/Δ) /2 + δ21/ (4Δ)

)
/
√
Δ.

Положим k̃a = 0, а введенное условие запишем в
виде

tg
(
twk̃/

√
Δ
)
=
√
Δ.

Тогда имеем

f ≈
exp
(
2k̃tc

)
4Δ− δ1(Δ + 1)

(
1 + twk̃

)×

×
{
δ1(Δ + 1)(1 + twk̃)−

−
(
δ21/2

) [
Δ+ 2Δ

(
twk̃
)2

+ (Δ + 1)
(
1 + twk̃

)]}
.

Для левой части (П2) получим

1 + ik0/k̃a

1− ik0/k̃a
≈ 1 + δ1

1 + i
√
Δ

(Δ+ 1)
2 ,

откуда можно найти поправку δ1. Пренебрегая вто-
рым порядком, найдем

δ1 =
16 exp

(
−2k̃tc

)
(1 + 1/Δ)

(
1 + twk̃

)+

+
4δ exp

(
−2k̃tc

)
(1 + 1/Δ)

(
1 + twk̃

)×
×
[
4
1 + i

√
Δ

(Δ + 1)
2 − (1 + 1/Δ)

(
1 + twk̃

)]
.

Второй член можно опустить. Для точного поиска
корней уравнения (6) рассмотрим яму, окруженную
бесконечно широкими барьерами, т. е. ступеньками
потенциала высоты Vc и Va. Пусть Va < Vc. В та-
кой яме возможны стационарные уровни энергии
En < Va. Задача о несимметричной яме решена и
исследована в [21]. С обозначением

k0n =
√
2meEn/�

она имеет решение

k0ntw = nπ − arcsin

(
k0n�√
2meVc

)
−

− arcsin

(
k0n�√
2meVa

)
= g (En) (7)

и дает действительные уровни. Уравнение (7) запи-
шем в виде

tg (k0ntw) = k0ntn,

где

tn =
k0n + k̃c

k̃ck̃a − k20n
.

Выбирая ширину ямы из условия существования од-
ного уровня

tw > t0 =
π/2− arcsin (Va/Vc)√

2meVc/�
,

10
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имеем

En =
(�g (En) /tw)

2

2me
.

Из этого уравнения методом деления пополам на от-
резке (0, V0) находим действительные значения E1.
Для существования нескольких уровней яма долж-
на быть в несколько раз шире, чем t0. Тогда находим
En, n = 1, 2, ..., N . Значения En используем как на-
чальные Ẽ

(0)
n = En для итераций по формуле (6).

В результате получаем все уровни, с которых ча-
стица может уйти как на анод, так и на катод. Для
повышения тока следует использовать максимально
широкую яму, для чего материал соответствующе-
го электрода должен обладать максимально боль-
шой длиной свободного пробега (ДСП) электронов.
Кратно увеличить ДСП можно, используя криоген-
ные температуры. Рассмотрим вывод уравнения (7),
когда ВФ со стороны катода и анода взяты в виде

ψ (x) = Ac exp
(
k̃a (1− iδc) x

)
,

ψ (x) = Aa exp
(
−k̃a (1− iδa) (x− tw)

)
,

т. е. барьеры частично прозрачные. Здесь

k̃c =
√
2me (Vc − E′

n)/�,

k̃a =
√
2me (Va − E′

n)/�,

а малые поправки берем в виде

δc = E′′
n/ (2Vc − 2E′

n) ,

δa = E′′
n/ (2Va − 2E′

n) .

Реально они связаны с конечной шириной барье-
ров и конечным временем жизни уровней. В яме
0 < x < tw берем

ψ (x) = A sin (k0n (1 + δn)x+ δ) ,

где
Ẽn = (1 + δn)

2
(k0n�)

2
/ (2me) ,

а малую поправку δn требуется найти. В результате
для нее получаем характеристическое уравнение

tg (k0n (1 + δn) tw) = k0n (1 + δn)×

× k̃a (1− iδa) + k̃c (1− iδc)

k̃ck̃a (1− iδa) (1− iδc)− k20n (1 + δn)
2 .

Введем обозначения

δ′an = δa/δn, δ′cn = δc/δn.

Штрихованные величины не являются малыми.
Учитывая (8), для получения поправки следует ис-
пользовать разложение вплоть до второго порядка
по δ2n. Получаем δn = An/Bn, где

An =
tw
tn

+ k20ntntw − 1 +
i
(
δ′ank̃a + δ′cnk̃c

)
k̃a + k̃c

−

−2ik̃ck̃a (δ
′
an + δ′cn) + 2k0n

k̃ck̃a − k20n
,

Bn =
k̃ck̃aδ

′
anδ

′
cn + k20n

k̃ck̃a − k20n
− k20ntntw+

+4

[
ik̃ck̃a (δ

′
an + δ′cn) + k20n

k̃ck̃a − k20n

]2
+

+
2ik̃ck̃a (δ

′
an + δ′cn) + 2k20n

k̃ck̃a − k20n
.

При вычислении поправки можно полагать
Ẽ′

n = En, и тогда

Ẽ′′
n/En = − Im (δn) ,

а реальная часть также изменяется:

E′
n = En (1 + Re (δn)) .

На рис. 2 показаны два уровня. С катода возмож-
но туннелирование на оба уровня с уходом на анод.
При этом катод нагревается, поскольку его уровень
ваше УФ (эффект Ноттингема). При переходе с пер-
вого уровня на анод последний охлаждается, а при
переходе со второго — нагревается. Туннелирование
с анода на второй уровень при T=0 невозможно.
Время жизни уровня экспоненциально уменьшается
с уменьшением ширин барьеров. Последние умень-
шаются с ростом Ug (эффект Шоттки), т. е. с увели-
чением глубины ямы. При Ug > Ua + EFc/� в яме
возможны стационарные уровни. Сужает барьеры
увеличение напряжения Ug и уменьшение размеров
tc и ta. Имеет место критическое напряжение, когда
барьер относительно УФ исчезает, т. е. становится
почти треугольным. Действительно, используя фор-
мулу (1), в которой обозначаем

W ′ = Wc
(1− α/d) (1 + δ/d)

2

(1− δ/d)
2
ε

,

считая d = tg и пренебрегая в ней малыми членами,
это условие можно записать так:

V (x0) = EFc =

11
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= EFc +W ′
c (1− δd/ (x0 (d− x0)))− eUgx0/d.

Из него находим точку x0, где это имеет место. Она
весьма близка к катоду, поэтому упрощаем кубиче-
ское уравнение, заменяя d− x0 на d :

x0 = eUgx
2
0/ (W

′
cd) + δ.

Решить это квадратное уравнение проще итерация-
ми, полагая сначала x0 = δ, а затем уточняя:

x0 = δ + δ2eUg/ (W
′
cd) .

Уточнение весьма мало, поэтому получаем критиче-
ское напряжение

Ug = W ′ (d/δ − 1) / (2e) ≈W ′d/ (2eδ) .

Для РВ порядка 4 эВ при d=2 нм ему соответ-
ствует напряженность критического электрическо-
го поля на катоде 2.35 · 1010 В/м. Таким образом, в
РТС с ямой с шириной порядка нескольких t0 при
малых ширинах барьеров tc и ta возможно сильное
увеличение эмиссионного тока, для чего достаточ-
но увеличить размер tw. Однако туннелирование —
транспорт баллистический без потери энергии, по-
этому ширина tw должна быть существенно меньше
ДСП электрона в соответствующем материале. Ха-
рактерный размер tw при комнатной температуре
— несколько нм. Для уменьшения времени жизни
уровней с целью увеличения тока барьеры следу-
ет выполнять узкими. Их сужение также достига-
ется увеличением напряжений на электродах. По-
лучить точные решения уравнения (6) не сложно,
но эти уравнения модельные, поэтому для реальных
потенциалов рис. 1 следует решать строгие уравне-
ния (5) или R± (E) = 0. В таблице приведены ре-
зультаты итерационного вычисления комплексных
энергий. Вычисления по формуле (5) и из условий
R± (E) = 0 совпадают.

Весьма простым методом определения комплекс-
ных уровней является расчет прозрачности струк-
тур. На рис. 3 приведен пример вычисления D+и
в ряде двухъямных РТС, имеющих от 2 до 4 мета-
стабильных уровней. Такие структуры получаются
при сдвоенной сетке [1–3] и более удобны для полу-
чения РТ, поскольку можно сформировать два при-
мерно одинаковых барьера при существенном элек-
тростатическом потенциале Ua. Отметим, что пики
для D+ и D−, вообще говоря, немного различают-
ся, причем в приведенных случаях различие имеет
место при малых энергиях после нескольких знаков
от запятой. При E > EFc всегда D± ≈ 1. Этот слу-
чай соответствует термоэмиссии, если температуры

электродов T± > 0. Отметим, что при разных ба-
рьерах могут быть пики, не доходящие до едини-
цы (неполное РТ). Это связано с неполным погаше-
нием отраженных электронных волн. Величины E′

n

определяются по максимумам пиков, что можно сде-
лать достаточно точно. Величины E′′

n определяются
по ширине резонансов. Обычно уровни расположе-
ны вблизи верхних областей ямы.

Рассмотрим, как влияет положение уровня и его
ширина на вклад в ток. Пусть имеется один уровень
E′

1 − iE′′
1 . Аппроксимируя его в (3) равносторонним

треугольником единичной высоты, получаем вклад
от уровня

ΔJ+ = −eme (EFc − E′
1)E

′′
1 /
(
4π2

�
3
)
.

Для уровней вблизи УФ катода он мал. Поэтому
важно получать низколежащие уровни с малым вре-
менем жизни (большой шириной). Для одиночного
треугольного потенциального барьера при закрити-
ческом поле квазиклассическое приближение дает
его прозрачность D в виде

D ≈ exp
(
−4d

√
2meW

3/2/3�eUa

)
,

см. [20]. Здесь высота барьера W отсчитывается от
кинетической энергии набегающего на барьер элек-
трона, т. е. в нашем случаеW = V −E. Для глубоких
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Рис. 3. Коэффициент туннелирования с катода D = D+

в двухъямной структуре t = t1 = t2 = t3 в зависимо-

сти от отношения E/EFc при t = tg = 1 нм, d = 5 нм

(1, 3) и t = 2 нм, tg = 1.5 нм, d = 9 нм (4). Рабо-

ты выхода Wc = Wg = Wa = 4.0 эВ, энергии Ферми

EFc = EFa = 5 эВ, Ua = 11 В. Ug = 13 В (1, 4);

Ug = 20В (2); Ug = 25В (3)
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Таблица. Метастабильные уровни (эВ) в области (0, EFc) для потенциала рис. 1 при разных анодных

напряжениях Ua (В)

Ua 1.0 2.0 3.0 4.0

E′
1−iE′′

1 0.14467–
i3.1·10−4

0.1445–
i2.9·10−4

0.1399–
i2.7·10−4

0.1405–
i2.7·10−4

E′
2−iE′′

2 1.815–
i2.5·10−3

1.807–
i2.6·10−3

1.798–
i2.8·10−3

1.789–
i2.9·10−3

E′
3−iE′′

3 4.4938–
i8.9·10−3

4.369–
i9.5·10−3

4.328–
i9.9·10−3

4.279–
i1.2·10−2

E′
4−iE′′

4 6.872–
i7.2·10−2

6.982–
i8.3·10−2

уровней прозрачность одиночного барьера экспонен-
циально мала по сравнению с D = 1 при РТ. Для
глубоких уровней формула работает достаточно хо-
рошо, однако при E = V видна ее ограниченность:
D = 1 при W = 0, тогда как решение УШ дает
D < 1. Этим, в частности, ограничено применение
формулы Фаулера –Нордгейма к одиночному барье-
ру. Тем не менее, результат можно использовать для
оценки времен жизни глубоких уровней, вычисляя
D(c,a) при W = Vc,a − En и определяя δc = Dc и
δa = Da.

3. ВРЕМЯ ЖИЗНИ УРОВНЯ ПРИ
НЕСТАЦИОНАРНОМ ПОДХОДЕ

Нестационарное УШ, записываемое как

Ŝ (t, x)ψ (t, x) = V (t, x)ψ (t, x) ,

является релятивистски нековариантным. Здесь
мы обозначили оператор Шредингера свободной
частицы

Ŝ (t, x) = i�∂t +
(�∂x)

2

2me
.

Это означает, что пропагаторная функция Грина
(ПФГ), описывающая распространение частицы из
точки x′ в момент t′ в точку x в момент t и имеющая
вид [22, 23]

K0 (t− t′, x− x′) =

= sgn (t− t′)

√
me

2πi� |t− t′|×

× exp

(
i (x− x′)

2
me

2� |t− t′|

)
, (8)

дает бесконечно быстрое распространение возмуще-
ния. Действительно, ПФГ (8) определяет частицу в

точке x в момент t по ее амплитуде ψ0 (x
′, t′) в точке

x′ в момент t′

ψ0 (t, x) =

∞∫
−∞

K0 (x− x′, t− t′)ψ0 (t
′, x′) dx′.

Если в точке x0 в момент t0 возникла плотность ве-
роятности

ψ0 (t0, x, ) = δ (x− x0) ,

т. е. частица локализована в этой точке, то при t > t0
она существует во всех точках бесконечной области:

ψ0 (x, t) = K0 (x− x0, t− t0) ,

т. е. скорость распространения плотности вероятно-
сти бесконечна. Однако плотность вероятности в
удаленных точках бесконечно мала. Здесь индекс
ноль означает свободную частицу (V=0). Такая ча-
стица в общем случае описывается как волновой па-
кет (ВП) с неким спектром волновых чисел k и энер-
гий E. Отметим, что набегающий поток частиц с
распределением (2) также есть ВП. ПФГ (8) удо-
влетворяет начальному условию

K0 (t− t′, x− x′)t→t′ = δ (x− x′)

и уравнению

ŜK0 (t− t′, x− x′) = i�δ (t− t′) δ (x− x′) ,

см. [22]. Решать нестационарное УШ надо при опре-
деленных начальных условиях. Удобно брать в ка-
честве начальных условий при t = t0 стационар-
ный случай, т. е. при t < t0 использовать ВФ
ψ0 (x) и потенциал V0 (x). В момент t ≥ t0 по-
тенциал V (x, t) начинает изменяться, а ВФ удо-
влетворяет нестационарному УШ. Она при t0 > 0

13
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определяется интегральным уравнением (ИУ) типа
Липпмана –Швингера:

ψ (x, t) = ψ0 (x)− i�−1

t∫
0

∞∫
−∞

K0 (t− t′, x− x′)×

× [V (t′, x′)− V0 (x
′)]ψ (t′, x′) dx′dt′. (9)

Действительно, при t ≤ 0 имеем ψ (x, t) = ψ0 (x).
При t > 0, действуя на (9) оператором Ŝ, получаем

Ŝψ (x, t) = V (t, x)ψ (t′, x′) .

Если потенциал

ΔV (t, x) = V (t, x)− V0 (x)

локализован в некоторой области, уравнение (9) для
малых времен решить достаточно просто. Пример
решения для двухбарьерного РТД дан в работе [12].
Это уравнение удобно для исследования переходных
процессов и времен туннелирования. Возможны слу-
чаи ΔV (0, x) = 0 (плавное изменение потенциала) и
ΔV (0, x) 	= 0 (резкое изменение потенциала). Рас-
смотрим второй случай. Пусть при t < 0 имеем яму
с одним метастабильным уровнем между двумя ба-
рьерами. Этот уровень не может быть заселен, по-
скольку за бесконечное время состояние всегда рас-
падется. Для простоты рассмотрим уровень меж-
ду двумя одинаковыми барьерами высоты V. Ничто
не мешает считать высоты барьеров разными, но
это приводит к более громоздким выкладкам. Такой
уровень между одинаковыми барьерами V опреде-
ляется из уравнения

th
(
k̃1tb

)
th (ktw) =

= α =

√
Ẽ1

(
V − Ẽ1

)
Ẽ1 − V/2

,

см. [13]. Здесь величина

k̃1 = k̃′1 + ik̃′′1 =

√
2me

(
V − Ẽ1

)
�

комплексная, t1 = t2 = tb — толщина барьеров.
Из этого уравнения можно определить время жиз-
ни τ1 = 2�/E′′

1 . Удобно искать численное решение в
виде

E1 = V0 arctg
2 (α (E1)) / th

2
(
k̃1tb

)
,

V0 = �
2/2met

2
w,

представив арктангенс через логарифм. Величины

α = α′ + iα′′ =
√
E1 (V − E1)/ (E1 − V/2)

и
k̃′ = k̃′1 + ik̃′′1

комплексные. Для широких барьеров имеем

k̃′1 =
√
2me (V − E′

1)/�,

k̃′′1 = E′′
1

√
me/ (2V − 2E′

1)/�,

th2
(
k̃1tb

)
≈ 1− 4 exp

(
−2k̃′1tb

)
exp
(
−2ik̃′′1 tb

)
.

Для входящих в уравнение величин получаем

α′ =
√
E′

1 (V − E′
1)/ (E

′
1 − V/2) ,

α′′ = E′′
1α

′
1 (1/ (2V − 2E′

1) + 2/ (2E′
1 − V )− 1/ (2E′

1)) .

Проще всего оценить уровень, считая, что он возни-
кает у границы барьера. Тогда величина α′ мала, а

α′′ ≈ 3α′
1E

′′
1 /2V

еще более малая величина. Обозначая

δ = 4 exp
(
−2k̃′1tb

)
exp
(
−2ik̃′′1 tb

)
,

получаем энергию в виде

E1 = (V + V0) /2 +
√

V 2
0 /4 + 3V0V/2 + δΔE1,

где

ΔE1 =

(
V0

2/4 + 3V V0/4
)√

V 2
0 4 + 3V0V/2

+
V0

2
.

Углубим яму на величину ΔV . Тогда на дне ямы
энергия отрицательная. Пусть возможен только
один стабильный уровень. Пусть также центр ямы
находится при x=0. Волновая функция в яме либо
четная

ψ0 (x) = Ac cos (k1x) ,

либо нечетная

ψ0 (x) = As sin (k1x) ,

при этом

ψ0 (tw/2) 	= 0, ψ′
0 (tw/2) 	= 0,

k1 =
√
2meE1/�.

Обозначим

k̃0 =
√
2me (ΔV − E1)/�,

14
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k̃1 =
√
2me (V +ΔV − E1)/�,

z0 = −i/k̃0, z̃1 = −i/k̃1, z1 = 1/k1.

Тогда в случае нечетной волновой функции имеем
характеристическое уравнение

tg (k1tw/2) = iZi/ρ1,

а для четной функции

tg (k1tw/2) = −iρ1/Zi.

Величина

Zi =
ρ̃1

(
ρ̃0 − ρ̃1 th

(
k̃1t
))

ρ̃1 − ρ̃0 th
(
k̃1t
)

мнимая, поэтому уравнения действительные и опре-
деляют действительные энергии. Нормировку ВФ
возьмем из условия нахождения частицы в области
ямы |x| ≤ tw/2. Это приближенное условие, посколь-
ку есть просачивание вероятности через барьеры.
Но при достаточно большой ширине барьеров оно
мало. Можно выполнить строгую нормировку, но
это дает громоздкие значения амплитуд. В нашем
случае для амплитуд имеем

|Ac|2 = [tw (1 + sin (twk1) / (twk1))]
−1

,

|As|2 = [tw (1− sin (twk1) / (twk1))]
−1

.

Понятно, что первым должен возникнуть четный
уровень, поскольку ее ВФ примерно соответствует
полуволне де-Бройля. Итак, при t < 0 существует
такой заселенный уровень. В момент t = 0 резко
включается потенциал ΔV > 0, и дно ямы поднима-
ется до нулевой энергии. В такой яме частица бес-
конечно долго существовать не может, и начинается
распад состояния. Он описывается ИУ

ψ (x, t) = ψ0 (x)− i�−1ΔV×

×
t∫

0

tw/2∫
−tw/2

K0 (t− t′, x− x′)ψ (t′, x′) dx′dt′. (10)

Эту задачу можно решать численно или методом
возмущений. В последнем случае первое приближе-
ние есть

ψ(1) (x, t) = ψ0 (x) − i�−1ΔV×

×
t∫

0

tw/2∫
−tw/2

K0 (t− t′, x− x′)ψ0 (x
′) dx′dt′.
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Рис. 4. Вероятность перехода P (t) согласно формуле (12)

для распада одиночного уровня. Штриховая кривая обо-

значает экспоненциальный распад P0(t) = exp (−t/τ1)

Вероятность нахождения частицы в области ямы
теперь будет

P (t) =

tw/2∫
−tw/2

|ψ (t, x)|2 dx. (11)

Она убывает со временем. Решая ИУ (10), вычисля-
ем (8). Очевидно, при взятой нормировке P (0) = 1.
Аппроксимируя (8) функцией P0 (t) = exp (−t/τ1),
определяем время жизни уровня. Соответствующий
результат приведен на рис. 4. Он соответствует зна-
чению E′′

1 /E
′
1 = 0.021, τ1 = 59.5 фс. Следует отме-

тить, что распад такого состояния, вообще говоря,
происходит не по экспоненциальному закону [24–35],
который выполняется в пределе бесконечно долго
живущего уровня [36]. В яме существуют состояния
с непрерывным спектром, которые искажают экс-
поненциальный закон. Непрерывный спектр и ин-
терференция приводят к более быстрому начально-
му распаду, а затем возникает замедление [17, 24].
Еще более сложный случай соответствует несколь-
ким уровням. Нестационарный подход существен-
но сложнее, чем определение комплексных корней.
Интересно отметить, что для задач туннелирования
вычисление плотности вероятности

ρ (E) =

∫
|ψ0 (x,E)|2 dx
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Рис. 5. Нормированная плотность числа частиц ρ в яме в

зависимости от энергии E при трех резонансных уровнях

(эВ): 0.140552, 1.78936 эВ, 4.27933 (см. таблицу, Ua = 4В)

как по области ямы, так и по области барьеров дает
максимумы при энергиях, совпадающих со значени-
ями резонансных уровней E′

n рис. 5. Результат нор-
мирован на плотность числа частиц в обоих потоках

n (E) = n+ (E) + n− (E) =

=
√
2Em3/2

e (EFc − E) /π2
�
3.

Это связано с тем, что все падающие слева и спра-
ва потоки с резонансными энергиями E′

n проходит
в яму, а для других энергий они сильно отражает-
ся. Как туннельная плотность тока J, так и плот-
ность потока вероятности j непрерывны вдоль всей
структуры, считая и электроды, что есть следствие
закона сохранения частиц (вероятности) в нереля-
тивистской квантовой механике.

4. ПРИМЕНЕНИЕ НЕСТАЦИОНАРНОГО УШ
ДЛЯ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ

ТУННЕЛИРОВАНИЯ

Относительно времени туннелирования с 1930 г.
(когда возникло это понятие) по настоящее время
нет установившегося понимания в литературе (см.
[19] и литературу там). До сих пор рассматрива-
ются парадоксы типа Хартмана, «сверхсветового»
туннелирования, отрицательного времени туннели-
рования и т.п. ИУ (10) вполне удобно для решения

вопроса в таких временах и вообще о переходных
процессаx [12]. Время жизни (пребывания в струк-
туре) часто связывают со временем туннелирова-
ния. Здесь вместо ИУ (9) мы рассмотрим другой
подход, основанных на методе рядов для решения
нестационарного УШ. Пусть при t < 0 в области
0 < x < d структуры с тремя электродами Ua = 0,
а Ug = −Wc/e. Пусть также величина d достаточно
большая. В этом случае потенциал близок к пря-
моугольному ширины d и высоты Wc относитель-
но УФ (рис. 1, кривая 0 ). Относительно нуля его
высота V = Wc + EFc. Если бы на сетке было ну-
левое напряжение, то потенциал (относительно УФ
EFc) имел бы вид двух горбов высоты Wc, разде-
ленных промежутком с нулевой высотой. Кривая 1
на рис. 1 демонстрирует потенциал при отрицатель-
ном напряжении на сетке Ug = −Wc, когда вся
кривая поднята на Wc. Такой потенциал запирает
ток. Пусть в момент t = 0 потенциалы переключа-
ются так, что Ua > 0 и Ug = EFc/e, т. е. задача
становится такой, как при РТ. Соответственно на-
до рассматривать переходные процессы установле-
ния туннелирования при t > 0 при переключении от
кривой 1 к кривым типа 2, 4. Для диодной струк-
туры это переключение от кривой 0 к кривым 3,

5, 7, но без РТ. Макроскопическое изменение тока
при таком процессе весьма просто измерить, в от-
личие от времени туннелирования отдельной час-
тицы. Следует отметить, что при t < 0 ток отсут-
ствовал в силу симметрии структуры. Также в эти
времена плотность числа частиц в структуре бы-
ла ничтожно мала, поскольку ничтожно мала ве-
роятность туннелирования через широкий барьер.
Вблизи краев плотность экспоненциально спадает.
Выбирая d большим, можно считать, что в обла-
сти барьера частицы отсутствовали. Переключение
потенциалов приводит к появлению тока. Он не мо-
жет появиться мгновенно, поскольку частицам надо
пройти область d, что и создает конечное время пе-
реходного процесса. Будем решать нестационарное
УШ разложением в и ряды в области 0 < x < d:

Ψ(t, x) =

= A

( ∞∑
n=0

αn (t) cos (χnx) +

∞∑
n=1

βn (t) sin (χnx)

)
,

(12)

V (t, x) =

∞∑
n=0

νn (t) cos (χnx) , (13)

где χn = nπ/d. Метод пригоден для нескольких
электродов, но далее численные результаты пред-
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ставлены для диода. Использовать либо косинусы,
либо синусы в разложении (12) нельзя, поскольку в
этом случае всегда будет нулевая плотность потока
вероятности. Для упрощения применим метод к ди-
одной структуре. Амплитуда A введена для норми-
ровки, т. е. при ее задании можно положить α0 = 1.
Для вычислений обрежем ряды (12), (13) индек-
сом N. Подставляя (12) и (13) в УШ и используя
ортогональность тригонометрических функций, по-
лучаем связанные дифференциальные уравнения

α′
n(t) = i

N∑
m=0

Acc
nmωmαm (t)+

+ i

∞∑
m=1

Acs
nmωmβm(t) sin (χmx)−

− i

�

(
N∑

m=0

V αcc
nm (t)αm (t)+

+

∞∑
m=1

V βcs
nm (t) βm (t) sin (χmx)

)
, (14)

β′
n (t) = i

N∑
m=0

Asc
nmωmαm (t)+

+ i
∞∑

m=1

Ass
nmωmβm (t) sin (χmx)−

− i

�

(
N∑

m=0

V αsc
nm (t)αm(t)+

+
∞∑

m=1

V βss
nm (t) βm (t) sin (χmx)

)
. (15)

В них обозначены частоты ωn = �π2n2/
(
2med

2
)
и

матричные элементы, приведенные в Приложении.
Это довольно сложные уравнения, если потенциал
зависит от времени произвольно. В случае резкого
установления потенциала он перестает зависеть от
времени, и уравнения упрощаются. Переобозначая
матричные элементы, эти уравнения можно запи-
сать в более простом виде. Для первого уравнения
имеем

α′
n (t)− iωnαn (t) =

= fn (t) = −
i

�
V αcc
nn (t) + i

∞∑
m=1

Ãcs
nm (t)βm (t)+

+i
N∑

m=0, m≈n

Ãcc
nm (t)αm (t) .

Решая это уравнение методом Бернулли или мето-
дом вариации произвольной постоянной, получим

αn (t) = αn (0) exp (iωnt)+

+ exp (iωnt)

t∫
0

fn (t
′) exp (−iωnt

′) dt′. (16)

Аналогично получим

βn (t) = βn (0) exp (iωnt)+

+ exp (iωnt)

t∫
0

gn (t
′) exp (−iωnt

′) dt′.

Здесь обозначены функции

gn (t) = −
i

�
V βss
nn (t) + i

N∑
m=0

Ãsc
nm (t)αm (t)+

+ i

∞∑
m=1, m≈n

Ãss
nm (t)βm (t) .

Решение во времени ищем методом дискретизации
по времени tm = mΔt, m = 1, 2, ..., при этом инте-
гралы вычисляем методом средних. Если известны
начальные значения αn (0), βn (0), то уравнения поз-
воляют найти αn (mΔt), βn (mΔt), при этом можно
использовать как явные, так и неявные схемы. Вхо-
дящие сюда модифицированные матричные элемен-
ты имеют простой и понятный вид, например,

Ãαcc
nm (t) = Acc

nm − V αcc
nm (t)

и т. п. Если такой барьер в момент t = 0 мгновенно
изменяет форму до V (x), то эти элементы переста-
ют зависеть от времени:

Ãαcc
nm = ωmAcc

nm − V αcc
nm /�

и т. п. Их можно явно найти, если форма V (x ) про-
стая. При большом Ua она близка к треугольнику,
поставленному на прямоугольный постамент (рис.
1, кривые 3, 5, 7 ). При eUa = EF высоту постамен-
та можно взять как W , а высоту треугольника как
EF . Реально из-за эффектаШоттки барьер несколь-
ко ниже. Вычисляя интегралы, имеем

V αcc
nm =

(
vcn+m + vcn−m

)
/ (1 + δn0) ,

V βss
nm =

(
vsn+m − vsn−n

)
/ (1 + δn0) ,

V αsc
nm = vsn−m + vsn+m,

V βss
nm = vcm−n − vcm+n.
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Здесь обозначены значения следующих интегралов

νcn =
1

d

d∫
0

V (x) cos (χnx) dx,

νsn =
1

d

d∫
0

V (x) sin (χnx) dx.

Для начального симметричного широкого барье-
ра (кривая 0 ) высота V0 = W + EF , а коэффициен-
ты αn (t) = 0 и βn (t) = 0 при t < 0, поскольку
внутри плотность вероятности практически отсут-
ствует. Это приближение тем лучше, чем больше d.
Оно означает, что αn (t) = 0, βn (t) = 0, т. е. внут-
ри Ψ(x, t) = 0, t < 0. Берем начальный барьер пря-
моугольным. Тогда интегралы вычисляются просто,
например,

νn (0) = V0sinc (nπ) = V0δn0.

Когда такой барьер при приложении напряжения
Ua = EF /e принимает вид зависимости

V (x) ≈W + EF (1− x/d)

(см. рис. 1, кривая 7 ), то

νcn = (W + EF ) δn0 + EF conc (nπ) ,

νsn = W conc (nπ) + EF sinc (nπ) .

В нашем случае

νsn = W conc (nπ) .

Считаем, что в момент включения напряжения
некоторые коэффициенты αn (0) и βn (0) мгновен-
но изменяются от нуля. Это происходит за счет
включения потока плотности вероятности. Найдем
их из условия непрерывности плотности этого пото-
ка. Слева перед барьером спектральная ВФ имеет
вид

ψ (x, k) = a+ (k)
[
exp (ikx) +R+ (k) exp (ikx)

]
,

а справа соответственно

ψ
(
x, k̃
)
=

= a−
(
k̃
) [

exp
(
−ik̃ (x− d)

)
− exp

(
ik̃ (x− d)

)]
.

При этом

ψ (d, k) = 0, ψ′
(
d, k̃
)
= −2ik̃a−

(
k̃
)
,

и при большом напряжении∣∣∣ψ′ (d, k) /ψ′
(
0, k̃
)∣∣∣ << 1.

При включении напряжения электрохимический по-
тенциал на катоде скачком увеличивается, поэтому√

2meeUa/� < k <
√
2me (EFc + eUa)/�,

0 < k̃ <
√
2meEFa/�.

Теперь коэффициенты αn, βn в ВФ (13) при t > 0

становятся отличными от нуля. Они безразмерные,
поэтому следует определить амплитуду A из норми-
ровки на поток частиц. Поток справа при большом
Ua вполне можно взять равным нулю:

j (d) = 0.

Поток слева для волновой функции

ψ (x, k) = a+ (k)
[
exp (ikx) +R+ (k) exp (ikx)

]
имеет вид

j (0, k) =
�k |a+ (k)|2

me

(
1−
∣∣R+ (k)

∣∣2) .
Полный поток получаем интегрированием:

j (0) =
�

me

kF∫
0

∣∣a+ (k)
∣∣2 (1− ∣∣R+ (k)

∣∣2) kdk =

=
me

2π2�3

EF∫
0

(
1−
∣∣R+ (E)

∣∣2) (EF − E) dE.

Вычисляя поток внутрь барьера слева при x = 0,
найдем условие

j (0) = −i �

me
ReΨ′ (0, 0)Ψ∗ (0, 0) =

= −� |A|2

me
Re

(
i

∞∑
n=1

χnβn (0)

)( ∞∑
m=0

α∗
m (0)

)
.

Для потока справа (с анода) найдем

−� |A|2

me
Re

(
i

∞∑
n=1

(−1)n χnβn (0)

)
×

×
( ∞∑

m=0

(−1)m α∗
m (0)

)
= 0.

Необходимо также приравнять ВФ и их производ-
ные на границах области:

Ψ(0, 0) = A

∞∑
n=0

αn (0) ,

18



ЖЭТФ, том 167, вып. 1, 2025 О временах жизни квазистационарных уровней. . .

Ψ′ (0, 0) = A
∞∑
n=1

χnβn (0) ,

Ψ(0, d) = A

∞∑
n=0

(−1)n αn (0) = 0,

Ψ′ (0, d) = A

∞∑
n=1

(−1)n χnβn (0) = 0.

Последнее равенство мы приравняли нулю, посколь-
ку считаем напряжение большим, а энергию отсчи-
тываем от нуля зоны проводимости катода. Име-
ем шесть дополнительных уравнений для определе-
ния бесконечного числа начальных условий αn (0),
βn (0). Однако использование полного набора сину-
сов в (12) избыточно, поскольку система косинусов
полна для аппроксимации ВФ. Мы ввели синусы
для получения ненулевых потоков и ненулевых про-
изводных ВФ на границах. Вполне можно положить
αn (0) = 0, n > 2, βn (0) = 0, n > 3. Тогда неизвест-
ных шесть, как и условий. Однако ненулевыми до-
статочно взять коэффициенты α0 (0), α1 (0), β1 (0),
β2 (0). Тогда

α1 (0) = α0 (0) , β2 (0) = β1 (0) /2,

и все шесть уравнений удовлетворяются, при этом

j (0) = −4π� |A|2

med
Re (iβ1 (0)α

∗
0 (0)) .

Удобно взять

β1 (0) = iα0 (0) , α0 (0) = 1.

Тогда

j (0) =
4π� |A|2

med
,

и ВФ примет вид

Ψ(t, x) =

√
j (0)med

4π�
×

×
( ∞∑

n=0

αn (t) cos (χnx) +

∞∑
n=1

βn (t) sin (χnx)

)
. (17)

Из него находим Ψ(t, d) и Ψ′ (t, d). Другой способ
получения решений уравнений (14), (15) — исполь-
зование преобразований Фурье(

αn (t)

βn (t)

)
=

1

2π

∞∫
−∞

(
αn (ω)

βn (ω)

)
exp (iω) dω,

что связано с необходимостью вычисления интегра-
лов. Это можно сделать методом вычетов, но это
вопрос, требующий отдельного рассмотрения.

Для решения задачи надо определить начальную
ВФ Ψ(0, x) и ее производную, что будет сделано да-
лее. Удобно ввести частоту ω = E/�. Тогда падаю-
щий слева ВП можно записать так:

Ψ(t, 0) =

E/�∫
0

ψ+ (0, ω) exp (−iωt)dω,

ψ+ (0, ω) =
1

2π

∞∫
−∞

Ψ(0, ω) exp (iωt)dω.

Здесь
ω = k2�/2me, k =

√
2meω/�.

Пренебрегая обратным туннелированием, имеем
слева

Ψ(t, 0) =

E/�∫
0

a+ (ω)
(
1 +R+ (ω)

)
exp (−iωt)dω,

а справа получаем

Ψ(t, d) =

EF /�∫
0

a+ (ω)T+ (ω) exp (−iωt)dω.

Падающий слева ВП обозначим

Ψ+ (t) =

E/�∫
0

a+ (ω) exp (−iωt)dω.

Здесь

ψ+ (0, ω) = a+ (ω) , ψ+ (d, ω) = a+ (ω)T+ (ω) .

Определяя Ψ(x, t) как решение нестационарного
УШ в момент t, построим функцию

Ψ̃ (x, t) = Ψ (x, t)−Ψ(x, 0) .

Она равна нулю вне интервала (0, t), т. е. имеет огра-
ниченный носитель, и

Ψ̃ (x, ω) =
1

2π

t∫
0

Ψ̃ (x, t′) exp (iωt′) dt′,

Ψ(x, ω) =
1

2π

t∫
−∞

Ψ(x, t′) exp (iωt′) dt′.

Можно построить зависящие от времени коэффи-
циенты отражения и прохождения R+ (t), T+ (t).
Именно, следует взять

R+ (t) = Ψ (0, t) /Ψ+ (t)− 1,
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T+ (t) = Ψ (d, t) /Ψ+ (t) .

При учете обратного туннелирования определим па-
дающий справа ВП

Ψ− (t) =

E/�∫
0

a− (ω) exp (−iωt)dω.

Тогда имеем

Ψ(t, 0) = Ψ+ (t)
(
1 +R+ (t)

)
+ T− (t)Ψ− (t) ,

Ψ(t, d) = Ψ+ (t) T+ (t) + Ψ− (t)
(
1 +R− (t)

)
.

Чтобы найти все коэффициенты, надо еще
определить Ψ′ (t, x) , Ψ′+ и Ψ′−. Находить про-
изводные можно, дифференцируя ряды.

Плотность тока на аноде определяем через плот-
ность потока вероятности

J (tm) = −ej (tm, d) .

Для нее при нормировке ВФ на плотность вероят-
ности надо взять [20]

j (tm, x) =

= − i�

2me

[
Ψ∗ (tm, x) ∂xΨ(tm, x)−

−Ψ(tm, x) ∂xΨ
∗ (tm, x)

]
.

Для произвольного момента времени получим

j (t, x) =
j (0)

4
×

×Re

(
−i

∞∑
m=0

[α∗
m (t) cos (χmx) + β∗

n (t) sin (χmx)]×

×
∞∑
n=1

n [−αn (t) sin (χnx) + βn (t) cos (χnx)]

)
,

j (t, d) =
j (0)

4
×

×Re

(
−i

∞∑
m=0

(−1)m α∗
m (t) ·

∞∑
n=1

(−1)n nβn (t)

)
.

Из этого уравнения следует

j (0, d) = 0, j (Δt, d) ∼ Δt,

т. е. не может быть мгновенного туннелирования
и отрицательного времени туннелирования. Через

спектры Ψ(d, ω) и Ψ′ (d, ω) результат можно пред-
ставить в виде

j (t, d) =
�

(2π)
2
me

×

×Re

∞∫
−∞

(−i)Ψ∗ (d, ω)Ψ′ (d, ω′) exp (i (ω′−ω) t) dω′dω.

Для установившегося процесса спектральная ФВ на
аноде

ψ (x, k) = a+ (k)T+ (k) exp (ika (x− d))

легко определяется. Плотность потока вероятности
для нее

dj (d, k) = va (k)
∣∣a+ (k)T+ (k)

∣∣2 dk,
где скорость на аноде

va (k) =
√

v2 (k) + 2eUa/me.

Следует отметить, что эта скорость больше v (k)

из-за ускорения анодом прошедших сквозь барьер
электронов. На длине свободного пробега они рассе-
иваются и переходят на УФ анода, при этом va (k)

падает до v (k), а анод нагревается. Рассмотренный
метод рядов удобен и для совместного решения УШ
и УП.

5. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 6 и 7 приведены результаты вычисления
переходного процесса в виде установления анодного
тока в диоде с ЭФ 7 эВ и распределения плотно-
сти вероятности |Ψ(x, t)|2, когда на аноде скачком
возникают напряжения 3, 5 и 7 В. На рис. 7 пред-
ставлено распределение плотности вероятности для
кривой 1 рис. 6 в разные моменты времени. Коле-
бания плотности вероятности есть следствие конеч-
ности сумм. С увеличением членов в суммах размах
колебаний и период уменьшаются. Использовано ин-
тегрирование УШ методом рядов с учетом 40 членов
в рядах с явным методом вычисления коэффици-
ентов в (12). Разложение по другим базисам в (12)
позволяет исключить колебания. Например, можно
использовать конечные элементы. Однако предло-
женный метод рядов удобен при одновременном ре-
шении УШ и УП. Для УП он использован в [2].

При расчетах использовано 200 временных то-
чек. Кривые 2, 3 на рис. 5 построены для 50 вре-
менных точек. Для меди (ЭФ 7 эВ) имеем концен-
трацию электронов 8.5 · 1028 м−3 и скорость Фер-
ми vF = 1.57 · 106 м/с, т. е. частица с такой ско-
ростью проходит дистанцию d = 10 нм за время
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τ = 6.37 фс. Мы считали, что в момент включе-
ния напряжения плотность вероятности внутри ба-
рьера была нулевая. Более точно она распределена
симметрично относительно центра примерно по ги-
перболическому косинусу, т. е. возрастает к краям,
но на этих краях она экстремально мала, посколь-
ку коэффициенты отражения широкого почти пря-
моугольного барьера близки к минус единице. При
этом нет потока плотности вероятности внутрь ба-
рьера. Результаты рис. 6 говорят о том, что средняя
скорость переноса плотности вероятности несколь-
ко больше vF , что позволяет сделать вывод: движе-
ние плотности вероятности есть коллективный эф-
фект, обусловленный интерференцией парциальных
волн ВП. Электрон внутри барьера или вообще в
некотором потенциальном поле есть квазичастица,
определяемая взаимодействием с множеством дру-
гих частиц. Это усредненное взаимодействие и опре-
деляет потенциал. Наглядный пример — потенциал
метода изображений. Такая квазичастица не обяза-
на вести себя подобно свободному электрону. Кро-
ме того, пройдя точку поворота для одиночного ба-
рьера, электрон движется квазиклассически и уско-
ряется анодом. Дополнительно приобретаемая ско-
рость при Ua=5 В равна 1.33·106 м/c, т. е. пример-
но такая, как vF . Соответственно время пролета со-
кращается в два раза. Аналогичная задача для РТ
приводит к существенно большему времени переход-
ного процесса. Это можно объяснить тем, что для
РТ необходимо сформировать отражения от барье-
ров. Формально можно рассматривать времена жиз-
ни уровней как дополнительный вклад во время пе-
реходного процесса. На рис. 6 видно, что при ма-
лых временах плотность вероятности весьма мала.
Эта функция несимметричная и в среднем у нача-
ла барьера больше, а при больших временах уста-
навливается. Аналогичные вычисления переходных
процессов для переключения от широкого барьера
к структуре с узкими неравными барьерами и ямой
дает более медленное нарастание тока. Это объяс-
няется отражениями от барьеров для получения ре-
зонансных уровней в яме. Для достижения полного
РТ высоты барьеров должны быть достаточно близ-
кими. Численное вычисление прозрачностей кроме
полных резонансов демонстрирует и пики с непол-
ным РТ, когда максимумы D < 1. Что касается вре-
мен жизни τn = 2�/E′′

n, то они существенно меньше
аналогичных времен, определяемых на малых вре-
менах из нестационарных процессов как результат
эволюции ВП. Это связано с тем, что ВП содер-
жит широкий спектр энергий. На больших време-
нах проявляется неэкспоненциальный характер за-
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Рис. 6. Переходные процессы (−J в А/см2, время в фс)

при переключении от почти прямоугольного барьера 1 к

барьерам 2, 3, 4, рис. 1 (соответственно, кривые 1, 2, 3)

тухания уровня (см., например, [30–34]) и вклад в
него алгебраических членов. Определять таким спо-
собом времена жизни уровней можно для весьма уз-
ких ВП, что экспериментально весьма сложно реа-
лизовать для нерелятивистских квантовых частиц,
а тем более сложно обнаружить их прохождение че-
рез барьер. Здесь возникают проблемы с отражени-
ем спектрально узкого (т. е. весьма пространственно
широкого) ВП от барьера [18], особенно когда он из-
меняется во времени. Макроскопическую же плот-
ность тока можно весьма точно измерить.

Имеющую размерность скорости величину

v (x, t) = j (x, t) / |Ψ(x, t)|2

можно трактовать как скорость движение плотно-
сти вероятности в точке x в момент t. Она соот-
ветствует концепции Н.А. Умова, однако не мо-
жет трактоваться как скорость отдельной частицы.
Для односкоростного потока частиц она совпадает
со скоростью частиц в потоке. Возрастание тока со-
провождается возрастанием плотности вероятности
нахождения частиц внутри барьера. Среднюю мгно-
венную скорость движения ВП через точку x за вре-
мя τ можно определить как

v̄ (x, t, τ) =
1

τ

t∫
t−τ

j (x, t′)

|Ψ(x, t′)|2
dt′. (18)
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Рис. 7. Плотность числа частиц (м3) в зависимости от ко-

ординаты x (нм) в вакуумной диодной структуре для раз-

ных моментов времени (фс): 0.1 (1), 0.3 (2), 0.5 (3), 1.0 (4)

Если ВП конечный во времени, можно определить
и его среднюю скорость.

Малые времена жизни квазистационарных уров-
ней необходимы для получения больших плотностей
тока полевой эмиссии. Желательно иметь как мож-
но больше таких уровней, причем достаточно глубо-
ких. Увеличение числа уровней достигается увели-
чением ширины квантовой ямы, а уменьшение вре-
мен жизни — использованием барьеров малой ши-
рины. Также увеличению тока способствует вырав-
нивание высот барьеров, что можно регулировать
сеточным напряжением и изменением РВ сетки.

Финансирование. Работа выполнена при
поддержке Министерства образования и науки
РФ в рамках государственного задания №FSRR-
2023-0008 и при поддержке Программы стратеги-
ческого академического лидерства РУДН, проект
№ 021934-0-000.

ПРИЛОЖЕНИЕ

Для ямы из условий у катодного барьера имеем

A+
w =

A+
c exp

(
−k̃ctc

)
+A−

c exp
(
k̃ctc

)
2

+

+
k̃cA

−
c exp

(
k̃ctc

)
− k̃cA

+
c exp

(
−k̃ctc

)
2ik

,

A−
w =

A+
c exp

(
−k̃ctc

)
+A−

c exp
(
k̃ctc

)
2

−

−
k̃cA

−
c exp

(
k̃ctc

)
− k̃cA

+
c exp

(
−k̃ctc

)
2ik

.

В случае широких барьеров, пренебрегая экспо-
ненциально малыми членами (отражениями от ле-
вой границы барьера с амплитудой A+

c ), найдем из
условий согласования на барьере около катода

A+
w ≈

A−
c exp

(
k̃ctc

)(
1− ik̃a/k0

)
2

,

A−
w ≈

A−
c exp

(
k̃ctc

)(
1 + ik̃a/k0

)
2

.

С другой стороны, согласование у анодного барьера
дает

A+
w =

exp (−ik0tw)
[
A+

a +A−
a + i (A+

a −A−
a ) k̃a/k0

]
2

,

A−
w =

exp (ik0tw)
[
A+

a + A−
a − i (A+

a −A−
a ) k̃a/k0

]
2

.

На границе катода имеем соотношения

A+
c =

Ac

(
1 + ik0/k̃c

)
2

,

A−
c =

Ac

(
1− ik0/k̃c

)
2

.

На границе анода имеем соответственно

A+
a =

Aa exp
(
k̃ata

)(
1− ika/k̃a

)
2

,

A−
a =

Aa exp
(
−k̃ata

)(
1− ika/k̃a

)
2

.

Для широких барьеров амплитуды A−
a и A+

A малы.
Полагая их равными нулю, получаем

A+
w ≈

≈
Aa exp

(
k̃ata

)(
1−ik0/k̃a

)(
1+ik̃a/k0

)
exp (−ik0tw)

4
,
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A+
w ≈

Ac exp
(
k̃ctc

)(
1− ik0/k̃c

)(
1− ik̃c/k0

)
4

,

A−
w =

=
Aa exp

(
k̃ata

)(
1−ik0/k̃a

)(
1−ik̃a/k0

)
exp (ik0tw)

4
,

A−
w ≈

Ac exp
(
k̃ctc

)
Ac

(
1− ik0/k̃c

)(
1 + ik̃c/k0

)
4

.

Приравнивая коэффициенты A±
w , имеем два

уравнения

Aa exp
(
k̃ata

)(
1−ik0/k̃a

)(
1+ik̃a/k0

)
exp (−ik0tw)=

= Ac exp
(
k̃ctc

)(
1− ik0/k̃c

)(
1− ik̃c/k0

)
,

Aa exp
(
k̃ata

)(
1− ik0/k̃a

)(
1− ik̃a/k0

)
exp (ik0tw)=

= Ac exp
(
k̃ctc

)(
1− ik0/k̃c

)(
1 + ik̃c/k0

)
.

Разделив первое на второе, получаем приближенное
характеристическое уравнение

(
1− ik̃A/k0

)(
1− ik̃a/k0

)
(
1 + ik̃A/k0

)(
1 + ik̃a/k0

) = exp (−2ik0tw) . (Π 1)

Для получения точного уравнения следует оставить
все амплитуды. В этом случае, приравнивая коэф-
фициенты, получаем(

A+
A

A−
A

)
=

[
M11 M12

M21 M22

](
A+

a

A−
a

)
,

(
A+

a

A−
a

)
=

[
M−1

11 M−1
12

M−1
21 M−1

22

](
A+

c

A−
c

)
.

Элементы матрицы M̂ имеют вид

M11 = exp
(
k̃Atc

)
M̃11 = exp

(
k̃Atc

)
×

×
cos (k0tw)

(
1+k̃a/k̃c

)
+
(
k̃a/k0−k0/k̃A

)
sin (ktw)

2
,

M12 = exp
(
k̃Atc

)
M̃12 = exp

(
k̃Atc

)
×

×
cos (k0tw)

(
1−k̃a/k̃A

)
−
(
k̃a/k0+k0/k̃A

)
sin (ktw)

2
,

M21 = exp
(
−k̃Atc

)
M̃21 = exp

(
−k̃Atc

)
×

×
cos (k0tw)

[
1−k̃a/k̃A

]
+
(
k̃a/k0+k0/k̃c

)
sin (k0tw)

2
,

M22 = exp
(
−k̃Atc

)
M̃22 = exp

(
−k̃Atc

)
×

×
cos (k0tw)

(
1+k̃a/k̃c

)
−
(
k̃a/k0−k0/k̃c

)
sin (k0tw)

2
.

Теперь

A+
c = Ac

(
1 + ik0/k̃c

)
=

= 2
(
M11A

+
a +M12A

−
a

)
,

A−
c = Ac

(
1− ik0/k̃c

)
=

= 2
(
M21A

+
a +M22A

−
a

)
.

Подставляя в эти уравнения A±
a , получаем

Ac

(
1+ik0/k̃c

)
=M11Aa exp

(
k̃ata

)(
1−ik0/k̃a

)
+

+M12Aa exp
(
−k̃ata

)(
1− ik0/k̃a

)
,

Ac

(
1−ik0/k̃c

)
=M21Aa exp

(
k̃ata

)(
1−ik0/k̃a

)
+

+M22Aa exp
(
−k̃ata

)(
1− ik0/k̃a

)
.

Разделив первое уравнение на второе, имеем харак-
теристическое уравнение

1 + ik0/k̃c

1− ik0/k̃c
= f (E) = (Π2)

=
M̃11 exp

(
k̃ctc + k̃ata

)
+ M̃12 exp

(
k̃ctc − k̃ata

)
M̃21 exp

(
k̃ata − k̃ctc

)
+ M̃22 exp

(
−k̃ata − k̃ctc

) .
Для широких барьеров в нем можно опустить малые
члены, и тогда

f (E) ≈ exp
(
2k̃ctc

)
×

×
1 + k̃a/k̃c +

(
k̃a/k0 − k0/k̃c

)
tg (k0tw)

1− k̃a/k̃c +
(
k̃a/k0 + k0/k̃c

)
tg (k0tw)

.

Входящие в уравнения (14), (15) матричные эле-
менты имеют вид

Acc
nm =

sinc ((χn − χm) d) + sinc ((χn + χm) d)

1 + sinc (2χnd)
=

=
δnm

1 + δn0
,
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Acs
nm =

conc ((χn − χm) d)− conc ((χn + χm) d)

1 + sinc (2χnd)
=

=
(−1)n+m − (−1)n−m

1 + δn0
, (Π 3)

Asc
nm =

conc ((χn − χm) d) + conc ((χn + χm) d)

1 + sinc (2χnd)
=

=
2− (−1)n−m − (−1)n+m

1 + δn0
,

Ass
nm =

sinc ((χn − χm) d)− sinc ((χn + χm) d)

1− sinc (2χnd)
= δnm.

В них обозначены интегралы

V αcc
nm (t) =

2

(1 + δn0) d

d∫
0

V (t, x) cos (χnx) cos (χmx) dx,

V βss
nm (t) =

2

(1 + δn0) d

d∫
0

V (t, x) cos (χnx) sin (χmx) dx,

V βss
nm (t) = 2

d∫
0

V (t, x) sin (χnx) sin (χmx) dx,

V αsc
nm (t) = 2

d∫
0

V (t, x) sin (χnx) cos (χmx) dx.

В (П3) входят функции sinc (x) = sin (x) /x и
conc (x) = (1− cos (x)) /x. Эти функции в нуле сле-
дует определить как sinc (0) = 1, conc (0) = 0. При
этом sinc (2nπ) = δn0.
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Развита теория возмущений по взаимодействию с изолированным высокочастотным аттосекундным им-

пульсом в области вакуумного ультрафиолета (ВУФ) с атомной системой, модифицированной интен-

сивным инфракрасным (ИК) полем. Получены аналитические выражения для ВУФ-индуцированных по-

правок к волновой функции атомного электрона в ИК-поле и для амплитуды генерации излучения в

произвольном порядке теории возмущений. Проанализирован вклад парциальных амплитуд генерации

излучения для различных каналов с поглощением ВУФ-фотонов как на этапе ионизации, так и на этапе

рекомбинации электрона с атомным остовом в соответствии с трехшаговым механизмом перерассеяния.

Выявлены области параметров ИК- и ВУФ-импульсов, при которых возможна интерференция различ-

ных ВУФ-индуцированных каналов вплоть до третьего порядка теории возмущений по взаимодействию

с ВУФ-импульсом.

DOI: 10.31857/S004445102501002X

1. ВВЕДЕНИЕ

К настоящему времени достигнут существенный
прогресс в теоретическом описании нелинейных эф-
фектов, возникающих при взаимодействии интен-
сивного лазерного поля в инфракрасном (ИК) диа-
пазоне с атомными системами. Квантовомеханиче-
ское описание индуцированных интенсивным ИК-
полем процессов предполагает два подхода: чис-
ленные методы, например, основанные на решении
нестационарного уравнения Шредингера (НУШ)
и его различных упрощенных вариаций для слу-
чая многоэлектронных систем (метод функциона-
ла плотности, нестационарный метод Хартри –Фо-
ка) [1–9], и аналитические подходы. Численные рас-
четы как правило служат «эталонами» для провер-
ки точности аналитических подходов и демонстри-
руют свою эффективность при нахождении нели-

* E-mail: flegel@cs.vsu.ru
** E-mail: frolov@phys.vsu.ru

нейного отклика атомной системы на внешнее ин-
тенсивное переменное электрическое поле. Одна-
ко, результаты численного интегрирования могут
быть получены лишь при фиксированных парамет-
рах лазерного излучения и не обладают существен-
ной предсказательной силой, а именно, в большин-
стве случаев необходимо проводить многочислен-
ные затратные по времени вычисления для дости-
жения необходимой физической интерпретации на-
блюдаемого эффекта. Напротив, аналитические тео-
рии в большей степени направлены на выявление
общих фундаментальных закономерностей в нели-
нейном взаимодействии атомной системы с интен-
сивным лазерным полем.

Аналитические подходы к описанию нелинейных
эффектов при взаимодействии ИК-поля с атомны-
ми или молекулярными системами, как правило,
основываются на одноэлектронном приближении, в
рамках которого (с учетом очевидных ограничений)
удается получить выражения для амплитуд и се-
чений фундаментальных лазерно-индуцированных
и лазерно-модифицированных атомных процессов с
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точностью, не уступающей результатам численно-
го решения НУШ [10–16]. Принципиальным пре-
имуществом аналитических подходов по сравне-
нию с численными является возможность устано-
вить общую параметризацию вероятностей фото-
процессов в поле интенсивного лазерного импуль-
са от фундаментальных характеристик мишени (по-
тенциала U(r) взаимодействия электрона с атом-
ным остовом) и параметров импульса (см., напри-
мер, [17]). Полученные параметризации допускают
дальнейшее обобщение на многоэлектронные систе-
мы с возможностью исследования влияния эффек-
тов внутренней электронной динамики в лазерно-
индуцированных фотопроцессах [18]. Среди анали-
тических подходов наиболее популярным является
S-матричный формализм, в рамках которого для
точной волновой функции активного электрона в са-
мосогласованном потенциале U(r) используется раз-
ложение в формальный ряд по U(r) [19,20] (см. так-
же [21, 22]). Такое разложение приводит к борнов-
скому ряду для амплитуды перехода, члены которо-
го (парциальные амплитуды перехода) могут быть
выражены в виде свертки функции Грина свободно-
го электрона в лазерном поле с атомным потенциа-
лом. В частности, для процесса надпороговой иони-
зации (НПИ) учет U(r) в низшем порядке приводит
к результату Келдыша [23]. Ввиду большой вели-
чины классического действия электрона в сильном
низкочастотном поле парциальные амплитуды мож-
но анализировать в рамках метода перевала [24],
что приводит к подходу квантовых орбит [25, 26].
Этот подход дает наглядную физическую интерпре-
тацию явлений сильного поля на языке классиче-
ских траекторий, тем самым обосновывая непроти-
воречивость модели перерассеяния для фундамен-
тальных атомных фотопроцессов в интенсивном ла-
зерном поле [19, 20, 27, 28].

Хотя подход, основанный на борновском разло-
жении амплитуд переходов, является весьма плодо-
творным и вносит большой вклад в описание явле-
ний сильного поля, он не позволяет точно учиты-
вать атомный потенциал, влияние которого на про-
цессы в сильном поле может иметь решающее значе-
ние (см., например, [9, 18, 29–32]). Одним из подхо-
дов, позволяющих осуществить более точный учет
динамики атомной системы в интенсивном низко-
частотном поле, является адиабатическое прибли-
жение. Общая идея этого приближения состоит в
использовании малости несущей частоты ω лазер-
ного импульса по сравнению с порогом ионизации
Ip атомной мишени (�ω 
 Ip). Низший порядок
адиабатического приближения (нулевое приближе-

ние) определяется квазистационарным состоянием
системы в постоянном поле, напряженность которо-
го равна мгновенной величине низкочастотного ла-
зерного поля [33–37]. В работах [11–17] получена по-
правка к нулевому адиабатическому приближению
для волновой функции, обусловленная перерассе-
янием электрона на атомном потенциале. В рабо-
те [38] дано уточнение адиабатического подхода для
определения атомного состояния в низшем адиаба-
тическом приближении, заключающееся в использо-
вании аналитической части волновой функции ква-
зистационарного атомного состояния в мгновенном
лазерном поле. В рамках адиабатического подхо-
да были рассчитаны как низкоэнергетические, так
и высокоэнергетические (плато перерассеяния) ча-
сти фотоэлектронных спектров и спектров генера-
ции высоких гармоник (ГВГ) лазерного излучения.

Наличие замкнутого аналитического выражения
для волновой функции атомного состояния в интен-
сивном ИК-поле позволяет развить адиабатическую
теорию возмущений по дополнительному взаимо-
действию с высокочастотным (например, в области
вакуумного ультрафиолета — ВУФ) аттосекундным
импульсом [17, 39]. Влияние ультракороткого ВУФ-
импульса на процесс генерации излучения заключа-
ется в появлении значительного числа новых кана-
лов генерации и существенной модификации спек-
тров ГВГ ИК-поля. Например, усиление в выходе
гармоник за счет резонансного заселения возбуж-
денных состояний мишени ВУФ-импульсом исследо-
валось в работах [40–43]. ВУФ-индуцированное уси-
ление в выходе высоких гармоник изучалось как
для последовательности аттосекундных импульсов
[44–47], так и для изолированного ВУФ-импульса
аттосекундной длительности [48,49]. Эти исследова-
ния показали, что ВУФ-импульс (или их последова-
тельность) может влиять на этап ионизации в трех-
шаговой модели Коркума [50], т. е. изменять време-
на ионизации, и тем самым влиять на выход гармо-
ник. В [51,52] было показано, что добавление слабо-
го ВУФ-поля приводит к возникновению дополни-
тельного плато в спектрах ГВГ. Физика возникнове-
ния дополнительного ВУФ-индуцированного плато
была дана в работе [53], где показано, что допол-
нительное плато является следствием поглощения
ВУФ-фотона на этапе рекомбинации. Отметим так-
же, что при достаточно высокой несущей частоте
ВУФ-импульса электроны из внутренней оболочки
атома также могут быть задействованы в процессе
ГВГ, приводя к увеличению энергии отсечки пла-
то [54–56]. Кроме того, такие ВУФ-импульсы в со-
четании с интенсивным ИК-полем позволяют иссле-
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довать Оже-процессы [57, 58] и электронные пере-
ходы из внутренних оболочек в валентную оболоч-
ку [59]. Канал переизлучения (или упругого рассея-
ния) ВУФ-фотона атомной системой, приводящий к
существенному усилению выхода генерируемого из-
лучения, исследовался в [60]. Исследовались также
процессы второго порядка по ВУФ-взаимодействию
в ИК-модифицированной атомарной среде: генера-
ция ВУФ-импульса на удвоенной несущей часто-
те [39] и эффект выпрямления ВУФ-импульса [61].

В настоящей работе мы обобщаем предложен-
ный в [17, 39] пертурбативный подход для постро-
ения поправок теории возмущений по взаимодей-
ствию с коротким ВУФ-импульсом произвольного
порядка на основе адиабатических волновых функ-
ций атомного состояния в интенсивном ИК-поле. В
рамках развитой теории возмущений исследуются
ВУФ-индуцированные каналы генерации излучения
путем анализа классических траекторий электро-
на в поле синхронизированных интенсивного ИК-
и аттосекундного ВУФ-импульсов, исследуется воз-
можность интерференции различных каналов в ре-
зультате их спектрального перекрытия. В статье ис-
пользуется атомная система единиц, если не указано
иное.

2. АДИАБАТИЧЕСКИЙ ПОДХОД К
ОПИСАНИЮ АТОМА В

НИЗКОЧАСТОТНОМ ЛАЗЕРНОМ ПОЛЕ

2.1. Адиабатическое выражение для

волновой функции

Рассмотрим взаимодействие атомной системы с
интенсивным инфракрасным лазерным импульсом с
пиковой напряженностью электрического поля FIR

и несущей частотой ωIR. Будем полагать, что пара-
метры лазерного импульса удовлетворяют условиям
адиабатичности [23]:

ωIR 
 |E0|, γK 
 1. (1)

где γK = κωIR/FIR — параметр Келдыша,
κ =

√
2|E0|, E0 — энергия невозмущенного атомно-

го уровня. Условия (1) могут быть также записаны
через среднюю энергию колебаний свободного
электрона в лазерном поле up = F 2

IR/(4ω
2
IR):

ωIR 
 |E0|, ωIR 
 up. (2)

Для описания нелинейного взаимодействия
атомной системы с лазерным полем, удовлетворя-
ющим условиям (2), наиболее удобно использовать

адиабатический подход [12, 13, 37]. В рамках этого
подхода волновая функция атомного электрона,
взаимодействующего с низкочастотным лазерным
полем, может быть представлена в виде суммы
«медленно» (Ψ(0)

IR(r, t)) и «быстро» (Ψ(r)
IR(r, t))

меняющихся во времени частей [11, 12, 17]:

ΨIR(r, t) = Ψ
(0)
IR(r, t) + Ψ

(r)
IR(r, t). (3)

Медленная часть Ψ
(0)
IR(r, t) является адиабатиче-

ским приближением в низшим порядке («нулевое»
приближение) и определяется квазистационарным
состоянием в постоянном электрическом поле с на-
пряженностью, равной мгновенному значению ИК-
поля в момент времени t [12, 37]. В ряде практи-
ческих вычислений функция Ψ

(0)
IR(r, t) может быть

с хорошей точностью аппроксимирована функцией
начального состояния в отсутствии ИК-поля:

Ψ
(0)
IR(r, t) ≈ e−iE0tϕ0(r). (4)

Cлагаемое Ψ(r)
IR(r, t) в (3) описывает эффекты пе-

рерассеяния валентного электрона на атомном осто-
ве и представляет собой суперпозицию состояний
рассеяния ψ

(+)
Ks

электрона на атомном потенциа-
ле с индуцированными лазерным полем импульса-
ми Ks [17]:

Ψ
(r)
IR(r, t) = e−iE0tΦ

(r)
IR(r, t), (5a)

Φ
(r)
IR(r, t) =

∑
s

as(t)ψ
(+)
Ks

(r). (5b)

Каждое слагаемое в сумме (5b) связано с одной
из возможных замкнутых классических траекторий,
начинающихся в момент туннелирования t′s и закан-
чивающихся в момент времени t возврата электрона
к атомному остову. Индуцированные лазерным по-
лем импульсы определены выражением

Ks = K(t, t′s), (6)

K(t, t′) = AIR(t)−
1

t− t′

t∫
t′

AIR(τ)dτ,

где AIR(t) — векторный потенциал, связанный с на-
пряженностью FIR(t) электрического поля лазерно-
го импульса соотношением

FIR(t) = −∂AIR(t)/∂t.

Времена туннелирования t′s(t) как функции времени
t удовлетворяют трансцендентному уравнению (см.
детали в [14]):

K
′
s · K̇′

s = 0, (7)
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где

K
′
s ≡ K

′(t, t′s),

K̇
′
s =

∂K′
s

∂t′s
, (8)

K
′(t, t′) = AIR(t

′)− 1

t− t′

t∫
t′

AIR(τ)dτ.

Уравнение (7) имеет простой физический смысл:
атомный электрон туннелирует в те моменты вре-
мени, которые обеспечивают минимум кинетической
энергии высвободившегося электрона в лазерном
поле. Зависящие от времени коэффициенты as(t) в
суперпозиции (5b) представляют собой произведе-
ние ионизационного (туннельного) a(tun)(t′s) и про-
пагационного a(pr)(t, t′s) множителей:

as(t) = a(tun)(t′s)a
(pr)(t, t′s). (9)

Ионизационный множитель характеризуется
туннельной экспонентой в мгновенном «постоян-
ном» электрическом поле с напряженностью

F = [F2
IR(t

′
s)−K

′
s · ḞIR(t

′
s)]

1/2,

см. [62]. Например, для случая линейно поляризо-
ванного лазерного поля имеет место соотношение

a(tun)(t′s) ∝ e−Fat/(3|FIR(t′s)|), (10)

где Fat = κ3 определяет величину характерного
внутриатомного поля. Для выполнения условия ква-
зиклассичности необходимо выполнение дополни-
тельного условия F 
 Fat, которое обеспечивает
малость ионизационного множителя и незначитель-
ность эффектов распада начального состояния.

Пропагационный множитель a(pr)(t, t′s) опреде-
ляется классическим действием S(t, t′s) свободного
электрона в лазерном поле на временном отрезке от
t′s до t:

a(pr)(t, t′s) =
eiE0(t−t′s)−iS(t,t′s)

(t− t′s)
3/2

, (11a)

S(t, t′s) =
1

2

t∫
t′s

[
AIR(τ) −

− 1

t− t′s

t∫
t′s

AIR(τ
′)dτ ′

]2
dτ. (11b)

Отметим, что перерассеянная часть Φ
(r)
IR(r, t)

волновой функции атомного электрона в ИК-поле

по отношению к невозмущенной функции ϕ0(r) име-
ет малость ∼ βIR,

βIR = γ
3/2
K

FIR

Fat
e−Fat/(3FIR) 
 1.

По сути, результат (3) представляет собой разложе-
ние состояния атомного электрона по βIR с точно-
стью до первого порядка. В дальнейшем будем со-
хранять эту точность, тогда как учет более высо-
ких порядков разложения по βIR (т. е. более точ-
ный учет эффектов перерассеяния) не приводит к
каким-либо заметным проявлениям в амплитудах и
сечениях процессов в сильном лазерном ИК-поле.

2.2. Амплитуда генерации излучения

Амплитуда генерации фотона атомом в интен-
сивном лазерном поле определяется дипольным
матричным элементом [63, 64]:

D(Ω) =

∫
〈Ψ̃IR(r, t)|r|ΨIR(r, t)〉eiΩtdt, (12)

где Ω — частота генерируемого фотона, Ψ̃IR(r, t)

дуальная волновая функция к состоянию ΨIR(r, t),
определяемая из состояния ΨIR(r, t) посредством
комплексного сопряжения, обращения времени
t → −t и замены все t-нечетных параметров λ

на −λ [65, 66]. В низкочастотном лазерном поле
дипольный матричный элемент (12) для Ω > |E0|
может быть записан приближенно через Ψ(0)(r, t) и
Ψ

(r)
IR(r, t) [17, 63]:

D(Ω) =

∫
〈ϕ0e

−iE0t|r|Ψ(r)
IR(r, t)〉eiΩtdt. (13)

Выход гармоники, просуммированный по поляри-
зациям и проинтегрированный по направлениям,
определяется квадратом модуля D(Ω):

Y =
Ω4|D(Ω)|2

4π2c3
,

где c — скорость света.
В адиабатическом приближении временной инте-

грал в (13) вычисляется методом перевала, а D(Ω)

можно представить в виде суммы парциальных ам-
плитуд Dj(Ω) [14, 17]:

D(Ω) =
∑
j

Dj(Ω), (14a)

Dj(Ω) = a
(tun)
j ajd(Kj)e

iΩtj , (14b)
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где a(tun)j , aj туннельный и пропагационный множи-
тели, а d(Kj) дипольный матричный элемент пере-
хода из состояния континуума с импульсомKj в свя-
занное состояние ϕ0(r):

d(Kj) = 〈ϕ0(r)|r|ψ(+)
Kj

(r)〉.

Факторы a
(tun)
j , aj определяются соотношениями

a
(tun)
j ≡ a(tun)(t′j),

aj =

√√√√ 2πi

Kj · FIR(tj) +
K2

j

tj−t′
j

a(pr)(tj , t
′
j).

Суммирование в (14a) ведется по всем замкнутым
классическим траекториям электрона со временем
начала t′j и окончания tj движения. Времена t′j и tj
являются корнями системы трансцендентных урав-
нений [14, 17]:

K
′
j · K̇′

j = 0, K
2
j = 2(Ω + E0), (15)

где индуцированные импульсы K
′
j ≡ K

′(tj , t
′
j),

Kj ≡ K(tj , t
′
j) определены в (8) и (6) соответствен-

но.

3. НЕСТАЦИОНАРНАЯ ТЕОРИЯ
ВОЗМУЩЕНИЙ ДЛЯ АТОМНОЙ СИСТЕМЫ

В ИНТЕНСИВНОМ ИК-ПОЛЕ

Рассмотрим атомную систему, взаимодействую-
щую с интенсивным ИК-полем и пертурбативным
ВУФ-импульсом. Учет ВУФ-взаимодействия с ИК-
модифицированной атомной системой возможен в
рамках теории возмущений, построенной на адиаба-
тических волновых функциях атомного электрона
в ИК-поле [17]. Взаимодействие с ВУФ-импульсом
будем рассматривать в дипольном приближении, со-
ответственно, потенциал VXUV (r, t) взаимодействия
атомного электрона с ВУФ-импульсом имеет вид

VXUV (r, t) = V+(r, t)e
−iωXUV t + V−(r, t)e

iωXUV t, (16)

V+(r, t) =
FXUV

2
(eXUV · r)fXUV (t),

V−(r, t) = V ∗
+(r, t),

где FXUV — пиковая напряженность, ωXUV — несу-
щая частота, eXUV — вектор поляризации и fXUV (t)

— огибающая ВУФ-импульса. Отметим, что для
ωXUV > |E0| малым параметром теории возмуще-
ний по ВУФ-взаимодействию является величина [67]

βXUV =
κFXUV

ω2
XUV

= 4
|E0|2
ω2
XUV

FXUV

Fat

 1. (17)

Поэтому даже в случае соизмеримой с Fat на-
пряженности ВУФ-излучения взаимодействие VXUV

может быть рассмотрено в рамках теории возмуще-
ний [68].

СостояниеΨ(r, t) атомного электрона в поле син-
хронизированных ИК- и ВУФ-импульсов запишем в
виде

Ψ(r, t) = ΨIR(r, t) +

+

∫∫
G(r, t; r′, t′)VXUV (r

′, t′)ΨIR(r
′, t′)dr′dt′, (18)

где G(r, t; r′, t′) — нестационарная (запаздывающая)
функция Грина атомного электрона в двухкомпо-
нентном поле. Для функции G(r, t; r′, t′) справедли-
во уравнение Дайсона:

G(r, t; r′, t′) = GIR(r, t; r′, t′) +
∫∫

GIR(r, t; r′′, t′′)×

×VXUV (r
′′, t′′)G(r′′, t′′; r′, t′)dr′′dt′′, (19)

где GIR(r, t; r′, t′) — нестационарная (запаздываю-
щая) функция Грина атомного электрона в ИК-
поле. Используя соотношения (18) и (19), предста-
вим волновую функцию Ψ(r, t) в виде ряда теории
возмущений по VXUV :

Ψ(r, t) = Ψ0(r, t) +

∞∑
n=1

Ψn(r, t), (20)

где Ψ0(r, t) ≡ ΨIR(r, t) — атомное состояние в от-
сутствие ВУФ-импульса, см. (3), Ψn(r, t) ∼ βn

XUV —
поправки n-го порядка, удовлетворяющие следую-
щему рекуррентному соотношению:

Ψn+1(r, t) =

∫∫
GIR(r, t; r′, t′)×

× VXUV (r
′, t′)Ψn(r

′, t′)dr′dt′. (21)

Точность адиабатического приближения допус-
кает приближенное вычисление временных интегра-
лов в (21). Основной вклад в значение соответству-
ющих интегралов дают преимущественно слабо пе-
ресекающиеся окрестности точек t′ = t и t′ = t̃′s(t),
где t̃′s(t) — множество седловых точек фазы быстро
осциллирующего фактора подынтегральной функ-
ции в (21) (эта фаза определяется главным обра-
зом классическим действием электрона в ИК-поле
и несущей частотой ВУФ-импульса). Асимптотиче-
ское выражение для функции Грина GIR(r, t; r′, t′) в
окрестности указанных особых точек было получе-
но в работе [17]:

GIR(r, t; r′, t′) ≈

≈
{
Gat(r, t; r

′, t′), t ≈ t′,

Gvol(0, t; 0, t
′)ψ

(+)
K

(r)[ψ
(+)
K′ (r

′)]∗, t 	= t′,
(22)
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где Gat(r, t; r
′, t′) — нестационарная атомная функ-

ция Грина электрона, Gvol(0, t; 0, t
′) — волковская

функция Грина электрона в ИК-поле при r = r
′ = 0,

импульсы K ≡ K(t, t′) и K
′ ≡ K

′(t, t′) определены
выражениями (6) и (8) соответственно.

Явное выражение для поправки Ψn(r, t) n-го по-
рядка можно получить последовательным вычисле-
нием поправок более низкого порядка, используя со-
отношения (22) и (21) и приближенно оценивая ин-
тегралы по времени. Поправка n-го порядка может
быть разбита на медленную Ψ

(s)
n и быструю Ψ

(r)
n

части:

Ψn(r, t
′) = Ψ(s)

n (r, t′) + Ψ(r)
n (r, t′). (23)

Для определения медленной части Ψ
(s)
n предста-

вим ее в виде суперпозиции

Ψ(s)
n (r, t) ≈

∑
ν

e−iEνtϕ(n)
ν (r, t), (24)

где Eν = E0 + νωXUV , а медленные функции време-
ни ϕ

(n)
ν (r, t) требуют определения. Медленную вре-

менную зависимость функций ϕ
(n)
ν (r, t), а также

огибающей fXUV (t) будем понимать в рамках сле-
дующих условий:∣∣∣∣∣∂ϕ

(n)
ν

∂t

∣∣∣∣∣
 ωXUV

∣∣∣ϕ(n)
ν

∣∣∣ , (25a)∣∣∣∣∂fXUV (t)

∂t

∣∣∣∣
 ωXUV |fXUV (t)| . (25b)

Подчеркнем, что для выделения медленно меняю-
щейся во времени части волновой функции следует
пренебречь вкладом окрестностей седловых точек
t̃′s(t) во временной интеграл в (21) и учесть толь-
ко окрестность предельной точки t′ ≈ t. Подстав-
ляя (24) в (21) и пользуясь асимптотикой функции
Грина для t′ → t (см. соотношение (22)), получим∑

ν

e−iEνtϕ(n+1)
ν (r, t) =

∫∫
Gat(r, t; r

′, t′)×

×VXUV (r
′, t′)

∑
ν′

e−iEν′ t′ϕ
(n)
ν′ (r′, t′)dr′dt′. (26)

Далее, аппроксимируя в правой части уравне-
ния (26) медленные функции ϕ

(n)
ν (r′, t′) своими

значениями при t′ = t и используя связь между
стационарной и нестационарной атомной функцией
Грина:

GE(r, r
′) =

∫
eiE(t−t′)Gat(r, t; r, t

′)dt′, (27)

получим

∑
ν

e−iEνtϕ(n+1)
ν (r, t) =

=
∑
ν′

e−iEν′+1t GEν′+1
V+|ϕ(n)

ν′ 〉+

+
∑
ν′

e−iEν′−1t GEν′−1
V−|ϕ(n)

ν′ 〉. (28)

Отметим, что если энергия функции Грина сов-
падает с энергией основного состояния, то, как сле-
дует из общей теории возмущений, функция Гри-
на заменяется на редуцированную функцию Грина
G′

E0
[69, 70],

G′
E0

= lim
E→E0

[
GE(r, r

′)− ϕ∗
0(r

′)ϕ0(r)

E − E0

]
. (29)

Учитывая слабую зависимость функций ϕ
(n)
ν′ и V±

от времени [см. (25)], приравняем коэффициенты
при «быстро осциллирующих» экспонентах с одина-
ковыми показателями в (28) и получим уравнение
для функций ϕ

(n+1)
ν :

ϕ(n+1)
ν =

{
GEν

V+|ϕ(n)
ν−1〉+GEν

V−|ϕ(n)
ν+1〉, ν 	= 0,

G′
E0

V+|ϕ(n)
−1 〉+G′

E0
V−|ϕ(n)

+1 〉, ν = 0.

(30)
Итерационный метод решения уравнения (30) пред-
полагает наличие следующего выражения для нуле-
вой итерации:

ϕ(0)
ν (r, t) = ϕ0(r)δν,0. (31)

Таким образом, используя соотношения (24)
и (30), можно найти поправку n-го порядка для
медленной части волновой функции, которая
формально будет совпадать с выражением для
n-го порядка теории возмущений в монохромати-
ческом поле [70] (для монохроматического поля
fXUV (t) ≡ 1, т. е. V± не зависят от времени). За-
пишем Ψ

(s)
n в n-ом порядке теории возмущений с

помощью интегрального оператора P̂n:

Ψ(s)
n (r, t) = P̂n(E0, t)|ϕ0〉, (32)

который представляет собой свертку атомной функ-
ции Грина со всеми возможными комбинациями n

операторов V+ и/или V−. Приведем явный вид опе-
раторов P̂n для первых трех порядков теории воз-
мущений (n � 3):
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P̂0(E0, t) = e−iE0tÎ ,

P̂1(E0, t) = e−iE1tGE1
V+ + e−iE−1tGE−1

V−,

P̂2(E0, t) = e−iE2tGE2
V+GE1

V+ +

+ e−iE0tG′
E0

V−GE1
V+ +

+ e−iE0tG′
E0

V+GE−1
V− +

+ e−iE−2tGE−2
V−GE−1

V−,

P̂3(E0, t) = e−iE3tGE3
V+GE2

V+GE1
V+

+ e−iE1tGE1
V−GE2

V+GE1
V+ +

+ e−iE1tGE1
V+G

′
E0

V−GE1
V+ +

+ e−iE1tGE1
V+G

′
E0

V+GE−1
V− +

+ e−iE−1tGE−1
V−G

′
E0

V−GE1
V+ +

+ e−iE−1tGE1
V−G

′
E0

V+GE−1
V− +

+ e−iE−1tGE−1
V+GE−2

V−GE−1
V− +

+ e−iE−3tGE−3
V−GE−2

V−GE−1
V−,

где Î — единичный оператор. Очевидно, что медлен-
ная часть волновой функции есть сумма парциаль-
ных слагаемых Ψ

(s)
n (r, t):

Ψ(s)(r, t) =

∞∑
n=0

Ψ(s)
n (r, t) =

∞∑
n=0

P̂n(E0, t)ϕ0(r). (33)

Заслуживает внимания схожесть полученного
ряда теории возмущений по ВУФ-взаимодействию
для волновой функции атомной системы в интен-
сивном ИК-поле с известным результатом теории
возмущений для квазистационарного состояния ато-
ма в пертурбативном монохромотическом лазерном
поле, полученном в рамках метода квазистационар-
ных квазиэнергетических состояний (ККЭС) [70]:
ряд (33) формально совпадает с результатом для
ККЭС после замены точной квазиэнергии ККЭС ε

на энергию основного состояния E0 и напряженно-
сти поля FXUV на мгновенную амплитуду импульс-
ного поля FXUV (t) = FXUV fXUV (t). Таким образом,
если известна функциональная зависимость волно-
вой функции ККЭС Ψ

(QQES)
XUV (r, t; ε, FXUV ) от квази-

энергии и напряженности поля, то такая же зависи-
мость определяет функцию Ψ(s)(r, t):

Ψ(s)(r, t) = Ψ
(QQES)
XUV

(
r, t;E0,FXUV (t)

)
. (34)

В отличие от медленной части, временная за-
висимость быстрой части (Ψ(r)

n (r, t)) определяется
быстро осциллирующей экспоненциальной зависи-
мостью ∼ e−iS , задаваемой классическим действи-
ем S электрона в ИК-поле вдоль замкнутых тра-
екторий (см. (5b), (9) и (11a)). Отметим, что в
рамках используемого адиабатического приближе-
ния возникновение любых произведений двух и бо-

лее волковских функций Грина приводит к превы-
шению точности, и поэтому в любом порядке тео-
рии возмущений по ВУФ-взаимодействию выраже-
ние для Ψ

(r)
n (r, t) содержит только одну волковскую

функцию Грина. Из соотношения (21) следует, что
Ψ

(r)
n (r, t) определяется как результат свертки или

медленной части Ψn(r, t) с функцией Грина GIR, ап-
проксимируемой волковской функцией Грина (см.
соотношение (22)), или быстрой части Ψn(r, t) с
функцией Грина GIR, аппроксимируемой атомной
функцией Грина (см. соотношение (22)):

Ψ
(r)
n+1(r, t) =

=

∫
Gvol(0, t; 0, t

′)〈ψ(+)
K′ |VXUV (t

′)|Ψ(s)
n (t′)〉ψ(+)

K
(r)dt′+

+

∫∫
Gat(r, t; r

′, t′)VXUV (r
′, t′)Ψ(r)

n (r′, t′)dr′dt′, (35)

где первый интеграл предполагает приближенное
вычисление методом перевала, а второй интеграл
должен быть оценен, учитывая только вклад
окрестности t′ ≈ t. Соответственно, Ψ(r)

n+1, можно
записать в виде суммы двух слагаемых:

Ψ
(r)
n+1 = Ψ

(r,1)
n+1 +Ψ

(r,2)
n+1 , (36)

где выражения для Ψ
(r,1)
n+1 , Ψ

(r,2)
n+1 обсуждаются ниже.

Будем использовать приближенное выраже-
ние (24) для функции Ψ

(s)
n в первом интеграле

в (35), после чего выполним интегрирование по t′

методом перевала. В результате получим выраже-
ние для Ψ

(r,1)
n+1 :

Ψ
(r,1)
n+1 (r, t) =

∑
ν

′∑
t̃′

ψ
(+)

K̃
(r)Gν (t, t̃′)×

×
[
〈ψ(+)

K̃′ |V+(t̃
′)|ϕ(n)

ν−1〉+ 〈ψ
(+)

K̃′ |V−(t̃
′)|ϕ(n)

ν+1〉
]
, (37)

где K̃
′ = K

′(t, t̃′), K̃ = K(t, t̃′), а суммирование ве-
дется по всем допустимым значениям ν той же чет-
ности, что и n+1 в интервале |ν| � n+1, и переваль-
ным точкам t̃′ ≡ t̃′(t) (точкам стационарной фазы),
определяемым из уравнения

K̃
′2 = 2Eν . (38)

В (37) используется обозначение

Gν(t, t̃′) = −
e−iS(t,t̃′)−iEν t̃

′

2π(t− t̃′)3/2
×

×
[
K̃

′ · FIR(t̃
′)− 2Eν/(t− t̃′)

]−1/2

. (39)

Точность приближенного выражения для функции
Грина в (22) подразумевает, что в сумме (37) учи-
тываются только такие ν, которые обеспечивают ре-
шение уравнения (38) в действительных числах.
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Из выражения (37) видно, что поправка Ψ
(r,1)
n+1

к быстрой части волновой функции описывает со-
стояние перерассеяния, формирующегося в рамках
трехшагового сценария:

1) на первом этапе в результате поглощения или
испускания n ВУФ-фотонов атомной системой фор-
мируются состояния ϕ

(n)
ν ;

2) на втором этапе из одного из состояний ϕ
(n)
ν

происходит вынужденный однофотонный переход
(с поглощением или испусканием фотона) в мо-
мент времени t̃′ в состояние непрерывного спектра
с асимптотическим импульсом K̃

′;
3) на третьем этапе, находясь в континууме,

электрон взаимодействует с интенсивным ИК-полем
и формирует в момент времени t состояние ψ

(+)

K̃
(r)

посредством набора энергии при движении вдоль
замкнутой классической траектории. Распростране-
ние электронного пакета в континууме описывается
множителем Gν(t, t̃′).

Как следует из соотношений (5b) и (37), быст-
рая часть волновой функции задается быстро осцил-
лирующим фактором e−iS(t,t′), который определяет
ИК-управляемое распространение электрона в кон-
тинууме, и функцией непрерывного спектра ψ(+)

K
. Те

же компоненты определяют поправку Ψ
(r,2)
n , поэто-

му без ограничения общности представим Ψ
(r,2)
n в

виде
Ψ(r,2)

n =
∑
s

â(n)s (t)|ψ(+)
Ks
〉, (40)

где â
(n)
s (t) ∝ e−iS(t,t̂′s) — некоторый интегральный

оператор, а суммирование выполняется по всем дей-
ствительным моментам ионизации t̂′s, индуцирован-
ной ИК- или ВУФ-полем. В нулевом приближе-
нии по ВУФ-взаимодействию t̂′s ≡ t′s (см. соотно-
шение (7)), а â

(0)
s ≡ as(t)Î (см. соотношение (9)).

Стоит отметить, что оператор â
(n)
s (t) может опре-

деляться двумя слагаемыми (обозначаемыми ниже
индексами a и b), описывающими два различных
сценария взаимодействия электрона с ИК- и ВУФ-
импульсами:

a) атомный электрон туннелирует в ИК-
модифицированный континуум и далее, рас-
пространяясь вдоль замкнутых классических
траекторий в ИК-поле, поглощает ν и излучает
n− ν ВУФ-фотонов (четность n и ν одинакова);

b) атомный электрон переходит в ИК-
модифицированный континуум с энергией Eν′

путем поглощения ν′ ВУФ-фотонов, где в процессе
распространения вдоль замкнутых классических
траекторий в ИК-поле поглощает ν − ν′ и излучает
n − ν ВУФ-фотонов. В соответствии с описанными

механизмами представим функцию Ψ
(r,2)
n в виде

суммы:
Ψ(r,2)

n = Ψ(r,2a)
n +Ψ(r,2b)

n . (41)

Математическое выражение для оператора
â
(n)
s (t), соответствующего реализации сценария
(a), можно легко получить из (35) (см. второе
интегральное слагаемое в правой части), полагая,
что «нулевая итерация» Ψ

(r)
0 = Ψ

(r)
IR для быстрой

части волновой функции определена в (5). После-
довательно вычисляя временные интегралы в (35)
и учитывая вклад окрестности предельной точки
t′ = t, получим общее выражение для Ψ

(r,2a)
n (r, t):

Ψ(r,2a)
n (r, t) =

∑
s

as(t)P̂n

(
K

2
s

2
, t

)
ψ
(+)
Ks

(r), (42)

где суммирование включает все решения уравне-
ния (7). Отметим, что аналогично выше рассмотрен-
ному случаю функции Ψ(s)(r, t) суммирование ряда
теории возмущений по n с учетом явного вида (42)
приводит к результату, формально совпадающему
с выражением для квазиэнергетического состояния
рассеяния Ψ

(+)
K

(
r, t; ε,FXUV (t)

)
атомного электрона

в монохроматическом ВУФ-поле [70] с квазиэнерги-
ей ε = K

2
s/2, асимптотическим импульсом K = Ks и

напряженностью ВУФ-поля, равной мгновенной ве-
личине FXUV (t):∑

n

P̂n

(
K

2
s

2
, t

)
ψ
(+)
Ks

(r) =

= Ψ
(+)
Ks

(
r, t;

K
2
s

2
,FXUV (t)

)
≡ Ψ

(+)
Ks

(r, t), (43)

и следовательно,

Ψ(r,2a)(r, t) =
∑
n

Ψ(r,2a)
n (r, t) =

∑
s

as(t)Ψ
(+)
Ks

(r, t).

(44)
Поправка Ψ

(r,2b)
n к быстрой части волновой

функции, отвечающая за реализацию сценария (b),
возникает во втором и более высоких порядках тео-
рии возмущений. В качестве «нулевой итерации»
для получения данной поправки служит слагаемое
Ψ

(r,1)
1 (Ψ(r)

0 = Ψ
(r,1)
1 ), соответствующее поглощению

ВУФ-фотона (см. первое слагаемое в квадратных
скобках в (37)):

Ψ
(r)
0 (r, t) =

∑
t̃′

ψ
(+)

K̃
(r)G1(t, t̃′)〈ψ(+)

K̃′ |V+(t̃
′)|ϕ0〉, (45)

где t̃′ определяется из уравнения (38) c ν = 1. Под-
ставляя (45) во второе слагаемое в (35) и вычис-
ляя временной интеграл в окрестности t′ ≈ t, по-
лучим искомую поправку во втором порядке теории
возмущений:
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Ψ
(r,2b)
2 (r, t) =

∑
t̃′

P̂1

(
K̃

2

2
, t

)
ψ
(+)

K̃
(r) ×

×G1(t, t̃′)〈ψ(+)

K̃′ |V+(t̃
′)|ϕ0〉. (46)

Соотношению (46) легко придать прозрачный физи-
ческий смысл: электрон, находясь в связанном со-
стоянии, поглощает ВУФ-фотон и переходит в со-
стояние непрерывного спектра с асимптотическим
импульсом K̃

′ (чему соответствует матричный эле-
мент 〈ψ(+)

K̃′ |V+(t̃
′)|ϕ0〉 в (46)), затем распространяет-

ся в ИК-модифицированном континууме вдоль за-
мкнутой траектории (см. множитель G1(t, t̃′)), в ре-
зультате чего формирует в момент времени t со-
стояние непрерывного спектра посредством однофо-
тонного канала взаимодействия с ВУФ-излучением
(т. е. поглощая или испуская ВУФ-фотон).

В третьем порядке теории возмущений вычисле-
ния производятся аналогично, и соответствующая
поправка имеет вид

Ψ
(r,2b)
3 (r, t) =

∑
t̃′(ν=1)

P̂2

(
K̃

2

2
, t

)
ψ
(+)

K̃
(r)×

×G1(t, t̃′)〈ψ(+)

K̃′ |V+(t̃
′)|ϕ0〉+

+
∑

t̃′(ν=2)

P̂1

(
K̃

2

2
, t

)
ψ
(+)

K̃
(r)×

×G2(t, t̃′)〈ψ(+)

K̃′ |V+(t̃
′)GE1

V+(t̃
′)|ϕ0〉, (47)

где времена t̃′ для первой (второй) суммы находятся
из уравнения (38) для ν = 1 (ν = 2). Интерпре-
тация первой суммы в (47) аналогична приведен-
ной для соотношения (46) за исключением того, что
на последнем этапе состояние непрерывного спек-
тра формируется посредством двухфотонного взаи-
модействия с ВУФ-излучением. Парциальные слага-
емые во второй сумме отражают следующий физи-
ческий механизм: связанный электрон после погло-
щения двух фотонов переходит в состояние непре-
рывного спектра, где под действием ИК-поля рас-
пространяется вдоль замкнутой траектории и фор-
мирует состояние континумма посредством однофо-
тонного канала взаимодействия с ВУФ-излучением.
Отметим, что хотя нахождение поправок более вы-
сокого порядка не представляет каких-либо трудно-
стей, в настоящей работе они не рассматриваются
ввиду громоздкости итоговых выражений.

4. ГЕНЕРАЦИЯ ИЗЛУЧЕНИЯ АТОМОМ В
СИНХРОНИЗИРОВАННЫХ ИК- И

ВУФ-ИМПУЛЬСАХ

4.1. Каналы генерации

Воспользуемся полученными соотношения-
ми для волновой функции, чтобы определить
амплитуду генерации излучения атомом в поле
синхронизированных, линейно поляризованных в
одном направлении ИК- и ВУФ-импульсов:

F(t) = FIR(t) + FXUV (t− τ), (48)

где τ — время задержки между импульсами, опреде-
ляемая как временной интервал между максимума-
ми их огибающих. Амплитуда генерации излучения
дается соотношением (12) с заменой

ΨIR(r, t)→ Ψ(r, t), Ψ̃IR(r, t)→ Ψ̃(r, t),

где Ψ̃(r, t) — дуальная волновая функция, определя-
емая из Ψ(r, t) по той же процедуре, что и Ψ̃IR(r, t)

(см. обсуждение ниже соотношения (12)).
Как мы показали в предыдущем разделе, функ-

ция Ψ(r, t) представляется суммой «медленной»
(Ψ(s)(r, t)) и «быстрой» (Ψ(r)(r, t)) составляющих.
Соответственно, амплитуда генерации излучения
может быть представлена в виде

D(Ω) = D
(s)(Ω) +D

(r)(Ω) +

+ D̃
(r)

(Ω) + D̂
(r)

(Ω), (49a)

D
(s)(Ω) =

∫
〈 Ψ̃(s)(r, t)|r|Ψ(s)(r, t)〉eiΩtdt, (49b)

D
(r)(Ω) =

∫
〈 Ψ̃(s)(r, t)|r|Ψ(r)(r, t)〉eiΩtdt, (49c)

D̃
(r)

(Ω) =

∫
〈 Ψ̃(r)(r, t)|r|Ψ(s)(r, t)〉eiΩtdt, (49d)

D̂
(r)

(Ω) =

∫
〈 Ψ̃(r)(r, t)|r|Ψ(r)(r, t)〉eiΩtdt, (49e)

где каждый член детально обсуждается ниже.
«Медленное» слагаемое D

(s)(Ω) описывает ге-
нерацию гармоник ВУФ-поля атомной системой.
Принимая во внимание, что Ψ(s)(r, t) определяет-
ся рядом теории возмущений (см. соотношения (33)
и (34)), очевидно, D(s)(Ω) можно выразить через
нелинейные восприимчивости χn(ωXUV ) на часто-
тах генерируемых гармоник:

D
(s)(Ω) = eiΩτ

∑
n

χn(ωXUV )F
n
XUV fn(Ω), (50)

fn(Ω) =
1

2n

∞∫
−∞

fn
XUV (t)e

iΩtdt. (51)
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Стоит отметить, что в силу правил дипольного отбо-
ра для центрально симметричных систем нелиней-
ные восприимчивости χn(ωXUV ) для четных n обра-
щаются в ноль. Однако, если учесть более точно эф-
фекты ИК-поля в нулевом приближении Ψ

(0)
IR(r, t),

то можно показать, что восприимчивости χn(ωXUV )

должны быть заменены на обобщенные нелиней-
ные восприимчивости атомной системы в постоян-
ном электрическом поле с напряженностью, соот-
ветствующей ИК-импульсу в момент времени за-
держки τ :

χn(ωXUV )→ χ(DC)
n (ωXUV ;FDC = FIR(τ)). (52)

В этом случае запрет на генерацию четных гармо-
ник снимается, и в спектре генерируемого излуче-
ния наблюдаются пики соответствующие частотам
NωXUV , где N — целое число (см., например, [39]).

Рассмотрим «быстрое» слагаемое D(r)(Ω) в (49).
Учитывая, что быстрая часть волновой функции
в синхронизированных ИК- и ВУФ-импульсах есть
сумма двух слагаемых (см. (36)), запишем D

(r)(Ω)

в виде

D
(r)(Ω) = D

(r,1)(Ω) +D
(r,2)(Ω), (53)

где D
(r,i)(Ω) (i = 1, 2) определяется соответствую-

щей поправкой для быстрой части волновой функ-
ции. Используя соотношения (32), (37), получим
D

(r,1)(Ω) в виде

D
(r,1)(Ω) =

∫
D

(r,1)(t)eiΩtdt, (54a)

D
(r,1)(t) =

∞∑
ν=1

∑
t̃′

Mν(t̃
′)Gν〈Ψ̃(s)|r|ψ(+)

K̃
〉, (54b)

|Ψ̃(s)〉 =
∑
ν

[P̂ν(E0,−t)ϕ0]
∗, (54c)

где Gν ≡ Gν(t, t̃′) определено в (39), времена t̃′ —
корни уравнения (38), и Mν(t̃

′) — сумма матрич-
ных элементов, описывающих ν-фотонное ВУФ-
индуцированное возбуждение атомной системы из
начального состояния ϕ0 в состояние континуума
ψ
(+)

K̃′ с учетом каналов переизлучения. Явный вид
Mν(t̃

′) может быть определен в рамках теории воз-
мущений с использованием рекуррентного соотно-
шения (30):

M1(t̃
′) = 〈ψ(+)

K̃′ |Ṽ+|ϕ0〉+

+〈ψ(+)

K̃′ |Ṽ+G
′
E0

Ṽ−GE0+ωXUV
Ṽ+|ϕ0〉+ · · · ,

M2(t̃
′) = 〈ψ(+)

K̃′ |Ṽ+GE0+ωXUV
Ṽ+|ϕ0〉+ · · ·

M3(t̃
′) = 〈ψ(+)

K̃′ |Ṽ+GE0+2ωXUV
Ṽ+GE0+ωXUV

Ṽ+|ϕ0〉+ · · · ,

где Ṽ± ≡ V±(r, t̃
′) (заметим, что для случая

линейно-поляризованного ВУФ-импульса Ṽ+ = Ṽ−).
Третий множитель в (54b) (матричный элемент
〈Ψ̃(s)|r|ψ(+)

K̃
〉) определяет амплитуду рекомбинации

в атомное состояние в поле ВУФ-импульса в момент
времени t (см. выражение (34)).

Функция D
(r,1)(t) быстро меняется с изменени-

ем времени t из-за наличия в Gν быстро осцилли-
рующего фактора e−iS(t,t̃′). Учитывая, что времен-
ной интервал между ионизацией и рекомбинаци-
ей (т. е. время распространения электрона в конти-
нууме под действием ИК-поля) имеет порядок пе-
риода ИК-поля (|t̃ − t̃′| ∼ TIR), ионизация и ре-
комбинация не могут происходить на протяжении
длительности TXUV аттосекундного ВУФ-импульса
(TXUV 
 TIR). Это обстоятельство позволяет опу-
стить в сумме по ν в (54c) все слагаемые за исключе-
нием ν = 0, а амплитуду рекомбинации 〈Ψ̃(s)|r|ψ(+)

K̃
〉

записать в низшем по FXUV приближении (т. е. по-
лагая FXUV = 0 для состояния Ψ̃(s)):

〈Ψ̃(s)|r|ψ(+)

K̃
〉 ≈ eiE0t〈ϕ0|r|ψ(+)

K̃
〉. (55)

Оценка интеграла (54a) методом стационарной
фазы приводит к результату

D
(r,1)(Ω) =

∑
t̃

D
(r,1)(t̃)eiΩt̃, (56)

где суммирование выполняется по всем временам,
удовлетворяющим уравнению

K̃
2

2
= Ω + E0, K̃ = K(t̃, t̃′), (57)

при решении которого следует учесть неявно задан-
ную зависимость t̃′ = t̃′(t̃) согласно уравнению (38).
Исходя из полученных аналитических соотношений,
нетрудно дать физическую интерпретацию механиз-
му генерации излучения, описываемому D

(r,1)(Ω):
атомный электрон, поглощая ν фотонов ВУФ-поля,
переходит в континуум, в котором он распространя-
ется вдоль замкнутой траектории под действием ин-
тенсивного ИК-поля. В момент возврата к атомному
остову набранная электроном энергия испускается
в виде кванта с частотой Ω посредством рекомбина-
ции в основное состояние. Описанный механизм ге-
нерации будем называть ВУФ-ионизационным кана-
лом генерации (в англоязычной литературе «XUV-
initiated HHG channel») [44, 46, 71–73].

Представим дипольный момент D
(r,2)(Ω), опре-

деляемый волновой функцией Ψ(r,2), в виде суммы

D
(r,2)(Ω) = D

(r,2a)(Ω) +D
(r,2b)(Ω), (58)

36



ЖЭТФ, том 167, вып. 1, 2025 Индуцированные ВУФ-импульсом каналы генерации излучения. . .

где парциальные дипольные моменты D
(r,2a)(Ω) и

D
(r,2b)(Ω) соответствуют поправкам Ψ(r,2a) и Ψ(r,2b)

быстрой части волновой функции (см. обсуждение
выражения (41)). С учетом (42), запишем D

(r,2a)(Ω)

в виде

D
(r,2a)(Ω) =

∫
D

(r,2a)(t)eiΩt, (59a)

D
(r,2a)(t) =

∑
s

as(t)〈Ψ̃(s)|r|Ψ(+)
Ks
〉, (59b)

где Ψ
(+)
Ks

определено соотношением (43). Учитывая
определение дуальной функции Ψ̃(s), построенной
из Ψ(s) (см. соотношение (34)), запишем матричный
элемент в (59b) в виде

〈Ψ̃(s)|r|Ψ(+)
Ks
〉 ≈
∑
n

A(rec)
n fn

XUV (t)e
−inωXUV t, (60)

где A(rec)
n ∝ Fn

XUV — амплитуда фоторекомбинации
с поглощением (n > 0) или испусканием (n < 0)
n-фотонов ВУФ-поля. Поскольку функция as(t) яв-
ляется быстро осциллирующей, интеграл в (59a)
можно оценить методом перевала. В результате для
D

(r,2a)(Ω) получим

D
(r,2a)(Ω) =

∑
n,s

as(ts)A(rec)
n ×

×fn
XUV (ts − τ)ei(Ω−nωXUV )ts , (61)

где времена рекомбинации ts находятся из переваль-
ного уравнения

K
2(ts, t

′(ts))

2
= Ω + E0 − nωXUV , (62)

а соответствующие времена ионизации t′(ts) удо-
влетворяют уравнению (7) при подстановке в него
t = ts. В дальнейшем будем нумеровать возмож-
ные пары решений системы уравнений (7) и (62)
одним индексом s: (ts, t

′
s). Аналитическое соотно-

шение (61) позволяет дать простую квазикласси-
ческую интерпретацию механизму генерации излу-
чения, описываемому слагаемым D

(r,2a)(Ω): в мо-
мент времени t′s связанный электрон туннелирует
и распространяется вдоль замкнутой траектории до
момента рекомбинации ts. Рекомбинация происхо-
дит с испусканием фотона с частотой Ω при одно-
временном поглощении n-фотонов ВУФ-поля. Бо-
лее того, огибающая ВУФ-импульса выступает в
роли «временного сепаратора», отсекая те момен-
ты рекомбинации для которых разность |ts − τ |
больше длительности ВУФ-импульса. Данный меха-
низм генерации излучения определяет так называ-
емый ВУФ-рекомбинационный канал генерации (в

английской литературе «XUV-assisted recombination
HHG channel») [52, 53].

Покажем теперь, что оставшиеся слагаемые

D
(r,2b)(Ω), D̃

(r)
(Ω) и D̂

(r)
(Ω) пренебрежимо ма-

лы. Расчет парциального дипольного момента
D

(r,2b)(Ω) с использованием соотношений (46),
(47) и (33) показывает, что он определяется чле-
нами, которые были отброшены при анализе
D

(r,1)(Ω). В частности, матричный элемент ди-
польного перехода между Ψ

(r,2b)
2 и Ψ(s) имеет

второй порядок по FXUV и определяет линей-
ную (∝ FXUV ) поправку к дипольному моменту
в однофотонном ВУФ-ионизационном канале
генерации излучения посредством учета ВУФ-
взаимодействия на этапе рекомбинации (т. е.
включает в себя наряду с ВУФ-ионизационным
также однофотонный ВУФ-рекомбинационный
канал). Аналогично можно показать, что Ψ

(r,2b)
3

дает поправку ∝ F 2
XUV к однофотонному ВУФ-

ионизационному каналу за счет двухфотонного
взаимодействия в ВУФ-рекомбинационном кана-
ле, а также поправку ∝ FXUV к двухфотонному
ВУФ-ионизационному каналу посредством одно-
фотонного ВУФ-рекомбинационного механизма.
Указанные поправки следует опустить из-за су-
щественной разницы во временных масштабах
между динамикой взаимодействия атомного элек-
трона с ИК- и аттосекундным ВУФ-импульсами:
характерный временной масштаб между последова-
тельными процессами ионизации и рекомбинации
сопоставим с периодом ИК-поля, ввиду чего этапы
ионизации и рекомбинации не могут произойти
в рамках длительности одного аттосекундного
ВУФ-импульса.

Для оценки вклада дипольного момента D̃
(r)

(Ω),
определенного выражением (49d), заметим, что он
описывает инвертированный во времени процесс по
отношению к рассмотренным выше каналам гене-
рации для слагаемого D

(r)(Ω), что непосредственно
следует из определения дуальной волновой функ-
ции. Так, например, генерация излучения в ВУФ-

рекомбинационном канале для D̃
(r)

(Ω) происходит
в рамках следующего сценария: связанный элек-
трон испускает излучение на частоте Ω, которое со-
провождается одновременным поглощением n ВУФ-
фотонов, в результате чего электрон переходит в
виртуальное состояние с большей по абсолютной
величине отрицательной энергией и возвращает-
ся в начальное состояние, взаимодействуя с ин-
тенсивным ИК-полем. Так как все этапы форми-
рования излучения происходят при отрицательной
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энергии, то в рамках квазиклассического прибли-
жения указанный механизм сильно подавлен и его
вклад пренебрежимо мал (см., например, обсужде-
ние в [63]). Используя аналогичные рассуждения
для ВУФ-ионизационного канала генерации, прихо-
дим к выводу, что им можно пренебречь.

Наконец, слагаемое D̂
(r)

(Ω) также должно быть
опущено в нашем рассмотрении, так как оно опре-
деляется произведением двух быстрых частей вол-
новой функции, и его учет приводит к превышению
точности, установленной в настоящем анализе.

Таким образом, мы показали, что генерация
излучения атомной системой, взаимодействующей
и интенсивным ИК-излучением и аттосекунд-
ным ВУФ-импульсом, длительность которого
много меньше, чем период ИК-поля, может про-
исходить в рамках трех каналов: 1) генерация
гармоник ВУФ-поля, определяемая соответствую-
щими атомными нелинейными восприимчивостями;
2)ВУФ-ионизационный канал генерации; 3)ВУФ-
рекомбинационный канал генерации.

4.2. Вклад различных каналов генерации

излучения

Рассмотрим общие свойства каналов генерации
излучения, такие как положение и ширина спек-
тральной области излучения [Ωmin; Ωmax] для задан-
ного канала. Эти свойства зависят от характеристик
атомной мишени (энергии начального связанного
состояния) и параметров лазерного поля, с которым
данная атомная система взаимодействует. Представ-
ляет интерес вклад различных каналов генерации и
их спектральное перекрытие.

Интервал частот [Ωmin; Ωmax] может быть опре-
делен из требования существования вещественных
решений перевальных уравнений для классических
времен ионизации и рекомбинации. Для их нахож-
дения мы параметризуем электрическое поле ИК-
импульса через векторный потенциал AIR(t):

FIR(t) = −
∂AIR(t)

∂t
, (63a)

AIR(t) = −ex
FIR

ωIR
fIR(t) sin (ωIRt), (63b)

fIR(t) =

{
cos2

(
πt
TIR

)
|t| ≤ TIR

2

0 |t| ≥ TIR

2

(63c)

где TIR = 5TIR — длительность импульса,
TIR = 2π/ωIR. Во всех численных расчетах мы
полагаем E0 = −13.6 эВ, что соответствует основ-
ному состоянию атома водорода.

4.2.1. ВУФ-рекомбинационный канал

Для ВУФ-рекомбинационного канала генерации
времена ионизации t′s и рекомбинации ts удовлетво-
ряют системе уравнений (7) и (62):

K
′
s · K̇′

s = 0, K
2(t′s, ts) = 2(Ω+E0−nωXUV ). (64)

Как видно из (64), решение данной системы
для произвольного n может быть получено из
решения для n = 0 посредством соответствую-
щего сдвига частоты генерируемого излучения:
Ω → Ω + nωXUV . Поэтому ниже мы анализируем
случай n = 0, который, очевидно, соответству-
ет генерации гармоник в отсутствие ВУФ-поля.
Система (64) имеет действительные решения для
Ω > |E0| и Ω < maxK2/2 + |E0| = α0up + |E0|,
где up = F 2

IR/(4ω
2
IR), α0 — числовой фактор,

зависящий от формы огибающей ИК-импульса,
например, для длинного монохроматического
импульса (fIR(t) ≡ 1) α0 ≈ 3.17.

На рис. 1 представлена зависимость частоты
Ω генерируемого излучения от времен рекомбина-
ции tj . Цветом изображено абсолютное значение

туннельного множителя a
(tun)
j , входящего в выра-

жение (14b) для парциальной амплитуды генера-
ции высших гармоник ИК-поля. Из рисунка видно,
что для фиксированных параметров лазерного им-
пульса число решений системы (64) растет с умень-
шением Ω, что приводит к формированию слож-
ной интерференционной структуры в области пла-
то [17]. В окрестности глобального максимума для
Ω (т. е. отсечки ИК-индуцированного плато в спек-
трах ГВГ) существует только два решения, опреде-
ляющие известные интерференционные осцилляции
выхода ГВГ в области отсечки плато [74, 75].

4.2.2. ВУФ-ионизационный канал

Для ВУФ-ионизационного канала (состоящего в
ν-фотонном переходе электрона из основного состо-
яния в континуум, его распространении под дей-
ствием ИК-поля и последующей рекомбинации) вре-
мена ионизации и рекомбинации определяются си-
стемой уравнений

K̃
′2

2
= E0 + νωXUV , (65a)

K̃
2

2
= E0 +Ω, (65b)

где K̃′ = K
′(t̃, t̃′), K̃ = K(t̃, t̃′).
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Рис. 1. Зависимость времени рекомбинации от частоты ге-

нерируемого излучения для ИК-импульса с несущей час-

тотой ω = 1 эВ и пиковой интенсивностью 2 · 1014 Вт/см2.

Цветом показана значение туннельного фактора (10), вы-

численного для времен ионизации и рекомбинации, удо-

влетворяющих системе уравнений (64). up = 26.89 эВ,

|E0| = 13.65 эВ

Уравнение (65a) имеет вещественные решения
при выполнении следующего необходимого условия:

νωXUV � max

(
|E0|+

K̃
′2

2

)
= |E0|+ α0up. (66)

Для определения границ спектральной области
[Ωmin; Ωmax] классически разрешенных частот
генерируемого излучения заметим, что система
уравнений (65) инвариантна по отношению к за-
мене величин (K̃′, Eν)↔ (K̃, Ω̃), где Ω̃ = Ω+E0, и
значения максимумов K̃

′2/2 и K̃
2/2 одинаковые в

силу очевидной симметрии в зависимости K(t, t′) и
K

′(t, t′) от времен t, t′ (см. соотношения (6) и (8)).
Следовательно, в плоскости переменных Ω̃ и Eν

искомая область вещественных решений (или клас-
сически разрешенных энергий Ω̃ и Eν) симметрична
относительно прямой Ω̃ = Eν . Более того, так как
импульсы K и K

′ пропорциональны FIR/ωIR, об-
ласть вещественных решений в координатах Ω̃, Eν

масштабируется на величину up. Из вышесказанно-
го следует, что граница классически разрешенных
энергий может быть задана с помощью некото-
рой симметричной функции g(x, y) = g(y, x) двух
аргументов x = Ω̃/up и y = Eν/up в виде уравнения

g

(
Ω̃
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,
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up

)
= 0.
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Рис. 2. Область существования решений системы пере-

вальных уравнений (65). Темно-серым цветом обозначена

область параметров, полученная в результате численного

решения, красная штриховая линия — линейный закон (67)

На рис. 2 показана область классически разре-
шенных энергий Ω̃ и Eν , полученных из численного
анализа системы уравнений (65). Искомая область
хорошо аппроксимируется двумя прямыми [76]:

g

(
Ω̃

up
,
Eν

up

)
≈

⎧⎪⎪⎨⎪⎪⎩
Ω̃

up
+ β0

Eν

up
− α0, Ω̃ > Eν ,

Eν

up
+ β0

Ω̃

up
− α0, Ω̃ < Eν

(67)

где

β0 = FIR(t
′
0)/FIR(t0),

t′0 и t0 — времена ионизации и рекомбинации, со-
ответствующие глобальному максимуму K̃

2/2 (для
монохроматического поля β0 = 0.324).

Зависимость решений системы уравнений (65)
от частоты генерируемого излучения Ω представле-
на на рис. 3. Каждая пара решений (t̃′, t̃) отобра-
жается точкой, цвет которой соответствует задан-
ному значению ωXUV . Как видно из представлен-
ного рисунка, а также согласно приведенной выше
оценке (66), количество вещественных корней си-
стемы (65) уменьшается с ростом ωXUV , при этом
область возможных значений времен ионизации и
рекомбинации сужается (см. области, ограниченные
замкнутыми кривыми на рис. 3). Напомним, что в
развиваемой теории взаимодействие ВУФ-импульса
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Рис. 3. Решения системы уравнений (65) для классических

времен ионизации t′+ и рекомбинации t+ для случая одно-

фотонной ионизации (ν = 1) и различных значений энер-

гии ВУФ-фотона: (a) ωXUV = 40 эВ, (b) ωXUV = 60 эВ,

(c) ωXUV = 100 эВ. Закрашенная фиолетовая область

определяет длительность ВУФ-импульса. Энергия началь-

ного состояния, несущая частота ИК-импульса, длитель-

ность ВУФ-импульса и временная задержка между им-

пульсами такие же, как на рис. 1, пиковая интенсивность

ИК-импульса I = 3 · 1014 Вт/см2. Знаки (±) показы-

вают направления мгновенного импульса K̃ электрона в

момент ионизации относительно вектора поляризации ex

ИК-поля: (+) для случая (K̃·ex) > 0, (−) для (K̃ ·ex) < 0.

Черная линия показывает профиль напряженности ИК-

поля в произвольных единицах

с атомной системой определяется конкретными мо-
ментами ионизации и рекомбинации (см. раздел 3),
задающих замкнутую траекторию свободного элек-
трона в ИК-поле. Поэтому при определенных вре-
менах задержки рассматриваемый канал генерации
излучения может быть подавлен из-за отсутствия
перекрытия области решений системы (65) с времен-

ным интервалом взаимодействия с ВУФ-импульсом.
Например, на рис. 3 c показано, что для ВУФ-
импульса с временной задержкой τ = −0.5T область
допустимых значений t̃′ не пересекается с времен-
ным интервалом действия ВУФ-импульса.

Зависимости частоты генерируемого излучения
от времен рекомбинации для всех обсуждаемых вы-
ше каналов представлены на рис. 4. Области, соот-
ветствующие упругому рассеянию ВУФ-фотона на
атомной системе (рэлеевское рассеяния) и генера-
ции второй гармоники, обозначены на рисунке го-
ризонтальными пунктирными линиями (непрерыв-
ные жирные горизонтальные линии соответству-
ют Ω = ωXUV и Ω = 2ωXUV ). При интенсив-
ностях ИК-импульса I � 2 · 1014 Вт/см2 мы на-
блюдаем спектральное перекрытие канала генера-
ции гармоник в ИК-поле (черные жирные линии
на рис. 4) с каналом упругого рассеяния ВУФ-
фотона, которое приводит к возникновению харак-
терных осцилляций в спектре генерации гармо-
ник [60]. С ростом интенсивности ИК-импульса про-
исходит перекрытие с каналами генерации гармо-
ник ВУФ-излучения (см. рис. 4 с, где наблюдает-
ся перекрытие с каналом генерации второй ВУФ-
гармоники при I = 4 · 1014 Вт/см2). Отметим,
что для возникновения интерференции между раз-
личными каналами генерации излучения необходи-
мым условием является как спектральное перекры-
тие каналов, так и соизмеримые вероятности ге-
нерации в искомых каналах. ВУФ-ионизационные
каналы (зеленая и оранжевая линии) спектрально
перекрываются только с каналом генерации гар-
моник в одиночном ИК-импульсе. Более того, как
видно из рис. 4, с ростом числа фотонов в ВУФ-
ионизационном канале, область спектрального пе-
рекрытия уменьшается, что, очевидно, связано с
меньшей величиной набранной энергии электроном
при распространении в ИК-поле после поглощения
ν ВУФ-фотонов (см. рис. 2). Таким образом, наблю-
дение ВУФ-ионизационных каналов генерации из-
лучения с ν > 1 весьма затруднено ввиду подавлен-
ности более интенсивным каналом генерации гармо-
ник в отсутствие ВУФ-импульса и возможно только
при существенном увеличении интенсивности ВУФ-
поля. Для ν = 1 ВУФ-ионизационный канал ге-
нерации излучения может быть выделен при ор-
тогональной геометрии ИК- и ВУФ-импульсов [77].
Напротив, ВУФ-рекомбинационные каналы (серые
тонкие линии на рис. 4) дают вклад в генерацию бо-
лее высокочастотного излучения, образуя последо-
вательные платообразные структуры в спектрах ге-
нерации высоких гармоник [53]. Как правило, ВУФ-
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Рис. 4. Спектрограммы каналов генерации для различных пиковых интенсивностей ИК-импульса: I = 2 ·1014 Вт/см2 (a),

3 · 1014 Вт/см2 (b) и 4 · 1014 Вт/см2 (c). Черные линии показывают канал ГВГ в отсутствие ВУФ-поля, серые линии

— ВУФ-рекомбинационный канал с поглощением одного и двух ВУФ-фотонов, зеленые (оранжевые) линии — ВУФ-

ионизационный канал с поглощением одного (двух) ВУФ-фотонов. Сплошные горизонтальные линии показывают зна-

чения Ω = NωXUV (N = 1, 2), пунктирные горизонтальные линии — границы спектральных областей для первой и

второй ВУФ-гармоник. Энергия ВУФ-фотона ωXUV = 80 эВ, энергия начального состояния, несущая частота ИК-поля

и параметры огибающей ВУФ-импульса такие же, как на рис. 1

рекомбинационные каналы интерферируют с кана-
лами генерации гармоник ВУФ-излучения [39]. От-
метим, что можно подобрать условия для спек-
трального перекрытия канала генерации гармоник в
одиночном ИК-импульсе с ВУФ-рекомбинационным
и ВУФ-ионизационным каналами [см. рис. 4 c].

5. ЗАКЛЮЧЕНИЕ

В данной работе развит адиабатический подход
для анализа эффектов взаимодействия атомной си-
стемы, модифицированной интенсивным ИК-полем,
с коротким (аттосекундным) ВУФ-импульсом.
Нелинейные по ВУФ-взаимодействию эффекты
заключаются в возникновении дополнительных
ВУФ-индуцированных каналов генерации излуче-
ния. По характеру влияния ВУФ-импульса на атом
эти каналы можно разделить на три типа. К перво-
му типу относится обусловленная ВУФ-импульсом

модификация нелинейных восприимчивостей атом-
ной системы. Для исходно неполяризованных
мишеней восприимчивости нечетных порядков
(например, атомная поляризуемость, описыва-
ющая рэлеевское рассеяние ВУФ-фотона [60],
или восприимчивость третьего порядка, опреде-
ляющая генерацию третьей ВУФ-гармоники) не
исчезают в отсутствие ИК-поля, а значит в полях
умеренных интенсивностей могут быть аппрокси-
мированы восприимчивостями свободного атома.
Восприимчивости четных порядков (например,
описывающие эффект ВУФ-выпрямления [61] или
генерацию второй ВУФ-гармоники [39]) исчезают
при выключении ИК-поля, будучи обусловленны-
ми ИК-индуцированным нарушением симметрии
атомного состояния. Первый тип каналов подробно
рассмотрен в работах по указанным выше ссылкам.

Основное внимание данного исследования уделе-
но второму и третьему типу каналов — это соответ-
ственно ВУФ-индуцированные каналы ионизации,
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заключающиеся в поглощении ВУФ-фотонов на
первом этапе трехшагового механизма перерассе-
яния, и ВУФ-рекомбинации с поглощением ВУФ-
фотонов в момент возврата электрона к атомно-
му остову. Анализ вклада парциальных амплитуд,
связанных с различными замкнутыми классически-
ми траекториями электрона в ИК-поле в соответ-
ствии с перечисленными каналами ВУФ-ионизации
и ВУФ-рекомбинации, показал, что для умерен-
ных интенсивностей ИК-импульса спектральная об-
ласть ВУФ-ионизационных каналов перекрывает-
ся только с областью спектра гармоник ИК-поля
в отсутствие ВУФ-импульса, тогда как вероят-
ность интерференции с каналами генерации ВУФ-
гармоник пренебрежимо мала. Напротив, поглоще-
ние ВУФ-фотонов на этапе рекомбинации (канал
ВУФ-рекомбинации) существенно расширяет спектр
генерируемого излучения, в результате чего воз-
можна интерференция различных каналов генера-
ции. Отметим, что для случая короткого ВУФ-
импульса энергетическая область каналов генера-
ции существенно зависит от времени задержки меж-
ду ВУФ-и ИК-импульсами. Например, в случае вы-
соких энергий ВУФ-фотона существуют интерва-
лы времен задержки, для которых канал ВУФ-
ионизационной генерации подавляется.

Стоит подчеркнуть, что интерференционные яв-
ления, обусловленные спектральным перекрытием
различных ВУФ-индуцированных каналов генера-
ции излучения с каналом ГВГ ИК-поля, являют-
ся ключом к лучшему пониманию атомных фото-
процессов, протекающих в поле синхронизованных
ВУФ-и ИК-импульсов, а также могут служить осно-
вой для оптических методов извлечения временного
профиля ИК-импульса из измеряемых спектров ге-
нерации [39, 77, 78].
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Установлены необходимые условия реализации «отскока» масштабного фактора в начальный момент

Вселенной для более широкого диапазона значений параметров. Этот факт представляется существен-

ным как при дальнейшем построении теории квантовой гравитации, так и для рассмотрения последующей

космологической эволюции на основании данной модели.

DOI: 10.31857/S0044451025010031

1. ВВЕДЕНИЕ

В настоящее время общая теория относительно-
сти (ОТО) с высокой точностью объясняет почти
весь массив астрономических данных. При этом,
уже начиная с самых первых космологических ре-
шений [1], уравнения Эйнштейна должны в обяза-
тельном порядке содержать правую часть — тен-
зор энергии-импульса. Один из подходов состоит в
том, что весь массив современных астрофизических
данных хорошо описывается уравнениями ОТО, и
именно для объяснения физической природы пра-
вой части и её источника создаются теории гра-
витации, расширяющие ОТО различными способа-
ми [2–6].

Одним из перспективных направлений расшире-
ния ОТО явились скалярно-тензорные теории гра-
витации, в которых, как следует из названия, в до-
полнение к геометрическим членам и инвариантам
кривизны в рассмотрение включены физические по-

* E-mail: salexeyev@gmail.com
** E-mail: nemtinova14@mail.ru

*** E-mail: dkiiiabu4@gmail.com

ля. Для решения проблемы увеличения порядка
дифференциальных уравнений поля сконструирова-
ны теории, в которых высшие степени взаимно со-
кращаются, и наиболее общим примером такого под-
хода стала модель Хорндески [7,8]. Несмотря на зна-
чительное ограничение модели Хорндески из дан-
ных гравитационно-волновой астрономии [9,10], ин-
терес к ней (и теориям, созданным на ее основе и
проходящим тест GW170817) не ослабевает. На ее
основе также создаются модели несингулярной кос-
мологии, в которых в начальный момент времени
отсутствует сингулярность, заменяемая на «отскок»
масштабного фактора [11, 12]. Подход представля-
ется перспективным, и в рамках теории Хорндески
рассматривались модели, названные «Fab Four», в
которых сами поправки, без дополнительных под-
гоночных параметров типа Λ-члена, обеспечивают
ускоренное расширение Вселенной [13, 14]. Несин-
гулярные космологические решения в рамках Fab
Four, как примера скалярно-тензорной теории менее
сложной структуры, чем теория Хорндески в общем
виде, также обсуждались ранее [15].

Идея добавления квантово-полевых поправок в
модели гравитации [16] позволяет, например, огра-
ничить размер нелокальностей в теориях гравита-
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ции в квантовом пределе [17]. Этот же подход был
применен к модели Fab Four [18], и дополнитель-
ный учет квантово-полевых поправок приводит в
том числе и к тому, что скорость распространения
гравитационных волн теперь соответствует экспе-
риментальному результату гравитационно-волновой
астрономии. Все это говорит о перспективности рас-
смотрения скалярно-тензорных моделей. Поэтому
нами рассмотрена неминимальная эффективная мо-
дель скалярно-тензорной гравитации с полевыми
членами третьего и четвертого порядков, образован-
ная суммированием однопетлевых взаимодействий
[19] в виде

S =

∫ √
−g
[(

2

κ2
+ αφ2

)
R + κ2βGμν∂μφ∂νφ−

− 1

2
gμν∂μφ∂νφ−

1

3!
λφ3 − 1

4!
gφ4

]
d4x, (1)

где κ2 = 32πG, G — постоянная Ньютона, φ — но-
вое скалярное поле, R — скалярная кривизна, α и β

— безразмерные постоянные, λ — кубическая ска-
лярная связь с размерностью массы, g — безраз-
мерная скалярная связь четвертого порядка, Gμν —
тензор Эйнштейна (Gμν = Rμν − 1

2gμνR). Несмот-
ря на «расширенность», эта модель все еще гораздо
проще, чем стандартная версия теории Хорндески
или DHOST, что повышает интерес к ней и ее воз-
можности объяснения темной энергии и процессов
в ранней Вселенной. Для дальнейшего анализа при-
менимости обсуждаемой модели к моделированию
эволюции ранней Вселенной необходимо изучить ее
предсказания для реализации отскока и генезиса
[20], и настоящая статья посвящена первому шагу
в этом направлении — исследованию условий суще-
ствования отскока. Здесь необходимо отметить, что
отсутствие начальной сингулярности в космологиче-
ской модели значительно повышает интерес к ней.
В качестве примера напомним о поиске пространств
параметров, при которых реализуется «отскок» [21]
в гравитации с поправками второго порядка по кри-
визне — модели с членом Гаусса –Бонне [22,23] — од-
ного из кандидатов на роль квазиклассического пре-
дела струнной гравитации [24]. Более того, отскок
проявляется уже на уровне простого добавления
скалярного поля — модели Бранса –Дикке [25]. Та-
ким образом, наличие в космологическом решении
рассматриваемой теории несингулярной асимптоти-
ки является дополнительным аргументом в пользу
перспективности рассматриваемой теории, и, в каче-
стве первого шага изучения сильных и слабых сто-
рон теории (1), мы и исследуем этот вопрос. По-

скольку ранее были предложены дополнительные
ограничения на параметры теории для прохождения
астрономических тестов (мы приводим их в конце
разд. 3) [19], представляется интересным сравнить
эти ограничения на пространство параметров, на-
лагаемые требованием наличия «отскока».

Статья построена следующим образом. Раздел 2
посвящен получению уравнений поля в теории,
предложенной в [19], в разд. 3 исследованы огра-
ничения на пространство параметров, налагаемые
требованием наличия «отскока», разд. 4 содержит
обсуждение полученных результатов и выводы.

2. УРАВНЕНИЯ ПОЛЯ

Уравнения Клейна – Гордона получаются варьи-
рованием действия (1) по скалярному полю. Следуя
[26], имеем

− 1

2!
λφ2 − 1

3!
gφ3 +�φ+

+ 2αφR− 2κ2βGμν∇μ∇νφ = 0. (2)

Варьируем по метрическому тензору и вводим эф-
фективную гравитационную постоянную Geff (φ),
зависящую только от скалярного поля, так что

2

κ2
+ αφ2 =

1

16πGeff (φ)
. (3)

В результате уравнение Эйнштейна примет вид

Gμν =
1

16πGeff
Gμν−(∇μν−gμν�)αφ2− 1

2
∇μφ∇νφ−

− 1

2
gμν

(
1

2
(∇φ)2 +

1

3!
λφ3 +

1

4!
gφ4

)
−

− κ2β

(
−∇λ∇μφ∇λ∇νφ+∇μ∇νφ�φ−

− Rαμνβ∇αφ∇βφ− 1

2

[
∇μφGνλ∇λφ+

+ ∇νφGμλ∇λφ
]
− 1

2

[
∇μφRνλ∇λφ+

+ ∇νφRμλ∇λφ
]
+ gμν

[
Rαβ∇αφ∇βφ−

− 1

2
(�φ)2 +

1

2
(∇αβφ)

2
])

=
1

2
Tμν , (4)

где Tμν — тензор энергии-импульса материи:

Tμν =
−2√−g

δ(
√−gLm)

δgμν
, (5)

Lm — лагранжиан материи.
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3. КОСМОЛОГИЧЕСКОЕ РЕШЕНИЕ С
«ОТСКОКОМ»

Аналогично [22, 23] рассмотрим изотропное
(фридмановское) космологическое решение вида

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (6)

где и масштабный фактор a, и скалярное поле φ из
действия (1) зависят только от временной коорди-
наты t.

Для исследования поведения в точке отскока
рассмотрим систему (2)–(4). В точке отскока мас-
штабный фактор должен быть положительным и
конечным, т. е. a = const > 0. При этом для обес-
печения минимума масштабного фактора именно в
точке отскока и для того, чтобы избежать космоло-
гической сингулярности a = 0 в любой другой точ-
ке, необходимо, чтобы ȧ = 0 и ä > 0. С учетом этого
уравнения Эйнштейна в точке отскока можно пере-
писать как

3

4
φ̇2 = − 1

12
λφ3 − 1

48
gφ4, (7)

−2 ä
a

(
2

κ2
+ αφ2

)
− 2αφφ̈ +

1

4
φ̇2 −

−5κ2β
ä

a
φ̇2 +

1

12
λφ3 +

1

48
gφ4 = 0, (8)

а уравнение Клейна – Гордона –Фока (2) примет вид

ä =
a

12αφ

(
φ̈− 1

2
λφ2 − 1

6
gφ3

)
. (9)

Если рассматривать случай, в котором роль тен-
зора энергии-импульса играет скалярное поле, его
отсутствие будет означать отсутствие нетривиаль-
ного космологического решения: φ = 0 ⇒ a = 0.
Так как последнее и есть избегаемая нами космо-
логическая сингулярность, для гарантии ее отсут-
ствия вводим дополнительное условие φ̇ = 0, а так-
же φ = const > 0 и φ̈ > 0. Тогда из уравнения (7)
получаем уравнение для скалярного поля:

φ = −4λ
g
.

Из уравнений (8) и (19) получаем выражение для
второй производной скалярного поля:

φ̈ = − λ

36α

(
1

ακ2 + 8λ2

g2

1 + 1
12α + g2

96κ2α2λ2

)
.

Итоговая система неравенств (с учетом подста-
новки в (19) уравнений (7) и (8)) имеет вид

φ = −4λ
g
> 0, (10)

φ̈ = − λ

36α

(
1

ακ2 + 8λ2

g2

1 + 1
12α + g2

96κ2α2λ2

)
> 0, (11)

a > 0, (12)

ä =
ag

1728α2

(
1

ακ2 + 8λ2

g2

1 + 1
12α + g2

96κ2α2λ2

)
+

aλ2

18αg
> 0. (13)

Из (10) получаем, что λ и g должны быть раз-
ных знаков. Также следует сказать, что необходи-
мое условие стабильности модели это g > 0 (ина-
че потенциал скалярного поля будет не ограничен
снизу и модель будет нестабильна). Из следующего
неравенства (11) видно, что если λ < 0, то α > 0.
Остается последнее неравенство (13), которое авто-
матически выполняется из условий (10)–(12). Также
можно рассмотреть случай α < 0. Из (13) получаем(

1
ακ2 + 8λ2

g2

1 + 1
12α + g2

96κ2α2λ2

)
> −1728αλ2

18g2
> 0.

Из этого следует, что выражение в скобках будет
больше нуля. В итоге условие (11) также выполня-
ется в случае, если λ > 0 и g < 0. Однако это условие
противоречит необходимому условию стабильности
модели. Поэтому эти условия не подходят для дан-
ной задачи.

4. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

В неминимальной эффективной модели
скалярно-тензорной гравитации с полевыми члена-
ми третьего и четвертого порядков, образованной
суммированием однопетлевых взаимодействий [19],
реализация решения типа «отскок» возможна.
Необходимые условия реализации решения типа
«отскок» следующие: параметры λ < 0, g > 0 и
α > 0. Ранее похожая модель исследовалась в [27],
где α = 0, отсутствует скалярное поле φ, но присут-
ствует космологическая постоянная Λ, обеспечивая
тот же эффект. Решение типа «отскок» реализуется
в случае Λ = 0 (однако у нас невозможен случай
λ = g = 0), ρ = 0 (в нашем случае аналогично
объемная плотность равна нулю), a0 > 0 (в нашем
случае масштабный фактор a > 0) и β < 0 (это не
противоречит нашим условиям). Следовательно,
наши результаты частично совпадают с получен-
ными ранее для более простой версии обсуждаемой
модели, за исключением равенства нулю космо-
логической постоянной и параметра α (в более
простой версии теории он изначально равен нулю).
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Таким образом, в обсуждаемой модели скалярно-
тензорной гравитации, вместо начальной сингу-
лярности, возможен «отскок» даже в самой про-
стой конфигурации, причем при соблюдении из-
начальных ограничений на нее. Значит, эта мо-
дель, имея более простую структуру, чем большин-
ство скалярно-тензорных моделей на основе теории
Хорндески, решая проблему начальной сингулярно-
сти, с одной стороны, помогает приблизиться к по-
строению квантовой теории гравитации, а с другой,
имеет шанс на реализацию отскока и генезиса.

Финансирование. Работа О.И.З. финансирова-
лась за счет средств Фонда развития теоретической
физики и математики «БАЗИС», грант 22-2-2-11-1.
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Within the scope of a spherically symmetric FLRW cosmological model we have studied the role of nonlinear

spinor field in evolution of the universe. It is found that if the FLRW model given by the spherical coordinates

the energy-momentum tensor (EMT) of the spinor field possesses nontrivial non-diagonal components. These

non-diagonal components of EMT neither depend on the spinor field nonlinearity nor on the value of parameter k

defining the type of curvature of the FLRW model. The presence of such components imposes some restrictions

on the spinor field. The problem is studied for open, flat and close geometries. In doing so we exploited the

spinor description of sources such as perfect fluid and dark energies. Some qualitative numerical solutions are

given.

DOI: 10.31857/S0044451025010043

1. INTRODUCTION

Thanks to its ability to simulate different kinds of
matter such as perfect fluid, dark energy etc. spinor
field is being used by many authors not only to de-
scribe the late time acceleration of the expansion, but
also to study the evolution of the Universe at different
stages [1–8].

It was found that the spinor field is very sensitive to
spacetime geometry. Depending on the concrete type
of metric the spinor field may possess different type
of nontrivial non-diagonal components of the energy-
momentum tensor. As a result the spinor field imposes
various kinds of restrictions on both the spacetime ge-
ometry and the spinor field itself [9].

Recently spinor field is used in astrophysics to see
whether its specific behavior can shed any new light in
the study of objects like black hole and wormhole. Such
studies were carried out within the scope of spherically
symmetric [10, 11] and cylindrically symmetric space-
time [12, 13].

* E-mail: bijan@jinr.ru

Since the present-day universe is surprisingly
isotropic and the presence of nontrivial non-diagonal
components of the spinor field leads to the severe
restrictions on the spinor field, we have studied role
of a spinor field in Friedmann-Lemaitre-Robertson-
Walker (FLRW) model as well. But in those cases
the space-time was given in Cartesian coordinates. In
order to see influence of the coordinate transformations
on spinor field some works were done by us earlier
[14, 15]. In this paper we will further develop those
studies and see how the spinor field behaves if the
isotropic and homogeneous cosmological FLRW model
given by spherical coordinates.

2. BASIC EQUATION

The action we choose in the form

S =

∫ √
−g
[
R

2κ
+ Lsp

]
dΩ, (1)

where κ = 8πG is Einstein’s gravitational constant, R
is the scalar curvature and Lsp is the spinor field La-
grangian given by [16]

Lsp =
i

2

[
ψ̄γμ∇μψ −∇μψ̄γ

μψ

]
−mψ̄ψ − λF (K). (2)
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To maintain the Lorentz invariance of the spinor
field equations the nonlinear term F (K) in (2) is con-
structed as some arbitrary functions of invariants gen-
erated from the real bilinear forms. On account of Fierz
equality in (2) we set K = K(I, J) = b1I + b2J, where
b1 and b2 takes the value 0 or 1 which leads to the fol-
lowing expressions for K = {I, J, I + J, I − J}. Here
I = S2 and J = P 2 are the invariants of bilinear spinor
forms with S = ψ̄ψ and P = iψ̄γ̄5ψ being the scalar
and pseudo-scalar, respectively. In (2) λ is the self-
coupling constant. Note that λ can be both positive
and negative, while λ = 0 leads to linear case. Here m
is the spinor mass.

The covariant derivatives of spinor field takes the
form [16]

∇μψ = ∂μψ − Ωμψ, ∇μψ̄ = ∂μψ̄ + ψ̄Ωμ, (3)

where Ωμ is the spinor affine connections, defined
as [16]

Ωμ =
1

4
gρσ

(
∂μe

(b)
τ eρ(b) − Γρ

μτ

)
γσγτ . (4)

In (4) Γβ
μα is the Christoffel symbol and the Dirac

matrices in curve space–time γ are connected to the
flat space–time Dirac matrices γ̄ in the following way

γβ = e
(b)
β γ̄b, γα = eα(a)γ̄

a, (5)

where eα(a) and e
(b)
β are the tetrad vectors such that

gμν(x) = eaμ(x)e
b
ν(x)ηab, (6)

and fulfil following relations

eα(a)e
(a)
β = δαβ , eα(a)e

(b)
α = δba. (7)

Here ηab = diag(1, −1, −1, −1) is the Minkowski
spacetime. The γ matrices obey the following anti-
commutation rules

γμγν + γνγμ = 2gμν, γμγν + γνγμ = 2gμν. (8)

Varying the Lagrangian (2) with respect to ψ̄ and
ψ, respectively, we obtain the following spinor field
equations

iγμ∇μψ −mψ −Dψ − iGγ̄5ψ = 0, (9a)

i∇μψ̄γ
μ +mψ̄ +Dψ̄ + iGψ̄γ̄5 = 0, (9b)

where D = 2λFKb1S, G = 2λFKb2P.

The energy momentum tensor of the spinor field is
defined in the following way [16]

T ρ
μ =

=
i

4
gρν
(
ψ̄γμ∇νψ+ ψ̄γν∇μψ−∇μψ̄γνψ−∇ν ψ̄γμψ

)
−

− δρμL, (10)

which in view of (3) we rewrite as

T ρ
μ =

=
i

4
gρν
(
ψ̄γμ∂νψ + ψ̄γν∂μψ − ∂μψ̄γνψ − ∂νψ̄γμψ

)
−

− i

4
gρνψ̄

(
γμΩν +Ωνγμ + γνΩμ +Ωμγν

)
ψ − δρμL.

(11)

Note that the non-diagonal components of the EMT
arises thanks to the second term in (11). Moreover, let
us emphasize that in view of the spinor field equations
(9) the spinor field Lagrangian (2) can be expressed as

L = λ (2KFK − F ) , FK = dF/dK. (12)

We exploit this form of Lagrangian in solving Einstein
equations, as they should be consistent with the Dirac
one, as (12) is valid only when spinor fields obey Dirac
equations (9). Let us also note that in case F =

√
K

the Lagrangian vanishes which is very much expected
as in this case spinor field becomes linear. We are in-
terested in nonlinear spinor field as only it can generate
different kinds of source fields.

The isotropic and homogeneous cosmological model
proposed by Friedmann, Lemaitre, Robertson and
Walker independently is the most popular and thought
to be realistic one among the cosmologists. Let us con-
sider the FLRW model in spherical coordinates in its
stanard form [17]:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdφ2

]
,

(13)
with k taking the values +1, 0 and −1 which corre-
sponds to a close, flat and open universe, respectively.
Though the value of k defines the type of geometry of
space-time, in reality it is defined by the contents that
filled universe. As we see later, independ to the value
of k the universe filled with dark energy is always open,
whereas for perfect fluid the value of k really matters.
In this case depending on the value of k we obtain close,
flat or open universe.

In view of (6) the tetrad we will choose in the form

e
(0)
0 = 1, e

(1)
1 =

a√
1− kr2

,

e
(2)
2 = ar, e

(3)
3 = ar sinϑ.

Then from (5) we find the following γ matrices

γ0 = γ̄0, γ1 =

√
1− kr2

a
γ̄1,
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γ2 =
γ̄2

ar
, γ3 =

γ̄3

ar sinϑ
.

Further from γμ = gμνγ
ν one finds the γμ as well.

The Christoffel symbols, Ricci tensor and scalar
curvature and the Einstein tensor corresponding to the
metric (13) are well known and can be found in [17].

Then from (4) we find the following expressions for
spinor affine connection

Ω0 = 0, (14a)

Ω1 =
1

2
√
1− kr2

ȧγ̄1γ̄0, (14b)

Ω2 =
1

2
rȧγ̄2γ̄0 +

1

2

√
1− kr2γ̄2γ̄1, (14c)

Ω3=
1

2
ȧr sinϑγ̄3γ̄0+

1

2

√
1−kr2 sinϑγ̄3γ̄1+

+
1

2
cosϑγ̄3γ̄2. (14d)

Let us consider the case when the spinor field depends
on t only, then in view of (14) the spinor field equations
can be written as

ψ̇ +
3

2

ȧ

a
ψ +

√
1− kr2

ar
γ̄0γ̄1ψ +

cotϑ

2ar
γ̄0γ̄2ψ+

+i (m+D) γ̄0ψ + Gγ̄5γ̄0ψ = 0, (15a)

˙̄ψ +
3

2

ȧ

a
ψ̄ −

√
1− kr2

ar
ψ̄γ̄0γ̄1 − cotϑ

2ar
ψ̄γ̄0γ̄2−

−i (m+D) ψ̄γ̄0 + Gψ̄γ̄5γ̄0 = 0, (15b)

Introducing ϕ = a3/2ψ we rewrite the equation (15)

ϕ̇+

√
1− kr2

ar
γ̄0γ̄1ϕ+

cotϑ

2ar
γ̄0γ̄2ϕ+

+i (m+D) γ̄0ϕ+ Gγ̄5γ̄0ϕ = 0, (16a)

˙̄ϕ−
√
1− kr2

ar
ϕ̄γ̄0γ̄1 − cotϑ

2ar
ϕ̄γ̄0γ̄2−

−i (m+D) ϕ̄γ̄0 + Gϕ̄γ̄5γ̄0 = 0, (16b)

The equation (16a) can be presented in the matrix form

ϕ̇ = Aϕ, (17)

or⎛⎜⎜⎜⎜⎝
ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−iD1 0 −G B1

0 −iD1 B∗
1 −G

G B1 iD1 0

B∗
1 G 0 iD1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ϕ1

ϕ2

ϕ3

ϕ4

⎞⎟⎟⎟⎟⎠ ,

(18)

where

D1 = (m+D) , B1 = −
√
1− kr2

ar
+ i

cotϑ

2ar
,

B∗
1 = −

√
1− kr2

ar
− i

cotϑ

2ar
.

It can be shown that

detA =
(
D2

1 + G2 −B1B
∗
1

)2
.

We can choose the nonlinearity in such a way that the
corresponding determinant is nontrivial. In that case
the solution (17) can be formally written as [18]

ϕ(t) = T exp

⎛⎝− t1∫
t

A1(τ)dτ

⎞⎠ , (19)

where T = ϕ(t1) is the solution at t = t1. Given the
fact that the universe is expanding and the spinor field
invariants are the inverse functions of scale factor, in
case of a nonzero spinor mass one can assume

ϕ(t1) = col
(
ϕ0
1e

−imt1 , ϕ0
2e

−imt1 , ϕ0
3e

imt1 , ϕ0
4e

imt1
)
,

whereas for a massless spinor field

ϕ(t1) = col
(
ϕ0
1, ϕ

0
2, ϕ

0
3, ϕ

0
4

)
with ϕ0

i being constants.
The non-trivial components of the energy momen-

tum tensor of the spinor field in this case read

T 0
0 = mS + λF, (20a)

T 1
1 = T 2

2 = T 3
3 = −λ (2KFK − F ) , (20b)

T 1
3 =

a cosϑ

4
√
1− kr2

A0, (20c)

T 0
1 =

cotϑ

4r
√
1− kr2

A3, (20d)

T 0
2 = −3

4

√
1− kr2 A3, (20e)

T 0
3 =

3

4

√
1− kr2 sinϑA2 − 1

2
cosϑA1. (20f)

From (20) we conclude that the energy-momentum
tensor of the spinor field contains nontrivial non-
diagonal components. The non-diagonal components

• do not depend on the spinor field nonlinearity;

• occur due to the spinor affine connections;

• appear depending on space-time geometry as well
as the system of coordinates;

• impose restrictions on spinor field and/or space-
time geometry;

• do not depend on the value of k which defines the
type of curvature.
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It should be emphasized that for a FLRW model
given in Cartesian coordinate the EMT have only di-
agonal components with all the non-diagonal one being
identically zero [19]. So in this case the non-diagonal
components arise as a result of coordinate transforma-
tion. Note also that all cosmological spacetime de-
fined by diagonal matrices of Bianchi type V I, V I0,
V , III, I LRS − BI and FLRW , but has nontriv-
ial non-diagonal elements that differ from each other in
different cases [9]. Moreover, non-diagonal metrics such
as Bianchi type II, V III and IX also have nontrivial
non-diagonal components of EMT. Consequently, we
see that the appearance of non-diagonal components
of the energy-momentum tensor occurs either due to
coordinate transformations or due to the geometry of
space-time.

As one sees, the components of the EMT of the
spinor field contains some spinor field invariants. To
define those invariants let us write the system of equa-
tions for the invariants of the spinor field. It can be
obtained from the spinor field equation (15):

Ṡ0 + 2GA0
0 = 0, (21a)

Ṗ0 − 2 (m+D)A0
0 = 0, (21b)

Ȧ0
0 + 2GS0 + 2 (m+D)P0+

+2

√
1− kr2

ar
A1

0 +
cotϑ

ar
A2

0 = 0, (21c)

Ȧ1
0 + 2

√
1− kr2

ar
A0

0 = 0, (21d)

Ȧ2
0 +

cotϑ

ar
A0

0 = 0, (21e)

that gives the following relation between the invariants:

P 2
0 − S2

0 +
(
A0

0

)2 − (A1
0

)2 − (A2
0

)2
= C0, C0 = const.

(22)

In (21) and (22) the quantities with a subscript «0»
are related to the normal ones as follows: X0 = Xa3.

From (22) we can conclude that since C0 is an arbitrary
constant, the each term of (22) should be constant as
well.

In order to solve the Einstein equations we have to
know how the components of the EMT are related to
the metric functions. In order to know that let us find
the invariant K in general. We consider the 4 cases
separately.

In case of K = I, G = 0. In this case from (21a) we
find

S =
Cs

a3
, ⇒ K =

C2
s

a6
. (23)

If K = J , then in case of a massless spinor field
from (21b) we find

P =
Cp

a3
, ⇒ K =

C2
p

a6
. (24)

Let us consider the case when K = I + J . In this
case b1 = b2 = 1. Then on account of expression for
D and G from (21a) and (21b) for the massless spinor
field we find

Ṡ0 + 4λa3FKPA0 = 0, (25a)

Ṗ0 − 4λa3FKSA0 = 0, (25b)

which yields

K = I + J = S2 + P 2 =
C2

1

a6
. (26)

Finally in case when K = I − J , i.e. b1 = −b2 = 1

from (21a) and (21b) for the massless spinor field we
find

Ṡ0 + 4λa3FKPA0 = 0, (27a)

Ṗ0 + 4λa3FKSA0 = 0, (27b)

which yields

K = I − J = S2 − P 2 =
C2

2

a6
. (28)

Thus we see that the invariantK is a function of metric
function a, namely, K = const. a−6 and it is what we
need to solve the Einstein equation. In what follows we
solve the Einstein equation.

Let us recall that the Einstein tensor Gν
μ corre-

sponding to the metric (13) possesses only nontrivial
diagonal components. Hence the general Einstein sys-
tem of equations

Gν
μ = −8πGT ν

μ , (29)

leads to the following non-diagonal expressions

0 = T ν
μ , μ 	= ν. (30)

In view of (20c)–(20f) from (30) one dully finds that

A0 = 0, A3 = 0, A1 = (3/2)
√

1− kr2 tg ϑA2.

(31)

Note that since the FLRW model given by the Carte-
sian coordinate the non-diagonal components of EMT
are identically zero, hence relation such as (31) does
not exist.
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In view of A0 = 0, A3 = 0 from the system (21) we
find

S0 = CS , P0 = CP , A1
0 = C1

0 , A2
0 = C2

0 , (32)

with CS , CP , C1
0 and C2

0 being some arbitrary con-
stants. Thus we see that K = const. a−6. Note that
the equation (21c) in this case in redundant and (31)
gives relations between the constants C1

0 and C2
0 .

We are now ready to consider the diagonal compo-
nents of the Einstein system of equations which for the
metric (13) takes the form

2
ä

a
+

(
ȧ2

a2
+

k

a2

)
= 8πGT 1

1 , (33a)

3

(
ȧ2

a2
+

k

a2

)
= 8πGT 0

0 . (33b)

On account of (33b) we rewrite (33a) in the form

ä

a
= −4πG

3

(
T 0
0 − 3T 1

1

)
= −4πG

3
(ε+ 3p) , (34)

where ε and p are the the energy density and and pres-
sure, respectively:

ε = T 0
0 = mS + λF, (35a)

p = −T 1
1 = λ (2KFK − F ) . (35b)

On account of (20a) and (20b) from (34) we find

ä = −4πG

3
(mS − 2λF + 6λKFK) a. (36)

Note that the equations (34) or (36) do not contain k

that defines the type of space-time curvature. In order
to take this very important quantity into account we
have to exploit (33b) as the initial condition for ȧ. The
equation (33b) we rewrite in the form

ȧ = ±
√
(8π/3)Gεa2 − k =

= ±
√
(8π/3)G (mS + λF ) a2 − k, (37)

Now we can solve (36) with the initial condition
given by (37). It comes out that these equations are
consistent when one takes the negative sign in (37).
Alternatively, one can solve (37), but for the system to
be consistent he has to check whether the result satis-
fies (36).

As we have already established, S, K, hence F (K)

are the functions of a. Consequently, given the spinor
field nonlinearity the foregoing equation can be solved
either analytically or numerically.

The equation (36) can be solved analytically. The
first integral of (36) takes the form

ȧ =

√∫
f(a)da+ Cc, (38)

where we define

f(a) = −8πG

3
(mS − 2λF + 6λKFK) a

and Cc is a constant which should be defined from
(37). The solution to the equation (38) can be given in
quadrature ∫

da√∫
f(a)da+ Cc

= t. (39)

In what follows we solve the system (33) numeri-
cally. In doing so we rewrite it in the following way:

ȧ = Ha, (40a)

Ḣ = −3

2
H2 − 1

2

k

a2
− 4πGλ (2KFK − F ) , (40b)

H2 =
8πG

3
(mS + λF ) − k

a2
, (40c)

where H is the Hubble constant.
As one sees, in the foregoing system the first two

are differential equations, whereas the third one is a
constraint, which we use as the initial condition for H :

H = ±
√
8πG (mS + λF ) /3− k/a2. (41)

Since the expression under the square-root must be
non-negative, it imposes some restrictions on the choice
of initial value of a as well. Note that initial value of H
depends on spinor mass m, coupling parameter λ and
the value of k.

3. NUMERICAL SOLUTIONS

In what follows we solve the equations (40a) and
(40b), numerically. The third equation of the system
(40) we exploit as initial condition for H(t) in the form
(41). We do it for both massive and massless spinor
field. Beside this, we consider close, flat and open uni-
verse choosing different values for k. As it was men-
tioned earlier, the coupling constant λ can be positive
or negative. Let us recall that

K =
K0

a6
, K0 = const. (42)

The foregoing relation holds for K = {I, J, I ± J} for
a massless spinor field, whereas for K = I = S2 it is
true for both massive and massless spinor field. Hence
we assume that K = I = S2. We consider different
kind of spinor field nonlinearities F (K) (equivalently,
F (S)), that describes various types of sources from per-
fect fluid to dark energy.
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Fig. 1. Evolution of the FLRW Universe (scale factor a(t)) in

presence of a radiation given by a massless spinor field. The

blue solid, red dash-dot and black long dash lines stand for

close, flat and open (k = +1, 0, −1) universe, respectively

3.1. Barotropic equation of state

Let us consider the case when the Universe is filled
with perfect fluid or dark energy given by quintessence,
Λ-term or phantom matter. It can be implemented
by the barotropic equation of state (EoS), which gives
a linear dependence between the pressure and energy
density and was exploited by many authors [20–23].
The corresponding EoS takes the form

p = Wε, (43)

where the EoS parameter W is a constant. Depending
on the value of W , the Eq. (43) can give rise to both
perfect fluid, such as dust, radiation etc. and dark en-
ergy such as quintessence, cosmological term, phantom
matter etc. For W ∈ [0, 1], it describes a perfect fluid.
The value W = −1 represents a typical cosmological
constant (Λ-term) [24–26], whereas W ∈ [−1, −1/3]
gives rise to a quintessence, while for W < −1 it as-
cribes a phantom matter.

It was shown in [9, 27] that inserting (35) into (43)
the matter or energy corresponding to Eq. (43) can be
simulated by the nonlinear term given by

F (S) = λS1+W −mS, λ = const., (44)

in the spinor field Lagrangian (2).
Let us now solve (40) numerically for the non-

linear term given by (44). We consider both mas-
sive and massless spinor field. The values of W are

Fig. 2. Evolution of the corresponding Hubble parameter H(t)

and corrsponds to differnt values of k as in Fig. 1

Fig. 3. Evolution of the FRW Universe (scale factor a(t)) in

presence of a radiation given by a massive spinor field. The

blue solid, red dash-dot and black long dash lines stand for

k = +1, 0, −1, respectively

taken to be 1/2, −1/2 and −1 describing the radiation,
quintessence and cosmological constant, respectively.
For simplicity we set S0 = 1, G = 1, λ = 0.5 here and
in the cases to follow. We also set m = 0 for a massless
and m = 1 for a massive spinor field.

In Fig. 1 we have illustrated the evolution of
the Universe filled with radiation, given by a massless
spinor field, while Fig. 2 shows the evolution of the
Hubble parameter corresponding to the case in ques-
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Fig. 4. Evolution of the corresponding Hubble parameter H(t)

Fig. 5. Evolution of the FRW Universe (scale factor a(t)) in

presence of a modified Chaplygin gas given by a massless spinor

field. As one sees, independent to the value of k in this case

the universe expand rapidly

tion. Figs. 3 and 4 describes the evolution of the Uni-
verse filled with radiation and the corresponding Hub-
ble parameter in case of a massive spinor field. In the
figures blue solid line stands for a closed universe given
by k = 1, red dash-dot line stands for a flat universe
with k = 0 and black long dash line stands for an open
universe with k = −1.

We have also considered the case with the
spinor field nonlinearity describing a quintessence
(W = −1/2) and cosmological constant (W = −1).

Fig. 6. Evolution of the corresponding Hubble parameter H(t)

Both massive and massless spinor fields are taken into
account. Since in both cases the energy density is less
than the critical density, independent to the value of k
we have only open type of universe. The behavior of
the evolution is qualitatively same as that of in case of
a modified Chapligin gas. The corresponding figures
will be similar to those in Figs. 5 and 6, only the rate
of expansion being much slower.

3.2. Chaplygin gas

In order to combine two different physical concepts
such as dark matter and dark energy, and thus reduce
the two physical parameters in one, a rather exotic
equation of state was proposed in [28] which was further
generalized in the works [29, 30]. Generalized Chaply-
gin gas model is given by the EoS

pch = −A/εαch, (45)

where A is a positive constant and 0 < α ≤ 1.

It was shown that such kind of dark energy can be
modeled by the massless spinor field with the nonlin-
earity [9] inserting (35) into (45)

F (S) =
(
A+ λS1+α

)1/(1+α)
. (46)

We have solved (40) numerically for the nonlinear
term given by (46). We consider only massless spinor
field setting m = 0. The parameters S0, G and λ were
taken as in previous case. We have also set A = 1/2

and α = 1/3.
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Fig. 7. Evolution of the FRW Universe (scale factor a(t) in

presence of a modified quintessence given by a massless spinor

field. In case of k = +1 there occurs a periodic solution,

whereas for k = 0 or k = −1, we have Big Crunch like solutions

Fig. 8. Evolution of the corresponding Hubble parameter H(t)

As in case of quintessence and cosmological con-
stant, the evolution of the universe filled with Chap-
lygin gas and corresponding behavior of the Hubble
parameter are qualitatively same as in case of a modi-
fied Chaplygin gas which are illustrated in Figs. 5 and
6. The expansion rate in this case is higher than the
previous case but slower than in the case to follow.

Fig. 9. Evolution of the FRW Universe (scale factor a(t)) in

presence of a modified quintessence given by a massive spinor

field. Unlike massless spinor field, in this case there is no pe-

riodic solutions for the given value of problem parameters

Fig. 10. Evolution of the corresponding Hubble parameterH(t)

3.3. Modified Chaplygin gas

Though the dark energy and the dark matter act in
a completely different way, many researchers suppose
that they are different manifestations of a single entity.
Following such an idea a modified Chaplygin gas was
introduced in [31] and was further developed in [32].
Corresponding EoS takes the form
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p = Wε−A/εα, (47)

with W being a constant, A > 0 and 0 ≤ α ≤ 1.
Inserting (35) into (47) the modified Chaplygin gas

can be generated by a massless spinor field with the
nonlinearity given by [9]

F (S) =

[
A

1 +W
+ λS(1+α)(1+W )

]1/(1+α)

. (48)

In fact, mathematically it is a combination of
quintessence and Chaplygin gas. We have solved (40)
numerically for the nonlinear term given by (48). Since
we consider only massless spinor field, we set m = 0.
For simplicity we set S0, G, λ, A, and α as in previous
cases. Beside that we set W = −1/2.

In Figs. 5 and 6 we have illustrated the evolution
of the universe and corresponding Hubble parameter
when the Universe is filled with nonlinear spinor field
simulating a modified Chaplygin gas.

3.4. Modified quintessence

A modified Quintessence was proposed in order to
avoid eternal acceleration of the universe. In some
cases it gives cyclic universe that pops up from a Big
Bang singularity, expands to some maximum value and
then decreases and finally ends in Big Crunch. In some
cases it might be periodic without singularity. A spinor
description of a modified quintessence was proposed
in [23]

p = W (ε− εcr), W ∈ (−1, 0), (49)

with εcr being some critical energy density. The model
gives rise to cyclic or oscillatory universe. Setting
εcr = 0 one obtains ordinary quintessence. As one sees
from (49), the pressure is negative as long as ε > εcr.
Since with the expansion of the universe the energy
density decreases, at some moment of time ε becomes
less than εcr, i.e., ε < εcr. This leads to the positive
pressure and the contraction of the universe. It can be
shown that a modified quintessence can be modeled by
a spinor field nonlinearity inserting (35) into (49)

F (S) = λS1+W +
W

1 +W
εcr. (50)

We solve the system (40) for the values of parameters
as in case of quintessence. For critical density we set
εcr = 1.

In Figs. 7 and 8 we have illustrated the evolu-
tion of the universe and corresponding Hubble param-
eter when the universe is filled with nonlinear massless

spinor field simulating a modified quintessence. The
corresponding cases with massive spinor field are illus-
trated in Figs. 9 and 10

In the figures, evolution of Hubble parameter H is
drawn for a much smaller time interval than the scale
factor a. It is just for technical reason. For example, if
in Figs. 3 and 4 we use interval 30 for both a and H ,
as we see from Fig.4 Hubble parameter after crossing
mark 5 it becomes almost zero, thus giving rise to a
visually ugly picture. Whereas, setting interval 5 for
both, we have a on rising phase for all three values of k
[cf. Fig. 3]. These two figures correspond to the same
values of problem parameter, only for good visual pic-
tures we have drawn them for different intervals. The
same can be told for all other cases.

4. CONCLUSION

Within the scope of a spherically symmetric FLRW
model we have studied the role of a nonlinear spinor
field in the evolution of the universe. It is found
that in this case the spinor field possesses nontrivial
non-diagonal components of the EMT. Since the Ein-
stein tensor in this case is diagonal, this fact imposes
some restrictions on the components of spinor field:
A0 = 0, A3 = 0 and A1 ∝ A2. Corresponding equa-
tions are solved. It is shown that if the spinor field
nonlinearity repesents ordinay matter such as radia-
tion, the factor k plays decisive role giving rise to close,
flat or open universe depending on its positive, trivial or
negative values. It is also shown that in this case spinor
mass influences the result quantatively. If the spinor
feild nonlinearity generates a dark energy we have only
rapidly expanding universe independent to the value of
k. Finally in case of a modified quintessence the model
gives rise to as oscillating universe. Depending on the
value of k and spinor mass msp there might be periodic
solutions or the one that ends in Big Crunch.

Founding. This paper has been supported by
the RUDN University Strategic Academic Leadership
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На основе модернизированных регулярных заряженных метрик Райсснера –Нордстрема и Керра –Нью-

мена с квантовыми ядрами мы предлагаем две модели электрона с нулевой собственной энергией.

DOI: 10.31857/S0044451025010055

1. ВВЕДЕНИЕ

С момента появления Общей теории относи-
тельности (ОТО) начались попытки построения
моделей элементарных частиц в искривленном
пространстве-времени. Среди авторов таких моде-
лей можно назвать Дж.Б.Джеффри (G.B. Jeffery)
(1921), П.А.М.Дирака (P.А.М.Dirac) (1962), В.Из-
раэля (W. Israel) (1970), К.А.Лопеса (C.А. López)
(1984), О. Грона (O.Gron) (1984), А.Буринского
(1974–2023) и др. К сожалению, все предложенные
модели не нашли своего использования в практи-
ческих расчетах классической и квантовой теории
поля.

Второй проблемой, над решением которой
работали многие ученые и о которой мы будем
говорить в нашей работе, является проблема беско-
нечной собственной энергии заряженной частицы
в классической и квантовой электродинамике.
Линейную расходимость собственной энергии в
классической электродинамике пытались устранить
А.Пуанкаре, М.Борн, Л.Инфельд, П.А.М.Ди-
рак, Дж.Уилер, Р.Фейнман (H.Poincaré, M.Born,
L. Infeld, P.A.M.Dirac, J.Wheeler, R. Feynman) и
др. Для устранения логарифмической расходимо-
сти собственной энергии в квантовой теории поля
была разработана процедура перенормировки масс
фермионов.

Подобные работы продолжаются и в наше вре-
мя. Например, в [1, 2] в квантовой электродинами-

* E-mail: vpneznamov@vniief.ru, vpneznamov@mail.ru

ке собственная энергия точечного заряда сходится
при учете нелинейности теории в любом конечном
порядке разложения лагранжиана Эйлера – Гейзен-
берга по степеням электрического поля.

В нашей работе на примере электрона мы пред-
лагаем две квантовые модели заряженных элемен-
тарных частиц с нулевыми собственными энерги-
ями. При этом, используя квантовую геометрию
Райсснера –Нордстрема и пренебрегая чрезвычайно
малыми гравитационными коэффициентами, можно
все практические расчеты эффектов классической и
квантовой электродинамики проводить в парадигме
элементарных частиц с точечными массами и элек-
трическими зарядами.

За основу нами было взято феноменологическое
описание квантовых черных дыр для модифициро-
ванных геометрий Шварцшильда (Sq) и Райссне-
ра –Нордстрема (RNq) [3,4]. В этом подходе черные
дыры содержат квантовые ядра, описываемые коге-
рентными состояниями гравитонов. Средние по ко-
герентным состояниям решения безмассового урав-
нения Клейна – Гордона для продольных гравито-
нов приравниваются с определенными коэффициен-
тами классическим потенциалам. Устранение корот-
ких длин волн проводится обрезанием (cut-off) энер-
гии гравитонов. В теории появляется максимальная
энергия гравитонов

kUV =
�c

RS
. (1)

Здесь для удобства, как в [3, 4], мы вводим пара-
метр RS . Первичным в теории является максималь-
ная энергия гравитонов kUV . Наличие квантового
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ядра дает рост квантовым волосам. Квантовые чер-
ные дыры имеют квантовые волосы.

В будущей квантовой теории гравитации обреза-
ние по энергии гравитонов kUV будет заменено стро-
гим интегрированием, а отсутствие коротких длин
волн в когерентных состояниях гравитонов будет
естественным результатом применения более совер-
шенной квантовой теории.

В нашей работе [5] мы распространили под-
ход [3, 4] на модифицированные геометрии Керра
(Kq) и Керра –Ньюмена (KNq), описывающие ре-
гулярные незаряженные и заряженные квантовые
вращающиеся коллапсары. Здесь, как и в случае
геометрии RNq, это название включает в себя либо
черные дыры с квантовыми ядрами и с горизонта-
ми событий, либо вращающиеся квантовые ядра без
горизонтов событий.

В работе [5] для заряженных вращающихся кол-
лапсаров с массой M , зарядом Q и угловым момен-
том J при значении параметра

RS = Rreg
S =

π

8

Q2

Mc2
(2)

мы получили полную регуляризацию квантовых
метрик KNq с конечными значениями таких вели-
чин ОТО, как массовая функция mKNq (r), тензор
Риччи Rμν (r, θ)q, скаляр Кретчмана Kq (r, θ) и т.д.

При RS = Rreg
S полная энергия квантово-

го заряженного вращающегося коллапсара равна
E = Mc2, т. е. собственная энергия коллапсара
равна нулю. Из-за наличия квантового ядра элек-
тромагнитные силы, ответственные за собственную
энергию коллапсара, компенсируются гравитацион-
ными силами.

Аналогичные результаты получаются и для
квантовой метрики RNq [4].

В разд. 2 на основе квантовых геометрий RNq и
KNq мы предлагаем две квантовые модели электро-
на с нулевыми собственными энергиями. В разд. 3
сравниваются модели электронов друг с другом и
отдается некоторое предпочтение модели с кванто-
вой геометрией RNq. В Заключении сформулирован
основной результат статьи.

В Приложении приведена процедура расчета
энергии заряженной вращающейся черной дыры с
квантовым ядром (см. [5]).

2. КВАНТОВЫЕ МОДЕЛИ ЭЛЕКТРОНА

На основе регулярных квантовых моделей за-
ряженных вращающихся и невращающихся чер-
ных дыр [4, 5] мы предлагаем к рассмотрению две

квантовые модели электрона с модифицированны-
ми метриками KNq и RNq.

2.1. Модифицированная геометрия

Керра –Ньюмена

Для модели электрона мы будем использовать
метрику Cürses –Cürsey [6]1):

ds2KNq =

(
1−

2rme
KNq (r)

ρ2

)
dt2+

+
4ae r m

e
KNq (r) sin

2 θ

ρ2
dtdϕ−

− ρ2

Δ
dr2 − ρ2dθ2 − Σ sin2 θ

ρ2
dϕ2, (3)

где me
KNq (r) — массовая функция,

ρ2 = r2 + a2e cos
2 θ, (4)

Δ = r2 − 2rme
KNq (r) + a2e, (5)

Σ =
(
r2 + a2e

)2 − a2eΔsin2 θ, (6)

ae =
|Je|
me

=
�

2me
. (7)

В выражении (7)me — масса электрона, |Je| = �/2—
спин электрона.

В общем случае для черной дыры с массойM , за-
рядом Q и угловым моментом J массовые функции
m (r) для классических и квантовых метрик Кер-
ра (K) и Керра –Ньюмена (KN) не зависят от пара-
метра вращения a = J/M и соответственно равны
массовым функциям для классических и квантовых
метрик Шварцшильда и Райсснера –Нордстрема.

Для электрона квантовая массовая функция
равна

me
KNq (r) = me

RNq (r) =

= Gme
2

π
Si
(
keUV

�c
r

)
− Ge2

2r

[
1− cos

(
keUV

�c
r

)]
=

= Gme
2

π
Si
(

r

Re
S

)
− Ge2

2r

[
1− cos

(
r

Re
S

)]
. (8)

Здесь Si (x) =
x∫
0

sinx′

x′ dx′ — интегральный синус. Со-

гласно (2),

Re
S =

π

8

e2

mec2
= 1.11 · 10−13 см. (9)

1) Ниже мы будем использовать единицы со скоростью све-
та c = 1. При вычислении численных значений параметров
теории будет использоваться значение c = 3 · 10

10 см/с.
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Согласно (1), максимальная (cut-off) энергия грави-
тонов равна

keUV =
�c

Re
S

= 178МэВ.

Асимптотики квантовой массовой функции (8) име-
ют вид

me
KNq

∣∣
r→∞ = Gme, (10)

me
KNq

∣∣
r→0

=
1

18

Gme

π

(
r

Re
S

)3

→ 0. (11)

Согласно (10), квантовая метрика KN при r → ∞
становится асимптотически плоской.

Для классической метрики KN массовая функ-
ция mcl

KN = 0 при re = e2/2me, т. е. при r = re клас-
сическая метрика является плоской [7]. Для кванто-
вых метрик Kq и KNq в интервале r ∈ (0,∞) всюду
присутствует искривленное пространство-время [5].

2.2. Модифицированная геометрия

Райсснера –Нордстрема

Квантовую метрику RNq [4] можно получить из
выражения (3), полагая ae = 0:

ds2RNq =

(
1−

2me
RNq (r)

r

)
dt2−

− 1

1−
2me

RNq (r)

r

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (12)

где me
RNq (r) приведено в (8).

Квантовая метрика RNq при r → ∞ являет-
ся асимптотически плоской (см. (10)). Компонента
g00 = −1/g11 при r → 0 равна

g00 = 1− Gme

9πc2Re
S

(
r

Re
S

)2

=

= 1− 2.15 · 10−44

(
r

Re
S

)2

, (13)

т. е. при r = 0 метрика (12) становится плоской.

2.3. Характеристики моделей электрона

Приведем применительно к электрону некоторые
характерные числа:

me = 9.1 · 10−28 г, e2 = 2.31 · 10−19 эрг · см,

спин:
�

2
= 0.5 · 1.054 · 10−27 эрг · с,

G = 6.67 · 10−8 см3

г · с2 , c = 3 · 1010 см
с
,

Re
H =

2Gme

c2
= 1.35 · 10−55 см,

Ge2

c4
=
(
1.38 · 10−34

)2
см2,

a2e =

(
�

2mec

)2

=
(
1.93 · 10−11

)2
см2,

β1 =
Ge2

c4
4

(Re
H)2

= 4.2 · 1042,

β2 =
4a2e

(Re
H)

2 = 8.2 · 1088, т.е. β1 + β2 � 1,

Rcl =
e2

mec2
= 2.82 · 10−13 см,

Re
S =

π

8

e2

mec2
= 1.11 · 10−13 см,

keUV =
�c

Re
S

= 178 МэВ,

Re
S

Re
H

=
1.11 · 10−13

1.35 · 10−55
= 0.82 · 1042.

Мы видим, что для электрона β1 + β2 � 1,
Re

S/R
e
H � 1. Это означает, что в моделях электро-

на с квантовыми метриками RNq и KNq отсутству-
ют горизонты событий [8]. Предлагаемые модели
электрона представляют собой либо вращающиеся
(KNq), либо невращающиеся (RNq) коллапсары без
горизонтов событий и с квантовыми ядрами, опре-
деляемыми когерентными состояниями гравитонов
с максимальной энергией keUV = 178 МэВ.

2.4. Электромагнитные потенциалы

Для классических метрик Райсснера –Нордстре-
ма и Керра –Ньюмена с массойM и зарядом Q мас-
совая функция состоит из двух слагаемых:

mcl (r) =
(
mcl (r)

)
M
+
(
mcl (r)

)
Q
= GM−GQ2

2r
. (14)

«Зарядная» часть массовой функции(
mcl (r)

)
Q
= −GQ2/2r

обеспечивает равенство «зарядных» частей компо-
нент тензора Эйнштейна, разделенных на 8πG, с
соответствующими компонентами тензора энергии-
импульса электромагнитного поля, определенными
из уравнений Максвелла,(

G ν
μ

)
Q

8πG
=
(
T ν
μ

)
em

.
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При этом для классической геометрии KN
электромагнитные потенциалы Aμ выбираются в
форме [9]

Aμ =
Qr

ρ2
(
1, 0, 0,−a sin2 θ

)
. (15)

Электромагнитные поля при r → ∞ проявляют се-
бя в виде суперпозиции кулоновского поля и поля
магнитного диполя μ = Qa. Гиромагнитное отноше-
ние μ/|J | = Q/m, что совпадает с гиромагнитным
отношением для дираковского электрона. Сложная
внутренняя электромагнитная структура источника
классической метрики KN представлена, например,
в работе [10].

Для классической метрики Райсснера –Норд-
стрема (RN) (a = 0) в (15) остается только скаляр-
ный кулоновский потенциал A0 = Q/r.

Для регулярных квантовых метрик электрона
(с учетом связи me и e2 в (9)) «зарядную» часть
массовой функции можно оставить такой же, что и
для классических метрик RN и KN. Тогда массовая
функция (8) будет равна

me
RNq (r) = me

KNq (r) =

= Gme

[
2

π
Si
(

r

Re
S

)
+

4

π

cos (r/Re
S)

r/Re
S

]
− Ge2

2r
. (16)

В этом случае электромагнитные свойства предла-
гаемых моделей электрона совпадают с электромаг-
нитными свойствами источников классических мет-
рик Райсснера –Нордстрема и Керра –Ньюмена.

2.5. Собственная энергия электрона

В работе [5] мы установили, что при

RS = Rreg
S = πQ2/8M

энергия вращающейся заряженной квантовой чер-
ной дыры равна E = M (см. также Приложение).
Аналогичное равенство справедливо для квантовой
метрики RNq при любом значении RS . Для моделей
электрона в естественных единицах

Re
S = πe2/8mec

2 = 1.11 · 10−13см.

Равенство E = me означает, что собственная
энергия электрона Eem равна нулю.

3. ОБСУЖДЕНИЕ

Итак, мы рассмотрели две квантовые модели
электрона на основе модифицированных метрик

Таблица. Сравнение характеристик моделей элек-

трона в квантовых геометриях Райсснера –Норд-

стрема (RNq) и Керра –Ньюмена (KNq)

Характеристика моделей электрона RNq KNq

1 Ee = me, Eem = 0 + +

2 Слабое энергетическое условие + −

3
|J | = �/2, дираковское гиромагнит-

ное отношение μ/ |J | = e/me

− +

4 Отсутствие горизонтов событий + +

5
Конечность величин ОТО, таких

как массовая функция, тензор

Риччи, скаляр Кретчмана и т. д.

+ +

6
Совместимость с уравнениями

Максвелла
+ +

7
Стационарные связанные состояния

в полях регулярныхчерныхдыр
+ −

Райсснера –Нордстрема и Керра –Ньюмена. Можно
ли на данном этапе отдать предпочтение какой-либо
одной модели? Для ответа на этот вопрос проведем
сравнение некоторых характеристик рассмотренных
моделей. Сравнение проведем при

RS = Re
S =

πe2

8me
.

В таблице знаками «+», «−» обозначено присут-
ствие или отсутствие ключевых характеристик рас-
смотренных моделей.

Кратко обсудим пункты 1–7 таблицы.
Пункт 1. Для обеих моделей

Ee = mec
2, Eem = 0.

Мы обнаружили важный аспект: гравитация в
заряженных квантовых метриках Керра –Ньюмена
(с вращением) и Райсснера –Нордстрема (без вра-
щения) при RS = Re

S компенсирует электромагнит-
ную составляющую в выражениях для полной энер-
гии квантовой черной дыры.

В классической электродинамике собственная
энергия заряженной частицы Ecl

em = e2
/
2r линей-

но расходится при r → 0. В квантовой теории поля
собственная энергия заряженной частицы определя-
ется бесконечным рядом теории возмущений со сла-
гаемыми с логарифмической расходимостью.

Пункт 2. Для квантовой геометрии RNq плот-
ность энергии ρε (r), радиальное давление p1 (r), на-
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пряжения p2 (r) = p3 (r) имеют вид [4]

ρε (r) = −p1 (r) =
me

π2 (Re
S)

3×

×
[

1

(r/Re
S)

4

(
1− cos

(
r

Re
S

))
−

− 1

2 (r/Re
S)

3 sin

(
r

Re
S

)]
, (17)

p2 (r) = p3 (r) =
me

π2 (Re
S)

3×

×
[

1

(r/Re
S)

4

(
1− cos

(
r

Re
S

))
+

1

4 (r/Re
S)

2 cos

(
r

Re
S

)
−

− 3

4 (r/Re
S)

3 sin

(
r

Re
S

)]
. (18)

При r → 0 имеем ρε (r)→ K/24, pi (r)→ −K/24, где
i = 1, 2, 3 и K = me/π

2 (Re
S)

3. Отсюда следует, что
для квантовой геометрии RNq в окрестности r = 0

выполняется слабое энергетическое условие ρε ≥ 0,
ρε + pi ≥ 0, i = 1, 2, 3.

Конкретно формулы (17), (18) показывают, что
при r = 0 ρε = K/24, ρε + pi = 0, i = 1, 2, 3.

Для квантовой геометрии RNq при r = 0

выполняется также условие энергодоминантности
ρε ≥ |pi|, i = 1, 2, 3. В нашем случае ρε = |pi| .

Для квантовой геометрии Керра –Ньюмена
асимптотики плотности энергии ρε (r, μ) при r → 0

получаются из формулы (7) в [5] (здесь и ниже
μ = cos θ):

ρε (r, μ) =
K

12

μ2 − 1

μ4

(
r

ae

)2

, μ 	= 0,

ρε (r, μ) = 84K, μ = 0.

(19)

При μ 	= 0, ±1 плотность энергии в окрестности
r = 0 отрицательна. В этом случае не удовлетво-
ряется ни одно энергетическое условие.

Пункт 3. В квантовой модели KNq можно вве-
сти модуль спина |J | = �/2, при этом выполняется
дираковское гиромагнитное отношение. Однако вве-
дение квантового оператора спина S = (�/2)σ за-
труднительно при классическом определении угло-
вого момента в геометрии Керра –Ньюмена. Выше
σi — двумерные матрицы Паули.

В квантовой геометрии RNq угловой момент J

равен нулю. В квантовой модели электрона с гео-
метрией RNq предполагается, что оператор спина S

и гиромагнитное отношение e/me являются чисто
квантовыми свойствами, заданными извне.

Пункт 4. В обеих моделях отсутствуют горизон-
ты событий.

Пункт 5. В обеих моделях величины ОТО, та-
кие как массовая функция, тензор Риччи, скаляр
Кретчмана и т.д., являются конечными.

Пункт 6. Квантовые геометрии RNq и KNq сов-
местимы с уравнениями Максвелла (см. разд. 2.4
данной работы). Однако, безусловно, электромаг-
нитная структура модели RNq значительно про-
ще, чем электромагнитная структура модели KNq.
Источником электромагнитного поля в квантовой
модели RNq является точечный электрический за-
ряд e, расположенный в центре системы (r = 0). На
больших расстояниях электромагнитное поле стре-
мится к кулоновскому полю.

Источником электромагнитного поля в кванто-
вой модели KNq является система токов и поверх-
ностных электрических зарядов, распределенных по
диску радиуса ae = |Je|/mec с центром в r = 0 [10].

При r →∞ электромагнитное поле является су-
перпозицией кулоновского поля и поля магнитного
диполя μ = ea.

Пункт 7. В квантовой геометрии RNq метри-
ка (12) становится асимптотически плоской при
r → ∞, и важно, что при RS = Re

S и r → 0 мет-
рика (12) также является плоской (см. (13)). В этом
случае задачу определения собственных функций и
собственных значений уравнения Дирака для дви-
жения фермионов в поле RNq можно решать, ис-
пользуя однозначные граничные условия из анало-
гичной задачи для движения фермионов в кулонов-
ском поле электрона в плоском пространстве Мин-
ковского.

В случае квантовой геометрии Керра –Ньюмена
мы сталкиваемся с другой ситуацией. При r → 0 и
RS = Re

S метрика (3) остается неплоской и имеет
следующий вид:

ds2KNq = dt2 − cos2 θdr2 − a2e cos
2 θdθ2−
− a2e sin

2 θdϕ2. (20)

В [11, 12] показано, что в этом случае уравнение
Дирака имеет два квадратично интегрируемых ре-
шения, что делает невозможной постановку задачи
о собственных значениях и собственных функциях
для фермионов, движущихся в классическом или
квантовом пространстве-времени KN.

Для определенности квантовомеханической за-
дачи необходимо проводить самосопряженное рас-
ширение гамильтониана, что, как правило, приво-
дит к установлению нового граничного условия в
окрестности r = 0 (см., например, [13, 14]).
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В результате анализа таблицы мы пришли к вы-
воду, что в настоящее время предпочтительнее ис-
пользовать квантовую модель электрона с модифи-
цированной геометрией Райсснера –Нордстрема.

4. ЗАКЛЮЧЕНИЕ

Мы предложили две квантовые модели электро-
на с нулевыми собственными энергиями. Модели
предложены на основе квантовых геометрий Райс-
снера –Нордстрема [4] и Керра –Ньюмена [5]. Важ-
ным для регуляризации ключевых величин ОТО яв-
ляется выбор Re

S = πe2/8mec
2 � 1.11 · 10−13см. При

этом keUV = �c/Re
S ≈ 178 МэВ. Предложенные мо-

дели позволяют решить давнюю проблему линейной
расходимости собственной энергии заряженной час-
тицы в классической электродинамике. В рассмот-
ренных моделях гравитация компенсирует электро-
магнитную составляющую в выражениях для пол-
ной энергии электрона.

Можно предположить, что при появлении более
совершенных квантовых теорий гравитации анало-
гичным образом будет решена проблема бесконеч-
ной собственной энергии заряженных фермионов в
квантовой теории поля.

Примечательно, что при использовании моде-
ли электрона с квантовой геометрией Райсснера –
Нордстрема можно кроме нулевой собственной энер-
гии все остальные эффекты классической и кванто-
вой электродинамики вычислять в стандартной па-
радигме элементарной частицы с точечными массой
me и электрическим зарядом e < 0. Это связано
с чрезвычайно малыми значениями коэффициентов

Gme/c
2 � 0.7 · 10−55 см и Ge2/c4 � 1.9 · 10−68 см2 в

формуле (16) для массовой функции me
RNq(r). Учет

столь малых коэффициентов в численных расче-
тах и сравнение с экспериментами чрезвычайно вы-
сокой точности — дело отдаленного будущего. Ис-
ключением является вычисление полной энергии за-
ряженной элементарной частицы и ее собственной
энергии.

Пренебрежение коэффициентами Gme/c
2 и

Ge2/c4 превращает квантовую геометрию Райс-
снера –Нордстрема в плоское пространство-время
Минковского. В этом случае мы возвращаемся
в область применимости классической и кван-
товой электродинамики заряженных лептонов
Стандартной модели.

Финансирование. Исследование выполнено в
рамках научной программы Национального центра
физики и математики, проект «Физика частиц и
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ПРИЛОЖЕНИЕ.
ЭНЕРГИЯ ЗАРЯЖЕННОЙ

ВРАЩАЮЩЕЙСЯ ЧЕРНОЙ ДЫРЫ
С КВАНТОВЫМ ЯДРОМ [5]

Для квантовой метрики KN полная энергия,
определяемая интегралом по объему от плотности
энергии T 0

0 ≡ ρε (r, θ) равна

E =

∫
T 0
0

√
−gdV =

1

4G

∞∫
0

dr

1∫
−1

dμ
(
r2 + a2μ2

)
G 0

0 (r, μ) =

=
1

4G

∞∫
0

dr

1∫
−1

dμ

[
2
r4 +

(
ρ2 − r2

)2
+ a2

(
2r2 − ρ2

)
ρ4

m′
KNq

−
ra2
(
1− μ2

)
ρ2

m′′
KNq

]
=

=
1

4G

∞∫
0

dr

{[
8− 4

r

a
arctg

a

r

][
GM

2

π

sin (r/RS)

r
+

CQ2

2r2

(
1− cos

( r

RS

))
− CQ2

2rRS
sin
( r

RS

)]
+

+

[
2r − 2

r2

a
arctg

a

r
− 2a arctg

a

r

][
GM

2

π

cos (r/RS)

r/RS

1

R2
S

−GM
2

π

sin (r/RS)

(r/RS)
2

1

R2
S

− CQ2

r3

(
1− cos

( r

RS

))
+

+
CQ2

r2RS
sin
( r

RS

)
− CQ2

2rR2
S

cos
( r

RS

)]}
= M +

1

2

|J |
RS

− π

16

Q2 |J |
M

1

R2
S

= M +
1

2

|J |
�
kUV −
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Для метрик K, KN

√−g = ρ2 sin θ; ρ2 = r2 + a2μ2, μ = cos θ;

m′
KNq ≡

dmKNq

dr
, m′′

KNq ≡
d2mKNq

dr2
,

mKNq = GM
2

π
Si
(

r

RS

)
− GQ2

2r

(
1− cos

(
r

RS

))
.

При

RS = Rreg
S =

π

8

Q2

Mc2

полная энергия квантового заряженного вращающе-
гося коллапсара равна E = Mc2. Величины ОТО,
такие как массовая функция m (r), тензор Риччи
Rμν (r, θ), скаляр Кретчмана K (r, θ) и т. д. стано-
вятся регулярными.
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Трехслойный волновод преобразует обычный коллимированный пучок нейтронов в узкий расходящийся

микропучок. Исследуется распространение нейтронов в волноводе с внешними магнитными слоями. Ре-

гистрируется интенсивность нейтронного микропучка, выходящего из торца среднего немагнитного слоя.

Экспериментально определяется длина каналирования нейтронов в зависимости от знака поляризации

падающего пучка.

DOI: 10.31857/S0044451025010067

1. ВВЕДЕНИЕ

Нейтронное рассеяние является мощным нераз-
рушающим методом исследования магнитных
структур, полимеров и биологических объектов
благодаря особым свойствам нейтронов: наличию
собственного магнитного момента, высокой прони-
кающей способности и изотопной чувствительности.
Свойства нейтронного и рентгеновского излучения
сильно различаются, поэтому их часто используют
в качестве взаимодополняющих методов. Напри-
мер, поляризованные пучки нейтронов являются
уникальным инструментом изучения магнитных
материалов в объеме вещества, что недоступно
для рентгеновского излучения из-за его низкой
проникающей способности.

Ширина нейтронного пучка определяет про-
странственное разрешение и масштаб исследуемых

* E-mail: kozhevn@nf.jinr.ru

объектов. Обычная ширина пучка в нейтронном экс-
перименте составляет величину от 0.1 до 10 мм.
Для изучения локальных микроструктур в масшта-
бе десятков микрометров необходимо иметь очень
узкие пучки нейтронов. С этой целью разрабатыва-
ются различные фокусирующие устройства (пара-
болические зеркальные нейтроноводы, преломляю-
щие линзы, изогнутые кристаллы-монохроматоры и
др.) [1], которые способны сжать нейтронный пучок
до 50 мкм. Меньшей ширины пучка не удается до-
стичь из-за ограничений, которые определяются фи-
зическими свойствами используемых материалов и
технологией их обработки. Другой проблемой этих
устройств является то, что они не могут эффектив-
но выделить «чистый» микропучок. Например, па-
раболические зеркальные нейтроноводы формиру-
ют пучок, сильно структурированный в простран-
стве, преломляющие линзы фокусируют лишь
20–30% начального пучка, а капиллярные лин-
зы имеют большой фон. В работе [2] рассчитан
профиль микропучка после диафрагмы из лез-
вий поглощающего нейтроны кристалла Gd2Ga5O12
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(или GGG). Получено, что микропучок имеет цен-
тральную часть размером около 100 мкм и кры-
лья, ширина которых меняется от 10 до 20 мкм.
Там же продемонстрирован способ получения мик-
ропучка при полном зеркальном отражении ней-
тронов от кремниевой подложки. Метод обладает
несомненными преимуществами: высокой интенсив-
ностью порядка 1000 нейтр./с, низким фоном око-
ло 2 нейтр./мин и возможностью использовать вре-
мяпролетную технику. Но практически достижимая
ширина микропучка при длине волны нейтронов
4.0 Å и ширине кремниевой подложки 8 мм все еще
составляет величину около 30 мкм.

Рекордсменами по минимальной ширине ней-
тронного микропучка являются трехслойные вол-
новоды (рис. 1). Принцип их действия состоит в
следующем. Коллимированный пучок нейтронов с
угловой расходимостью δαi падает в вакууме (сре-
да 0) на поверхность волновода под малым углом
скольжения αi. Потом нейтроны туннельным обра-
зом проходят через тонкий верхний слой (среда 1)
толщиной a = 5–20 нм и попадают в средний слой
(среда 2) шириной d = 100–200 нм. Затем нейтро-
ны практически полностью отражаются от сравни-
тельно толстого нижнего слоя (среда 3), напыленно-
го на толстую подложку (например, стекло). Далее
часть нейтронов туннелирует через верхний слой и
выходит из волновода в направлении зеркально от-
раженного пучка αf = αi. Другая часть нейтронов
отражается от верхнего тонкого слоя 1 и возвраща-
ется обратно в средний слой 2. В результате мно-
гократного отражения нейтроны распространяются
вдоль среднего слоя как в канале и выходят из его
торца в виде микропучка с расходимостью δαf . Ос-
новной вклад в угловую расходимость микропучка
δαf вносит дифракция Фраунгофера δαF на узкой
щели шириной d, которой является волноводный ка-
нал: δαF ∝ λ/d. Здесь λ — длина волны нейтронов.

К настоящему времени слоистые нейтронные
волноводы довольно хорошо изучены. В [3] из торца
трехслойного волновода получен неполяризованный
микропучок нейтронов, а в [4] — поляризованный.
В [5–7] экспериментально определен вклад дифрак-
ции Фраунгофера δαF в угловую расходимость мик-
ропучка нейтронов. В [2, 8] поляризованный мик-
ропучок нейтронов из волновода использован для
пространственного сканирования микропроволочки
диаметром 190 мкм из аморфного магнитного мате-
риала. При расстоянии 1 мм от выхода волновода,
длине волны нейтронов 4.0 Å, ширине волноводно-
го канала 150 нм и расходимости микропучка 0.15◦

расчетная ширина микропучка на месте образца со-

Рис. 1. Принцип действия плоского нейтронного волновода

ставила 2.6 мкм. При интенсивности микропучка по-
рядка 1 нейтр./с статистически обеспеченные дан-
ные были получены за время около 10 ч. Экспери-
ментальная установка подробно описана в [2]. Пре-
имуществами плоских волноводов являются рекорд-
но малая ширина нейтронного микропучка и срав-
нительно простой способ отделения микропучка от
фона. Их очевидными недостатками являются низ-
кая интенсивность и достаточно большая расходи-
мость микропучка. Но ввод в эксплуатацию более
мощных нейтронных источников (SNS, ESS, ПИК,
ИБР-3) может сделать использование слоистых вол-
новодов более доступным.

В плоских волноводах одновременно наблюдает-
ся два явления — резонансное усиление нейтронных
стоячих волн и каналирование нейтронов. Теория
нейтронных резонансов в слоистых волноводах опи-
сана в [9]. Введем обозначения

k0z =
2π

λ
sinαi,

k1z =
√
k20z − ρ1, k2z =

√
k20z − ρ2,

k0x =
2π

λ
cosαi.

Здесь ρ1 — плотность длины рассеяния (ПДР) ней-
тронов для верхнего слоя 1, ρ2 — ПДР для волно-
водного слоя 2. Волновая функция нейтронов имеет
общий вид

Ψ(k0z, z) = A exp (ik0zz),

где A — амплитуда волновой функции. Тогда полу-
чим, что |Ψ|2 = |A|2. Внутри среднего слоя волновая
функция имеет вид

Ψ(z) = A [exp (− ik2zz) +R23 exp(ik2zz)] ,
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где R23 — амплитуда отражения волновой функ-
ции нейтронов от нижнего слоя 3. Амплитуду A

определяют из самосогласованного уравнения для
волновой функции нейтронов в слое 2, если нача-
ло координат z = 0 совместить с границей раздела
слоев 1 и 2:

A = T02 exp (ik2zd) +R21R23 exp (ik2z2d)A, (1)

где T02 — амплитуда пропускания волновой функ-
ции нейтронов из вакуума 0 в среду 2, R21 — ампли-
туда отражения волновой функции нейтронов в сре-
де 2 от слоя 1. Из самосогласованного уравнения (1)
находим

|Ψ|2 = |A|2 =
|T02|

|1−R21R23 exp(2ik2zd)|
. (2)

Величина |A|2 в уравнении (2) имеет резонансные
максимумы при периодических условиях для фазы
волновой функции нейтронов:

Φ(k0z) = 2k2zd+ arg(R21) + arg(R23) = 2πn, (3)

где n = 0, 1, 2, . . . — порядок резонанса. Если длина
волны нейтронов фиксирована, то угол скольжения
начального пучка имеет резонансы по углу αin. Ес-
ли используется метод по времени пролета, то угол
скольжения начального пучка фиксирован, а конеч-
ный спектр нейтронов имеет резонансы по длине
волны λn. В [10] на времяпролетном рефлектометре
было экспериментально показано, что спектральная
ширина нейтронных резонансов увеличивается при
увеличении расходимости падающего пучка δαi.

Параметр |A|2 является коэффициентом усиле-
ния нейтронной плотности внутри среднего слоя,
и для различных резонаторов он может дости-
гать величин порядка 101–103. Слоистые резона-
торы используются для усиления слабого взаимо-
действия нейтронов с веществом [11]. Нейтронные
резонансы проявляются как слабые минимумы на
коэффициентах зеркального отражения нейтронов
и как соответствующие им резонансно усиленные
максимумы вторичного характеристического излу-
чения или специфического нейтронного рассеяния.
При взаимодействии нейтронов с некоторыми эле-
ментами и изотопами в результате ядерных реак-
ций возникает вторичное характеристическое из-
лучение, например, гамма-кванты [12] и альфа-
частицы [13]. В [14–17] подробно описаны экспери-
ментальная установка и метод нейтронной рефлек-
тометрии с регистрацией вторичного излучения.

В качестве специфического нейтронного рассе-
яния в резонаторе могут выступать нейтроны, ис-
пытавшие переворот спина при взаимодействии с

магнитно-неколлинеарными слоистыми структура-
ми [18–20], некогерентно рассеянные при взаимо-
действии с водородом [21], незеркально рассеянные
на межслойных шероховатостях [22, 23] и доменной
структуре [24, 25]. Высокая чувствительность поло-
жения нейтронных резонансов по энергии к измене-
нию величины ПДР резонансного слоя была исполь-
зована для определения малого изменения концен-
трации водорода в резонаторе [26,27]. Такие резона-
торы могут применяться как датчики в накопителях
водорода.

Еще одним видом специфического нейтронного
рассеяния является каналирование нейтронов. Ней-
тронный пучок, который распространяется вдоль
среднего слоя, может выходить через поверхность
волновода в виде коллимированного пучка обычной
ширины или из торца канала в виде узкого расхо-
дящегося микропучка (рис. 1). Интенсивности ней-
тронов обоих пучков имеют резонансные максиму-
мы по энергии. В [28] предложена идея использо-
вать плоские нейтронные волноводы для определе-
ния слабой намагниченности пленок величиной по-
рядка 102 Гс. В [29, 30] эта идея была реализована
экспериментально. В трехслойном волноводе внеш-
ние слои были немагнитными, а исследуемые фер-
римагнитные пленки TbCo5 [29] и TbCo11 [30] вы-
полняли роль среднего волноводного слоя. Величи-
на намагниченности определяется напрямую по раз-
нице положений резонансов порядка n = 0 для поля-
ризации падающего пучка «+» и «−». При этом ре-
гистрация микропучка позволяет эффективно отде-
лить полезный сигнал от фона, источником которо-
го являются зеркально отраженный, преломленный
и прошедший мимо образца пучки. В настоящей ра-
боте рассмотрен волновод, в котором внешние слои
являются магнитными, а средний слой — немагнит-
ным (рис. 2). В таких волноводах коэффициент уси-
ления нейтронной плотности внутри волноводного
канала зависит от проекции спина нейтронов «+»
или «−» на направление вектора намагниченности.
В [31] предложена идея управлять цепной реакцией
деления урана внутри немагнитного волноводного
слоя с помощью перемагничивания внешних слоев
приложенным магнитным полем. При этом должен
меняться параметр xe экспоненциального затухания
нейтронной плотности, который называется длиной
каналирования.

В [32] было теоретически показано, что при рас-
пространении нейтронов вдоль волноводного канала
нейтронное волновое поле затухает как exp (−x/xe),
где x — расстояние под неосвещенной поверхностью
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Рис. 2. ПДР волновода с магнитными внешними слоями в

зависимости от координаты z в направлении перпендику-

лярно слоям. Обозначение для пермаллоя Py(+) отвеча-

ет поляризации пучка нейтронов «+» и намагниченности

пленки 7.2 кГс, Py(−) — поляризации «−» и намагничен-

ности пленки 7.2 кГс, а Py — неполяризованному пучку и

размагниченному образцу

волновода. Было получено выражение для длины
каналирования нейтронов:

xe =
kxd

k2z |ln |R21R23||
. (4)

Если нижний слой достаточно толстый, то можно
положить R23 = 1. Если амплитуда отражения ней-
тронов от верхнего слоя близка к единице, R21 ≈
≈ 1, то коэффициент прохождения нейтронов через
верхний слой

T = |T20| = 1− |R21|

является малым параметром, T 
 1. Тогда можно
записать приближенное выражение

|ln |R21R23|| ≈ |ln (1− T )| ≈ T.

В этом случае получим упрощенное выражение для
длины каналирования нейтронов:

xe ≈
kxd

k2zT
. (5)

Длину каналирования нейтронов можно определить
экспериментально. На поверхность волновода ближе
с выходному краю наносится полоска из поглощаю-
щего нейтроны материала, под которым образуется
неосвещенная нейтронами область длиной x. Затем
с помощью поглотителя изменяется длина неосве-
щенной области x и измеряется интенсивность мик-
ропучка из торца волновода I (x). Для нормировки

Рис. 3. Схема эксперимента по определению длины ка-

налирования нейтронов с помощью скользящего бруска

поглотителя

регистрируется интенсивность микропучка без по-
глотителя I (x = 0). Из теории каналирования [32]
следует, что интенсивность микропучка нейтронов
из торца волноводного канала экспоненциально за-
тухает с ростом длины неосвещенной поверхности
волновода x:

I(x)/I(x = 0) = exp (−x/xe). (6)

Из экспериментальной зависимости интенсивности
микропучка (6) определяют длину каналирования
нейтронов xe, которая для различных волноводов
может составлять величину 0.5–5.0 мм.

В качестве поглотителя нейтронов используют-
ся различные материалы: порошок Gd2O3, пласти-
ны из Cd или бруски из бораля (алюминия с кар-
бидом бора). На рис. 3 показана экспериментальная
схема со скользящим бруском из бораля. Из-за кри-
визны бруска между ним и поверхностью волново-
да образуется воздушная прослойка высотой h по-
рядка 10 мкм. Это приводит к тому, что часть по-
верхности волновода под поглотителем длиной Δx

около 1.5 мм освещается падающим пучком нейтро-
нов. В эксперименте регистрируется интенсивность
микропучка нейтронов I (L) в зависимости от рас-
стояния L от выходного края волновода до перед-
него края поглотителя. Координата L = Δx + x

содержит в себе длину освещенной части Δx и
неосвещенной части x поверхности волновода под
поглотителем. С помощью преобразования коорди-
нат x = L−Δx определяется зависимость интенсив-
ности микропучка от длины неосвещенной поверх-
ности образца, I (x). Для нормировки использует-
ся интенсивность микропучка нейтронов при полно-
стью освещенной поверхности волновода, I (x = 0).
Величину Δx не нужно знать заранее, она получа-
ется автоматически в процессе обработки экспери-
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ментальных данных. Более подробно процедура об-
работки данных будет описана в разд. 3.

В [33] представлена экспериментальная уста-
новка и обсуждаются различные способы измере-
ния длины каналирования нейтронов. Сравнивают-
ся два поглотителя нейтронов — скользящий бру-
сок из бораля и порошок Gd2O3. Преимущество по-
рошка состоит в низком фоне в микропучке и бо-
лее простой обработке экспериментальных данных,
поскольку воздушный зазор между поверхностью и
порошком отсутствует. Недостатки порошка: 1) при
замене поглотителя с новой шириной x впустую тра-
тится большое время; 2) его практически невозмож-
но использовать при длине каналирования нейтро-
нов менее 1 мм.

Преимущества скользящего бруска: 1) положе-
ние легко контролировать с хорошей точностью с
помощью микрометрического винта; 2) на измене-
ние положения бруска тратится гораздо меньше вре-
мени; 3) его можно использовать для определения
малой величины длины каналирования менее 1 мм.
Недостатками скользящего бруска являются более
высокий фон в микропучке по сравнению с по-
рошковым поглотителем и более сложная обработка
данных.

В той же работе [33] экспериментально показа-
но, что параметр экспоненциального затухания ней-
тронной плотности в геометрии отражения меньше,
чем длина каналирования нейтронов в геометрии
микропучка из торца канала.

Впервые явление каналирования нейтронов в
трехслойных волноводах наблюдалось в геометрии
отражения [34]. Впервые длина каналирования ней-
тронов в геометрии микропучка из торца волновода
была экспериментально измерена в [35] с поглоща-
ющим порошком на поверхности. В [36] были прове-
дены эксперименты по каналированию нейтронов с
пластинкой Cd на поверхности образца. В [37] при-
веден обзор работ по исследованию и применению
плоских нейтронных волноводов: расчеты показали,
что длина каналирования нейтронов (5) зависит от
порядка резонанса n = 0, 1, 2 . . . и параметров вол-
новода — толщины верхнего слоя a, ширины канала
d и глубины потенциальной ямы ПДР Δρ = ρ1− ρ2.
Получено, что

lnxe ∝ a, lnxe ∝ d, lnxe ∝ Δρ

для резонанса порядка n = 0 и

xe ∝ 1/(n+ 1)

для первых трех порядков резонансов n = 0, 1, 2. В
экспериментах со скользящим бруском определена

длина каналирования нейтронов в зависимости от
порядка резонанса и толщины верхнего слоя [38],
от ширины волноводного канала [39] и от глуби-
ны потенциальной ямы для нескольких волново-
дов [40]. Полученные экспериментальные результа-
ты подтвердили предсказания теории.

В настоящей работе экспериментально определя-
ется длина каналирования нейтронов в волноводе
с магнитными внешними слоями, в котором глуби-
на потенциальной ямы изменяется в зависимости от
знака поляризации падающего пучка нейтронов.

2. РАСЧЕТЫ

Расчеты были проведены для волновода
Py(20 нм)/Cu(140 нм)/Py(50 нм)//стекло. Пер-
маллой (Py) является магнитным сплавом
Fe(20.6 ат.%)Ni(79.4 ат.%) с узкой петлей ги-
стерезиса. На рис. 2 показана ПДР волновода
в зависимости от координаты z в направлении,
перпендикулярном слоям. Здесь обозначения Py(+)

и Py(−) соответствуют ПДР намагниченного до
насыщения пермаллоя для нейтронов со спинами
«+» и «−», а Py отвечает ПДР для полностью
размагниченного состояния пермаллоя. Можно
видеть, что ПДР пермаллоя меняется в зависи-
мости от знака спина нейтронов. Для расчетов
намагниченность слоев пермаллоя равна 7.2 кГс.
Длина волны нейтронов равна 4.26 Å. На рис. 4
приведена рассчитанная величина квадрата модуля
волновой функции нейтронов |Ψ|2 в зависимости
от угла скольжения падающего пучка αi и коорди-
наты z в направлении, перпендикулярном слоям.
Рис. 4 а соответствует поляризации падающего
пучка «+», или UP, на рис. 4 б показан расчет
для неполяризованного падающего пучка, NM,
а рис. 4 в соответствует поляризации падающего
пучка «−», или DO. Можно видеть резонансы
порядков n = 0, 1, 2 . . . , наиболее интенсивные
из которых находятся в области полного отра-
жения ниже горизонтальной штриховой линии.
Коэффициент усиления нейтронной плотности до-
стигает 30 для поляризации UP и резонанса n = 0.
Также можно заметить, что двумерные карты
нейтронной плотности отличаются для различной
поляризации пучка нейтронов. При уменьшении
глубины потенциальной ямы волновода положение
резонансов смещается в меньшие углы скольжения
падающего пучка, расстояние между резонансами
уменьшается, и величина максимумов резонансов
также уменьшается.
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Рис. 4. Рассчитанный квадрат модуля волновой функции

нейтронов в зависимости от угла скольжения падающего

пучка и координаты в направлении перпендикулярно сло-

ям при различной поляризации начального пучка: а — UP;

б — неполяризованный пучок NM; в — DO. Длина волны

нейтронов 4.26 Å

На рис. 5 а приведены коэффициенты зеркально-
го отражения нейтронов для поляризации UP (тон-
кая линия), неполяризованного пучка NM (штрихо-
вая линия) и поляризации DO (толстая линия) в
зависимости от угла скольжения падающего пучка.
Видно, что область полного отражения смещается
в сторону меньших углов скольжения для неполя-
ризованного пучка NM и поляризации пучка DO по
сравнению с поляризацией пучка UP. При этом в об-
ласти полного отражения наблюдаются минимумы
коэффициентов отражения, которые отвечают резо-
нансам n = 0, 1, 2 . . .

На рис. 5 б показан квадрат модуля волновой
функции нейтронов |Ψ|2 (в относительных едини-
цах), проинтегрированный по координате z внутри
волноводного канала, в зависимости от угла сколь-

Рис. 5. Расчеты: а — коэффициент зеркального отраже-

ния нейтронов для поляризации UP (тонкая линия) и DO

(штриховая линия) и для неполяризованного пучка NM

(толстая линия) в зависимости от угла скольжения падаю-

щего пучка; б— квадрат модуля волновой функции нейтро-

нов для поляризаций UP и DO и для неполяризованного

пучка NM в зависимости от угла скольжения падающего

пучка

Рис. 6. Рассчитанная длина каналирования нейтронов как

функция глубины потенциальной ямы волновода при раз-

личной поляризации падающего пучка
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жения падающего пучка. Можно видеть максиму-
мы, соответствующие резонансам n = 0, 1, 2 . . . Ес-
ли величину максимума резонанса порядка n = 0

для поляризации UP принять за 1.0, то максимум
для неполяризованного пучка составляет 0.8, а для
поляризации DO равен 0.4. Таким образом, квадрат
модуля волновой функции нейтронов |Ψ|2 зависит
от глубины потенциальной ямы волновода.

На рис. 6 приведена длина каналирования ней-
тронов резонанса порядка n = 0 в зависимости от
глубины потенциальной ямы волновода, рассчитан-
ная для длины волны нейтронов 4.26 Å по форму-
ле (5). Точками показан расчет, а линией — под-
гонка экспоненциальной функцией. Видно, что дли-
на каналирования нейтронов растет экспоненциаль-
но с ростом глубины потенциальной ямы волново-
да. Таким образом, предварительные расчеты пред-
сказывают экспоненциальный рост квадрата модуля
волновой функции нейтронов и длины каналирова-
ния нейтронов с увеличением глубины потенциаль-
ной ямы волновода.

3. ЭКСПЕРИМЕНТ

Эксперименты проведены на рефлектометре по-
ляризованных нейтронов NREX (реактор FRM II,
Garching, Germany) [41]. Плоскость образца распо-
лагается горизонтально, поэтому поглотитель в ви-
де бруска из бораля лежит свободно на поверхно-
сти волновода. Размеры стеклянной подложки об-
разца Py(20 нм)/Cu(140 нм)/Py(50 нм)//стекло рав-
ны 30 × 30 × 5 мм3. Размеры бруска поглотите-
ля равны 1 × 1 × 38 мм3. Длина волны нейтро-
нов равна 4.26 Å. В режиме поляризованного пуч-
ка разрешение по длине волны равно 1.5%, угло-
вая расходимость падающего пучка 0.006◦. Угловое
разрешение 3He-газового двумерного позиционно-
чувствительного детектора равно 0.072◦. Поляри-
зующая эффективность поляризатора в виде оди-
ночного суперзеркала равна 97%. Поляризатор ис-
пользуется в геометрии пропускания. Внешнее маг-
нитное поле напряженностью 1.0 кЭ приложено па-
раллельно плоскости образца для намагничивания
пленки до насыщения. Ширина первой диафрагмы
равна 0.25 мм. Расстояние от первой диафрагмы до
образца составляло 2200 мм, а от образца до детек-
тора — 2400 мм. Пространственное разрешение де-
тектора равно 3.0 мм. Перед образцом на расстоя-
нии 200 мм располагалась вторая диафрагма шири-
ной 0.7 мм, назначение которой состояло в умень-
шении фона.

Размагниченное состояние образца достигалось
во внешнем магнитном поле +3 Э, приложенном
вдоль плоскости пленки. Это значение поля было
найдено из петли гистерезиса, полученной с помо-
щью измерения степени поляризации зеркально от-
раженного пучка. При определении длины канали-
рования нейтронов в размагниченном волноводе ис-
пользовался режим неполяризованного пучка, для
чего поляризатор убирался из пучка. Ширина пер-
вой диафрагмы была равна 0.35 мм. Разрешение по
длине волны нейтронов составляло 2.0%, угловая
расходимость падающего пучка была равна 0.009◦.

На рис. 7 а приведены коэффициенты зеркаль-
ного отражения нейтронов для поляризации «+»
(светлые точки) и «−» (темные точки). Линиями по-
казаны результаты подгонки (толщина слоев в нм,
величина ядерной части ПДР в Å−2, намагничен-
ность слоев в кГс):

PyO (2.3 нм, 7.67 · 10−6 Å
−2

)/

/Py (19.5 нм, 8.83 · 10−6 Å
−2

, 7.0 кГс)/

/Cu (132.0 нм, 6.58 · 10−6 Å
−2

)/

/Py (48.0 нм, 8.56 · 10−6 Å
−2

, 7.2 кГс)//

//стекло (2.63 · 10−6 Å
−2

).

В результате подгонки определено, что намагни-
ченность верхнего слоя пермаллоя равна 7.0 кГс, а
намагниченность нижнего слоя равна 7.2 кГс. На
рис. 7 б показан коэффициент зеркального отраже-
ния неполяризованного пучка нейтронов от размаг-
ниченного образца. Видно, что подгонка с нулевой
намагниченностью слоев пермаллоя хорошо описы-
вает экспериментальные данные.

На рис. 8 а приведена интенсивность микропучка
нейтронов без поглотителя на поверхности в зави-
симости от угла скольжения падающего пучка для
начальной поляризации «+» (светлые символы) и
«−» (темные символы) при полностью освещенной
поверхности волновода. Индексами n = 0, 1, 2 . . .

отмечены резонансы соответствующих порядков.
Можно заметить, что максимум интенсивности мик-
ропучка в резонансе порядка n = 0 (за вычетом
фона) для начальной поляризации «−» примерно
в два раза ниже максимума интенсивности для по-
ляризации «+». Резонансы более высоких порядков
n = 1, 2, 3 хорошо видны для поляризации «+».
Для поляризации «−» заметен небольшой пик резо-
нанса n = 1, который значительно смещен в мень-
шие углы относительно резонанса n = 1 для поляри-
зации «+». Интенсивность более высоких порядков
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Рис. 7. Коэффициенты зеркального отражения нейтронов

в зависимости от угла скольжения падающего пучка (точ-

ки — эксперимент, линии — подгонка): а — поляризован-

ный пучок UP и DO; б — неполяризованный пучок NM

резонансов для поляризации «−» мала, поэтому пи-
ки не видны.

На рис. 8 б показана интенсивность микропуч-
ка нейтронов без поглотителя на поверхности раз-
магниченного образца в зависимости от угла сколь-
жения падающего неполяризованного пучка нейтро-
нов. Можно хорошо видеть пик нейтронного микро-
пучка резонанса порядка n = 0. Для нормировки из-
меряется интенсивность микропучка I (x = 0) с по-
глотителем на самом краю выходного торца волно-
вода, когда поверхность волновода полностью осве-
щается падающим пучком нейтронов. При этом ос-
новная часть зеркально отраженного пучка блоки-
руется поглотителем, что приводит к уменьшению
уровня фона в районе микропучка примерно в 2 ра-
за. Эта точка отвечает положению поглотителя от-
носительно выходного края волновода L = 1 мм.

На рис. 9 приведена интенсивность микропучка
нейтронов в зависимости от угла скольжения пада-

Рис. 8. Интенсивность микропучка нейтронов в зависимо-

сти от угла скольжения падающего пучка: а — поляриза-

ция падающего пучка UP (светлые символы) и DO (тем-

ные символы); б — неполяризованный пучок

ющего поляризованного пучка UP для положения
бруска поглотителя относительно выходного края
волновода 1.0, 1.5, 2.5, 3.5, 4.0 мм. Эти данные были
получены и опубликованы в нашей работе [38]. Вид-
но, что интенсивность микропучка уменьшается при
движении бруска от края волновода.

Далее был исследован размагниченный образец.
На рис. 10 показана интенсивность микропучка ней-
тронов в зависимости от угла скольжения падаю-
щего неполяризованного пучка нейтронов NM для
положения бруска поглотителя относительно выход-
ного края волновода 1.0, 2.3, 2.7 мм. Можно заме-
тить, что интенсивность микропучка уменьшается с
ростом расстояния от выходного края волновода до
переднего края поглотителя.

На рис. 11 приведена интенсивность микропучка
нейтронов в зависимости от угла скольжения пада-
ющего поляризованного пучка DO для положения
бруска поглотителя относительно выходного края
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Рис. 9. Интенсивность микропучка для поляризации UP

в зависимости от угла скольжения падающего пучка при

различном расстоянии L между передним краем поглоти-

теля на поверхности и выходным краем волновода: а —

1.0 мм; б — 1.5 мм; в — 2.5 мм; г — 3.5 мм; д — 4.0 мм.

Штриховой линией показан уровень фона. Данные полу-

чены в работе [38]

волновода 1.0, 1.7, 1.9, 2.2, 2.4 мм. Можно видеть,
что интенсивность микропучка уменьшается с рос-
том расстояния от выходного торца волновода до
переднего края бруска.

На рис. 12 представлена нормированная интен-
сивность микропучка нейтронов I(L)/I(x = 0) в
масштабе натурального логарифма в зависимости
от расстояния L от выходного края волновода до
переднего края бруска поглотителя (верхняя шка-
ла и светлые символы) для падающего поляри-
зованного пучка UP (а), неполяризованного пуч-
ка NM и размагниченного образца (б) и поляризо-
ванного пучка DO (в). Здесь учитывается условие
I(L = 1 мм) = I(x = 0).

Можно видеть, что экспериментальные точки
при расстоянии L > 1 мм укладываются на од-
ну прямую, которая пересекает уровень 1.00 в точ-

Рис. 10. Интенсивность микропучка в неполяризованной

моде в зависимости от угла скольжения падающего пучка

при различном расстоянии L между передним краем по-

глотителя на поверхности и выходным краем волновода:

а — 1.0 мм; б — 2.3 мм; в — 2.7 мм. Штриховой линией

показан уровень фона

ке L
′
. Вертикальные ошибки определяются стати-

стическими ошибками интенсивности микропучка
нейтронов. Обработка данных проводится следую-
щим образом. Точка нормированной интенсивности
при L = 1 мм помещается в начало координат x = 0

по оси абсцисс. Затем все оставшиеся точки на пря-
мой по координате L (светлые символы) сдвигают-
ся по оси абсцисс на одну величину L

′
так, чтобы

прямая через все точки по координате x = L − L
′

(темные символы и нижняя шкала) проходила че-
рез начало координат x = 0 по оси абсцисс. При
этом величина сдвига L

′
зависит от точности на-

чальной установки бруска поглотителя относитель-
но выходного торца волновода и величины воздуш-
ного зазора между бруском и поверхностью волно-
вода. Тогда прямая линия ln[I(x)/I(x = 0)] = −x/xe

пересекает уровень 0.37 по оси ординат в точке xe,
которая и есть экспериментальная величина длины
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Рис. 11. Интенсивность микропучка для поляризации DO

в зависимости от угла скольжения падающего пучка при

различном расстоянии L между передним краем поглоти-

теля на поверхности и выходным краем волновода: а —

1.0 мм; б — 1.7 мм; в 1.9 — мм; г — 2.2 мм; д — 2.4 мм.

Штриховой линией показан уровень фона

каналирования нейтронов. Ошибка длины канали-
рования нейтронов определяется крайними траекто-
риями, проходящими через экспериментальные точ-
ки с учетом статистической ошибки интенсивности
микропучка. Можно заметить, что самая большая
длина каналирования нейтронов наблюдается для
поляризации начального пучка UP (рис. 12 а). За-
тем длина каналирования уменьшается для неполя-
ризованного пучка NM и размагниченного образца
(рис. 12 б ). А самая маленькая длина каналирова-
ния наблюдается для поляризации DO (рис. 12 в).

Длина освещенной области поверхности под по-
глотителем Δx на рис. 3 равна величине L

′
, кото-

рая возникает в процессе обработки данных. Это
момент, когда брусок только начинает частично за-
крывать поверхность волновода от падающего пуч-
ка. Тогда из равенства Δx = L

′
можно для справки

оценить величину воздушного зазора под бруском:
h ≈ αiΔx.

На рис. 13 приведена экспериментальная вели-
чина длины каналирования нейтронов в зависимо-
сти от глубины ПДР волновода Δρ = ρ1 − ρ2. Точ-
ки — эксперимент, линия — подгонка экспоненци-
альной функцией по методу наименьших квадра-
тов. Можно видеть, что экспериментальные данные
описываются экспоненциальной зависимостью. Это
качественно подтверждает предварительные расче-
ты по теории каналирования. Количественное срав-
нение теории и эксперимента зависит от точности
определения реальных параметров структуры (тол-
щины оксидного слоя, толщин слоев, ПДР и на-
магниченности слоев), но небольшое отличие экс-
периментально полученных параметров структуры
от номинальных значений не должно менять ха-
рактер зависимости длины каналирования нейтро-
нов от глубины потенциальной ямы волновода. Тео-
рия каналирования была экспериментально прове-
рена нами ранее [35]. Рассчитанная длина каналиро-
вания нейтронов с уточненными параметрами вол-
новода Fe/Cu/Fe//стекло была равна эксперимен-
тально полученной величине в пределах статисти-
ческой ошибки.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассмотренный магнитный волновод Py/Cu/Py
можно использовать в двух направлениях. Во-
первых, как поляризатор для создания поляризо-
ванного микропучка нейтронов в экспериментах по
исследованию магнитных микроструктур. Из соот-
ношения интенсивностей микропучка поляризаций
UP и DO для резонанса порядка n = 0 (рис. 8 а) сле-
дует, что поляризующая эффективность волновода
составляет 0.3. В обзоре [37] подробно обсужда-
ются различные поляризующие и неполяризую-
щие магнитные волноводы. Например, волновод
Fe(20 нм)/Cu(140 нм)/Fe(50 нм)//стекло обладает
поляризующей эффективностью 0.6 для резонанса
n = 0. Поляризующая эффективность магнитного
волновода Fe(20 нм)/Co(150 нм)/Fe(50 нм)//Si
достигает 1.0. Магнитные волноводы обладают
существенным недостатком. Из-за большой расхо-
димости микропучка исследуемый образец должен
располагаться на расстоянии порядка 1 мм от
выхода волновода. В такой схеме эксперимента
трудно разделить магнитное поле на волноводе и
на образце. Наиболее практичной является комби-
нация рефлектометра поляризованных нейтронов
и немагнитного волновода [42]. В этой конфигура-
ции высокая поляризации микропучка создается
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Рис. 12. Нормированная интенсивность микропучка в мас-

штабе натурального логарифма как функция положения

поглотителя L (светлые символы и верхняя шкала) и дли-

ны неосвещенной поверхности волновода x (темные сим-

волы и нижняя шкала) для различной поляризации пада-

ющего пучка: а — UP; б — NM; в

обычным способом, а магнитное поле на образце
никак не влияет на работу немагнитного волновода.
Именно схема с немагнитным волноводом была
использована в эксперименте с магнитной микро-
проволочкой [2, 8]. Таким образом, немагнитные
волноводы имеют преимущество перед магнитными
в экспериментах по изучению магнитных микро-
структур с помощью поляризованного микропучка
нейтронов.

Рис. 13. Длина каналирования нейтронов в зависимости

от глубины ПДР волновода при различной поляризации

падающего пучка. Точки — эксперимент, линия — подгон-

ка методом наименьших квадратов

Второй способ использования магнитных ней-
тронных волноводов — это контролируемая цепная
реакция деления урана. В работе [31] высказана
идея, что с помощью перемагничивания внешних
магнитных слоев приложенным магнитным полем
можно изменять нейтронную плотность в среднем
немагнитном слое. Если поместить внутрь немаг-
нитного слоя уран, то можно управлять реакци-
ей деления урана с помощью внешнего магнит-
ного поля. Подходящими кандидатами для этого
метода являются магнитные волноводы Py/Cu/Py
и Fe/Cu/Fe. Предпочтительным является волно-
вод Fe/Cu/Fe, у которого поляризующая эффектив-
ность в два раза выше. Но в настоящей работе мы
исследовали волновод Py/Cu/Py. У него для по-
ляризации падающего пучка DO еще сохраняется
неглубокая потенциальная яма ПДР, поэтому было
возможно экспериментально измерить длину кана-
лирования нейтронов для этой поляризации. Оче-
видно, что немагнитные волноводы не подходят для
задачи управления цепной реакцией деления, так
как они не реагируют на магнитное поле.

5. ЗАКЛЮЧЕНИЕ

В работе был исследован нейтронный волновод
Py/Cu/Py//стекло с внешними магнитными слоя-
ми. Величина ПДР магнитного слоя зависит от зна-
ка поляризации падающего пучка нейтронов. Пред-
варительные расчеты по теории резонансов в сло-
истых наноструктурах показали, что квадрат мо-
дуля волновой функции нейтронов внутри волно-
вода растет с увеличением глубины потенциальной
ямы ПДР. А расчеты по теории каналирования в
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плоских волноводах предсказали экспоненциальный
рост длины каналирования нейтронов с ростом глу-
бины потенциальной ямы ПДР.

Экспериментально определена длина каналиро-
вания нейтронов для поляризации падающего пучка
нейтронов UP и DO для намагниченного до насыще-
ния образца и неполяризованного падающего пучка
NM для полностью размагниченного образца. Полу-
чено, что длина каналирования нейтронов экспонен-
циально растет с ростом глубины ПДР. Таким об-
разом, экспериментальные результаты подтвержда-
ют предсказания теории каналирования нейтронов
в слоистых наноструктурах.
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леру (T. Keller) и Ф. Раду (F. Radu) за полезные
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A. Rühm, and J. Major, ЖЭТФ 144, 733 (2013).

36. Ю. В. Никитенко, В. В. Проглядо, В. Л. Аксенов,

Поверхность 10, 3 (2014).

37. С. В. Кожевников, Физика элементарных частиц

и атомного ядра 50, 284 (2019).

38. С. В. Кожевников, В. Д. Жакетов, Ю. Н. Хайду-

ков, Ф. Отт, Ф. Раду, ЖЭТФ 152, 1192 (2017).

39. С. В. Кожевников, Т. Келлер, Ю. Н. Хайдуков,

Ф. Отт, Ф. Раду, ЖЭТФ 155, 590 (2019).

40. С. В. Кожевников, Ю. Н. Хайдуков, Ф. Отт, Ф. Ра-

ду, ЖЭТФ 153, 712 (2018).

41. Yu. N. Khaydukov, O. Soltwedel, and T. Keller, J.

Large Scale Research Facilities A 38, 1-4 (2015).

42. S. V. Kozhevnikov, A. Rühm, and J. Major,
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Показано, что воздействие на монокристаллический алюминий наносекундными импульсами ультрафио-

летового лазера, вызывающее его поверхностное плавление, вызывает снижение всех резонансных частот

спектра ультразвуковых колебаний образца. Модуль сдвига при этом уменьшается от 0.87% до 1.45% с

ростом плотности падающего излучения от 1.1 Дж/см2 до 5.3 Дж/см2. Последующий нагрев до пред-

плавильных температур вызывает восстановление модуля сдвига до исходного значения. Аргументиру-

ется гипотеза о том, что обнаруженный диаэластический эффект обусловлен межузельными атомами

в гантельной конфигурации, формирующимися в поверхностном слое в результате плавления и сохра-

няющимися в этом слое в твердом состоянии за счет высокой скорости его охлаждения. Обсуждаются

возможности других интерпретаций обнаруженного эффекта.

DOI: 10.31857/S0044451025010079

1. ВВЕДЕНИЕ

Лазерная обработка является одним из наиболее
перспективных и востребованных способов модифи-
кации физических свойств материалов. Использова-
ние коротких лазерных импульсов позволяет полу-
чить высокие скорости нагрева и охлаждения при-
поверхностного слоя материала [1]. Оказывается,
что поведение твердых тел при быстропротекающих
процессах значительно изменяется. При этом воз-
можно кардинальное изменение свойств, что позво-
ляет получать материалы с новыми механически-
ми, электрическими и оптическими свойствами. Им-
пульсные лазеры являются удобным инструментом
для экспериментальных исследований при создании
новых материалов и изучения их свойств [2]. По-

* E-mail: v.a.khonik@yandex.ru

лученные с их помощью результаты дают широ-
кие возможности для углубленного понимания та-
ких явлений, как фазовые переходы, рекристалли-
зация, образование структурных дефектов, аморфи-
зация и др. [3, 4].

Отдельный интерес представляет использование
лазерных импульсов длительностью порядка 10 нс
с плотностью энергии в несколько Дж/см2, приво-
дящее к плавлению поверхностного слоя вещества
за время действия импульса. Остывание этого слоя
происходит в течение времени, сопоставимого с дли-
тельностью импульса [5, 6], а скорость охлаждения
при использовании наносекундных импульсов мо-
жет достигать 1010 К/с [7]. В случае чистого ме-
талла такая скорость охлаждения недостаточна для
формирования некристаллического слоя (например,
чистые ванадий и тантал стеклуются при скорости
закалки приблизительно 1014 К/с [8]; есть основа-
ния считать, что стеклование моноатомных метал-
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лов реализуемо в принципе [9]), однако очевидно,
что его дефектная структура претерпит существен-
ные изменения. При этом можно ожидать измене-
ния макроскопических упругих характеристик по-
скольку механические свойства кристаллов во мно-
гом определяются его дефектной структурой. Такая
схема эксперимента была реализована в настоящей
работе. Объектом изучения был выбран чистый мо-
нокристаллический алюминий, подвергнутый дей-
ствию наносекундных импульсов ультрафиолетово-
го лазера, что вызывало плавление поверхностного
слоя и его последующее охлаждение (закалку) с вы-
сокой скоростью.

Исходная мотивация этой работы состояла в сле-
дующем. Известная межузельная теория Гранато
аргументирует утверждение о том, что плавление
металлов есть результат лавинообразной генерации
межузельных атомов в гантельной конфигурации
(межузельных гантелей), приводящей к сильному
снижению модуля сдвига и дестабилизации кристал-
лической решетки [10, 11]. Применение этой теории
для случая многокомпонентных металлических сте-
кол дает очень хорошие результаты, позволяя коли-
чественно интерпретировать изменения их свойств
при термообработке в твердом некристаллическом
состоянии и проследить связь этих изменений со
свойствами расплава и материнского кристалла [11].
Однако, информация о степени применимости этих
представлений для случая чистых металлов весьма
ограничена.

Во-первых, было показано, что монокристалли-
ческий алюминий в предплавильной области демон-
стрирует вполне измеримый диаэластический эф-
фект - снижение модуля сдвига сверх стандартно-
го чисто ангармонического уменьшения, что сви-
детельствует о значительном росте концентрации
межузельных гантелей по мере приближения к
температуре плавления [12]. Аналогичная ситуа-
ция имеет место и в поликристаллическом индии
[13]. Во-вторых, было установлено, что наблюдае-
мый предплавильный нелинейный рост теплоемко-
сти алюминия может быть также обусловлен интен-
сивной генерацией межузельных гантелей [14]. На-
конец, в третьих, около 70% полной энтропии плав-
ления алюминия (и, соответственно, теплоты плав-
ления), наблюдаемой в эксперименте, может быть
интерпретировано как результат генерации меж-
узельных гантелей при температуре плавления [15].

Исходя из этой информации можно было предпо-
ложить, что лазерное поверхностное плавление алю-

миния вызовет большой рост концентрации дефек-
тов типа межузельных гантелей в расплаве, а после-
дующее охлаждение с высокой скоростью «заморо-
зит» их в твердом кристаллическом состоянии. Вмо-
роженные межузельные гантели вызовут появление
измеримого диаэластического эффекта, по величине
которого можно судить о концентрации этих дефек-
тов в расплаве. Впрочем, возможны и другие меха-
низм диаэластического эффекта, как обсуждается
ниже.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Исследовались монокристаллы алюминия чисто-
той 99.996, выращенные модифицированным мето-
дом Бриджмена с ориентацией {100} вдоль оси ро-
ста. Контроль ориентации был выполнен рентгенов-
ским методом [12]. Из выращенного кристалла да-
лее с помощью электроискровой резки готовились
образцы в виде куба со стороной a = (2.2± 0.2) мм.
При этом каждая грань куба была перпендикулярна
направлению [100]. Образцы затем обрабатывались
на шлифовальном станке абразивом зернистостью
1200 и отжигались путем нагрева до 923 К и после-
дующего медленного охлаждения.

Обработка образцов осуществлялась скани-
рующим излучением лазера Optolette HR 2731
(OPOTEC Inc.), генерировавшего импульсы из-
лучения с длиной волны 355 нм, длительностью
приблизительно 10 нс при выходной энергии до
2 мДж и частоте следования импульсов 100 Гц.
Калибровка лазера производилась при помощи
измерителя энергии Nova II (Ophir Optronics
Solutions Ltd.) с пироэлектрическим приемником
PE50-SH-V2. Размер лазерного пятна в плоскости
поверхности образца определялся по стандартной
методике [16] путем измерения площади отпе-
чатков, оставленных лазерными импульсами на
поверхности эталона — алюминиевой пластины.
Характерный диаметр лазерного пятна в настоя-
щих экспериментах составлял 180 мкм. Обработка
поверхности образца осуществлялась с помощью
двухкоординатного стола, обеспечивающего пе-
ремещение образца по траектории «змейка» со
скоростью 3 мм/с при расстоянии между строчками
25 мкм таким образом, чтобы соседние лазерные
пятна перекрывали друг друга с коэффициентом
перекрытия не менее 98 %. На каждый участок по-
верхности воздействовало 30 лазерных импульсов.
Плотности энергии на поверхности обрабатываемых
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Рис. 1. (Цветной онлайн) 2D-профилограммы (a, b) и микрофотографии поверхности (c, d) (оптической профилометр

Zygo NewView 7300) образца S5 в исходном состоянии (a, c) и после обработки 30-ю импульсами УФ лазера с плотностью

энергии 5.3 Дж/см2 (b, d)

образцов превышали порог абляции и составляли
1.1 Дж/см2, 2.4 Дж/см2 и 5.3 Дж/см2. Превы-
шение порога абляции наблюдалось визуально в
виде сопутствующего плазменного факела и при
анализе электронно-микроскопических снимков
снимков поверхности облученных образцов. При
этом последовательно обрабатывались все шесть
граней каждого кубического образца. Поверхность
образцов до и после лазерного воздействия иссле-
довалась с помощью многолучевого оптического
профилометра Zygo NewView 7300.

Облученные образцы затем исследовались ме-
тодом резонансной ультразвуковой спектроскопии
(РУС) на установке, аналогичной описанной в [17].
Возбуждение и регистрация ультразвуковых ко-
лебаний осуществлялось пьезоэлектрическими пре-
образователями, поджимавшими противоположные
вершины кубического образца. Специальная систе-
ма рычажного типа минимизировала осевое дав-
ление пьезопреобразователей на образец, обеспечи-
вая измерение спектра его резонансных колебаний,
близкого к естественному (т. е. определяемому толь-
ко свойствами образца и его геометрией). Продви-
нутый аппаратно-программный комплекс обработки
сигналов РУС позволял регистрировать резонанс-

ные частоты колебаний образцов с высокой точ-
ностью, до единиц ppm. Всего было исследовано
пять образцов в исходном состоянии и после раз-
личной лазерной обработки. Результаты исследова-
ния проиллюстрированы ниже данными по трем из
них. Отметим также, что время от облучения образ-
цов до измерений РУС на них составляло несколько
недель.

3. РЕЗУЛЬТАТЫ

На рис. 1 в качестве примера показаны 2D-
профилограммы (a, b) и микрофотографии поверх-
ности (c, d) образца S5 в исходном состоянии (a, c) и
после лазерного воздействия 30 импульсами лазера
с плотностью энергии Wp = 5.3 Дж/см2 (b, d). Ли-
нейные особенности морфологии в исходном состо-
янии (a, c) соответствуют следам абразивной обра-
ботки в исходном состоянии. После лазерного воз-
действия эти особенности исчезают (b, d) и на по-
верхности наблюдаются нерегулярные шероховато-
сти, высота которых сопоставима с таковой до облу-
чения. Детальные исследования с помощью скани-
рующего электронного микроскопа показали явное
наличие поверхностного плавления. Похожая ситу-
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Рис. 2. (Цветной онлайн) Начальные участки спектров ре-

зонансной ультразвуковой спектроскопии образцов алюми-

ния S1 (a), S3 (b) и S5 (c), обработанных УФ лазерными

импульсами с плотностью энергии 1.1, 2.4 и 5.3 Дж/см2,

соответственно. Показаны также спектры тех же образцов

после нагрева до 850 К со скоростью 3 К/мин. Видно,

что резонансные частоты во всех случаях после отжига

увеличиваются

ация имеет место и в случае обработки с другими
плотностями энергии лазера.

Спектры РУС исследованных образцов
в полном диапазоне резонансных частот
(500 кГц < f < 1300 кГц) имеют 10–12 пиков, от-
вечающих различным модулям упругости и раз-
личным интерференционным модам вследствие
непараллельности граней и других геометрических

дефектов образцов. На рис. 2 показаны начальные
участки спектров РУС образцов S1, S3 и S5 после
лазерного воздействия энергией 1.1 Дж/см2 (a),
2.4 Дж/см2 (b) и 5.3 Дж/см2 (c), последующего
отжига посредством нагрева до 850 К и медленного
охлаждения, показывающие наличие нескольких
резонансов. Различия в абсолютных значениях
резонансных частот для разных образцов обу-
словлены отличием их геометрических размеров.
Видно, что резонансные частоты облученных об-
разцов во всех случаях несколько ниже таковых,
реализующихся после отжига, а высоты резонансов
после отжига значительно увеличиваются, что
однозначно указывает на уменьшение дефектности
образцов. Как известно, наименьшая резонансная
частота отвечает чисто сдвиговым колебаниям и
контролируется модулем сдвига C44 [17]. Именно
этот модуль (обозначаемый как G в дальнейшем)
и представляет наибольший интерес в настоящем
исследовании.

В таблице представлены соответствующие моду-
лю сдвига резонансные частоты образцов S1, S3 и S5
после лазерного воздействия (firr) и последующего
нагрева до 850 К (fann) для трех плотностей энер-
гии Wp. Показаны также относительные изменения
модуля сдвига, рассчитанные как

ΔG/G = f2
irr/f

2
ann − 1.

Как видно, модуль сдвига образца S1 после облуче-
ния энергией Wp = 1.1 Дж/см2 на 0.87% ниже тако-
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Рис. 3. (Цветной онлайн) Температурные зависимости мо-

дуля сдвига образца S1 после лазерного воздействия и по-

вторного нагрева до 850 К. На вставке показаны начальные

участки этих зависимостей. Стрелками показано влияние

лазерного воздействия на модуль сдвига отожженного об-

разца. Видно, что нагрев до 850 К устраняет влияние ла-

зерного воздействия на модуль сдвига
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Таблица. Резонансные частоты сдвиговых колебаний после лазерного воздействия (firr) и последующего нагре-

ва до 850 К (fann), а также соответствующие относительные изменения модуля сдвига ΔG/G для образцов S1,

S3 и S5, подвергнутых лазерному воздействию с указанными плотностями энергии Wp. Ошибка в определении

резонансных частот и их изменений при отжиге составляет порядка 5 ppm

№ Wp, firr, fann, ΔG/G

Образец Дж/см−2 кГц кГц

S1 1.1 673.20 676.16 −0.0087
S3 2.4 573.98 578.17 −0.0127
S5 5.3 683.23 688.24 −0.0145

вого после отжига. Снижение модуля после лазерно-
го воздействия растет с энергией воздействующего
излучения, так что приWp = 5.3Дж/см2 оно состав-
ляет 1.45% для образца S5. Это и есть диаэластиче-
ский эффект, обсуждаемый в настоящей работе. От-
метим, что этот эффект имеет место не только для
модуля сдвига, но и для всех других упругих моду-
лей, так как все резонансные частоты спектра РУС
снижаются в результате лазерного воздействия (в
частности, см. рис. 2). Подчеркнем, что какие-либо
аналогичные данные в литературе нам неизвестны.

На рис. 3 показаны температурные зависимости
модуля сдвига образца S1 после лазерного воздей-
ствия и последующего нагрева до 850 К. Видно, что
значения G вблизи этой температуры совпадают,
свидетельствуя об исчезновении эффекта лазерного
воздействия после нагрева. При этом значение мо-
дуля сдвига при комнатной температуре становится
близким к табличному [18].

4. ОБСУЖДЕНИЕ

Металлы, в том числе исследуемый алюминий,
поглощают свет путем передачи энергии фото-
на электронной составляющей скин-слоя толщиной
около 10 нм [19]. Передача энергии от электронной
подсистемы к фононам занимает время в несколь-
ко пикосекунд. Время нагрева примерно равно дли-
тельности лазерного импульса и составляет величи-
ну порядка 10 нс. При этом при любой из реали-
зованных энергий лазерного воздействия Wp имеет
место поверхностное плавление алюминия, что под-
тверждается вышеупомянутыми наблюдениями по-
верхности облученных образцов с помощью скани-
руюшей электронной микроскопии. Одновременно
с процессом нагрева поверхности происходит отвод
тепла за счет термодиффузии. За время лазерно-

го импульса материал прогревается на характерную
глубину

L = 2
√
ατ. (1)

Для алюминия температуропроводность
α = 8.4 · 10−5 м2/с и тогда по формуле (1) при
длительности лазерного импульса τ = 10 нс полу-
чаем глубину прогрева L ≈ 2 мкм. После окончания
лазерного импульса начинается процесс остывания
нагретого участка. Время остывания определяется
из уравнения [6]

tc =
4L2

απ2
ln

(
8Tm

T0π2

)
, (2)

где Tm = 933 К — температура плавления алюми-
ния, T0 = 300 К — начальная температура. Исполь-
зуя выражение (2), получим время полного остыва-
ния поверхности после лазерного воздействия нано-
секундным импульсом tc ≈ 15 нс. При этом скорость
охлаждения (закалки) из жидкого состояния можно
оценить как Tv/tc ≈ 2 · 1011 К/с, где Tv = 2792K —
температура испарения алюминия. Как отмечалось
выше, эта скорость недостаточна для аморфизации
чистого металла. Таким образом, за время около
25 нс происходят процессы перехода поверхностно-
го слоя из кристаллического состояния в жидкое и
обратно.

Следуя изложенной во введении концепции плав-
ления простых металлов, будем считать, что в ре-
зультате плавления поверхностного слоя образует-
ся большая концентрация дефектов типа межузель-
ных гантелей, которые в результате последующей
быстрой закалки оказываются «вмороженными» в
кристаллическую структуру. Основная особенность
межузельной гантели состоит в том, что внешнее
знакопеременное механическое напряжение приво-
дит в колебательное движение 20-30 атомов вблизи
ее ядра (атомная структура этого дефекта показана
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в работах [11, 20]), вызывая значительную неупру-
гую деформацию и соответствующее снижение мо-
дуля сдвига [11,21]. Для модуля сдвига G при нали-
чии межузельных гантелей с концентрацией ci меж-
узельная теория дает [10, 21]

G = G0 exp(−αβici), (3)

где G0 — модуль сдвига бездефектного кристалла,
безразмерная константа α ≈ 1 и βi — безразмерная
сдвиговая восприимчивость. Формула (3) показыва-
ет, что, если константа βi известна, то, зная модуль
сдвига дефектного кристалла, можно оценить кон-
центрацию межузельных гантелей ci и наоборот.

Грубая оценка в приближении Ройсса показыва-
ет, что относительное изменение сдвиговой подат-
ливости всего образца ΔS/S связано с изменением
податливости проплавленного слоя ΔSirr/S соотно-
шением

ΔS/S = (ΔSirr/S)(ΔV/V ),

гдеΔV/V — отношение объема проплавленного слоя
к объему образца. Как отмечено выше, образец про-
плавляется на характерную глубину L = 2мкм. То-
гда доля проплавленной части кубического образца
с ребром a, имеющего 6 граней, есть

ΔV/V = 6L/a = 6 · 2 · 10−6/(2.2 · 10−3) ≈ 6 · 10−3.

Так как при малых изменениях сдвиговой упругости
ΔS/S = −ΔG/G, с помощью таблицы получаем, что
значения ΔS/S лежат в пределах от 0.009 до 0.014,
в зависимости от плотности энергии лазерного воз-
действия. Поскольку сдвиговая податливость равна
обратному модулю сдвига, для величины ΔSirr/S

получаем значения от 1.5 до 2.3. Это соответствует
значениям Sirr, равным от 2.4S до 3.4S. Используя
формулу (3), для податливости обученного кристал-
ла можно принять

Sirr = exp(αβici)/G0,

где для межузельных гантелей в алюминии произве-
дение αβi = 27 [22]. Соответственно, концентрация
межузельных гантелей ci, способная обеспечить та-
кую податливость проплавленного слоя, должна со-
ставлять от 0.033 до 0.045.

Полученная оценка, с учетом довольно прибли-
зительного характера исходных данных для ее по-
лучения, представляется вполне разумной. Действи-
тельно, расчет концентрации межузельных гантелей
для расплава алюминия тремя независимыми спосо-
бами дает значение ci ≈ 0.08 [15], что согласуется с
оценкой Гранато для меди ci ≈ 0.09 [10]. С другой

стороны, компьютерное моделирование плавления
алюминия показало [23], что модуль сдвига умень-
шается от 14.9 ГПа чуть ниже Tm до 1.8 ГПа чуть
выше Tm (в соответствии с межузельной теорией мо-
дуль сдвига расплава мал, но нулевым не являет-
ся). Соответственно, по формуле (3) получаем кон-
центрацию межузельных гантелей при температуре
плавления

ci = ln(14.9/1.8)/27 ≈ 0.078,

что близко к приведенным выше оценкам. Наконец,
определение предплавильной концентрации меж-
узельных гантелей в кристалле Al на основе пре-
цизионных измерений модуля сдвига дало значение
ci ≈ 0.004 [12]. Приведенная оценка ci после лазер-
ного воздействия сопоставима со значениями вели-
чины при Tm, но, естественно, больше ее предпла-
вильных значений.

Таким образом, выполненные оценки в целом
соответствует пониманию диаэластического эффек-
та в алюминии после лазерного воздействия как
результата плавления тонкого приповерхностного
слоя образца с сопутствующим резким ростом кон-
центрации дефектов типа межузельных гантелей,
которые за счет высокой скорости последующего
охлаждения остаются в значительной степени вмо-
роженными в кристалл при комнатной температуре.
Эти вмороженные межузельные гантели и опреде-
ляют наблюдаемый диаэластический эффект.

Следует также указать на другие возможные
механизмы понижения модуля сдвига после лазер-
ной обработки. При воздействии лазерного импуль-
са в образце возникают значительные термомеха-
нические напряжения. Считая температуру на гра-
нице расплава равной температуре плавления алю-
миния, а в глубине образца равной или близкой к
комнатной, получаем разность температур на гра-
нях образца около 600 К. Таким образом, лазерные
импульсы генерируют механические импульсы боль-
шой амплитуды, которые распространяются по все-
му образцу. Это соответствует относительной пол-
ной деформации, равной по порядку величины 10−2.
Это довольно большое значение, которое может при-
водить к пластической деформации образца посред-
ством образования дислокаций. Рост плотности дис-
локаций, как хорошо известно, может приводить к
снижению модуля сдвига [24]. Для оценки такого ва-
рианта лазерного воздействия необходимы оценки
плотности дислокации в образцах после обработки.

Кроме того, при высоких интенсивностях
лазерного излучения возможно возникновение
ударных волн как следствие пробоя абляционного
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факела [25]. В этом случае может иметь место
ударно-волновое формирование нанозерностости об-
лученного слоя, которое потенциально может вы-
звать появление диаэластического эффекта.

Более подробное исследование рассматриваемо-
го явления может дать новую важную информа-
цию о формировании дефектной системы кристал-
ла в результате поверхностного лазерного плавле-
ния и последующего высокоскоростного охлажде-
ния. Можно также вполне обоснованно ожидать,
что такие эксперименты приведут к новой значи-
мой информации о механизме плавления простых
металлов.

5. ЗАКЛЮЧЕНИЕ

Впервые на примере монокристаллического алю-
миния методом ультразвуковой резонансной спек-
троскопии (РУС) обнаружен диаэластический эф-
фект (снижение упругих постоянных), обусловлен-
ный воздействием наносекундных лазерных импуль-
сов ультрафиолетового диапазона, приводящих к
плавлению тонкого приповерхностного слоя образ-
ца. Модуль сдвига в результате лазерного воздей-
ствия уменьшается от 0.87% до 1.45% с ростом
плотности падающего излучения от 1.1 Дж/см2 до
5.3 Дж/см2. Термообработка путем нагрева в об-
ласть предплавильных температур восстанавливает
модуль сдвига до исходных значений, а значитель-
ный рост амплитуды пиков РУС свидетельствует о
существенном снижении дефектности материала.

Аргументируется гипотеза о том, что поверх-
ностное плавление сопровождается образованием
высокой концентрации межузельных дефектов в
гантельной конфигурации, которые фиксируются в
твердом состоянии за счет высокой скорости охла-
ждения проплавленного слоя. Обусловленная этими
дефектами неупругая деформация и вызывает на-
блюдаемый диаэластический эффект.

Отмечены возможности и других интерпретаций
этого явления.
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Влияние границ образца на спектр магнитоплазменных колебаний двумерного электронного газа ис-

следовано на примере прямолинейной полосы. Как и следовало ожидать, при длине волны плазмона

много большей ширины полосы дисперсия магнитоплазмона следует формуле для плазменных волн в

одномерной системе в смысле зависимости от волнового вектора, однако коэффициент перед главным

членом зависит от магнитного поля. Найдены законы дисперсии внутриподзонных плазмонов в случае

заселения одной и двух подзон, деполяризационный сдвиг межподзонного плазмона и пространственное

распределение электрического поля плазменной волны по поперечной координате. Концентрационные и

магнитополевые зависимости плазменной частоты найдены численными методами.

DOI: 10.31857/S0044451025010080

1. ВВЕДЕНИЕ

Краевой магнитоплазмон (КМП) в двумерной
(2D) электронной системе был впервые теорети-
чески исследован в работах Волкова и Михайло-
ва [1, 2]. Авторы провели как классическое, так и
квантовое рассмотрение проблемы для полуплоско-
сти и нашли закон дисперсии КМП ω(k), где k —
одномерный импульс плазменной волны вдоль края
образца. Естественно поставить вопрос о роли гра-
ниц в реальном эксперименте, в частности о плаз-
менных волнах в полосе заданной ширины, когда
следует учесть также влияние противоположного
края. Такая постановка задачи была декларирована
во введении к статье Балева и Василопуса [3]. Ав-
торы сформулировали модель полосы с «мягкими»
стенками: параболический потенциал для электро-
нов на границах полосы. Однако в дальнейшем при
рассмотрении плазменных колебаний ограничились

* E-mail: ritta@isp.nsc.ru
** E-mail: levm@isp.nsc.ru

*** E-mail: chaplik@isp.nsc.ru

фактически учетом лишь одного края и получили,
естественно, уже известный результат для частоты
плазмона. Между тем наличие второй границы при-
водит к качественно новым чертам явления: следу-
ет, строго говоря, рассматривать не краевой плаз-
мон, а собственные моды плоского плазменного вол-
новода (при этом надо иметь в виду, что в таком
«волноводе» ограничено в одном направлении лишь
движение электронов, тогда как электрическое поле
плазменной волны простирается формально до бес-
конечности). В рамках классического гидродинами-
ческого описания 2D-плазмы такая задача решена
в работах [4, 5]. Плазмонный спектр в полосе 2D-
электронов в условиях сильного экранирования ме-
таллическим электродом найден в работе [6] в рам-
ках классического рассмотрения в приближении ло-
кальной емкости.

В предлагаемой работе мы строим кванто-
вую теорию магнитоплазменных волн в полосе
2D-электронного газа заданной ширины L = 2w.
Граничные условия для волновых функций со-
ответствуют твердым стенкам, т. е. поперечное к
полосе движение (вдоль оси x) соответствует «обре-
занному» при x = ±w гармоническому осциллятору
с циклотронной частотой ωc и с точкой подвеса
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(suspension point) X = −pl2, где p — сохраняющаяся
в калибровке Ландау y-компонента импульса элек-
трона, l — магнитная длина (� = 1). Для уровня
Ландау номера n волновая функция имеет вид

Ψn,X(x, y) = Nn,Xψn,X(x)
exp (ipy)√

Ly

. (1)

Здесь Nn,X — нормировочный коэффициент, Ly —
длина полосы. Для функции ψn,X(x) имеем (см., на-
пример, [7])

ψn,X(x) = e−(x−X)2/2l2×

×
[
Φ(−qn(X)/2, 1/2, (x−X)2/l2)−

−B(x−X)Φ
(
(1− qn(X))/2, 3/2, (x−X)2/l2

)]
. (2)

Первый индекс вырожденной гипергеометрической
функции в (2) определяет энергию подзон Ландау:

qn(X) = En(X)/ωc − 1/2

через дисперсионное уравнение, следующее из гра-
ничных условий ψn,X(x = ±w) = 0. Из этих же усло-
вий находится константа B.

Дисперсия подзон Ландау En(X) хорошо извест-
на, графики неоднократно приводились в литерату-
ре в связи с исследованиями квантового эффекта
Холла (краевые каналы, краевые состояния). Функ-
ции ψn,X(x) и En(X) нужны для формулировки
уравнения плазменных волн.

2. БАЗОВЫЕ УРАВНЕНИЯ

Рассматриваемая здесь задача относится к груп-
пе задач о плазменных колебаниях многокомпонент-
ных низкоразмерных систем. Схема решения, т. е.
нахождение собственных частот плазмонов таких
систем через матричную диэлектрическую функ-
цию в приближении самосогласованного поля из-
ложена в [8] на примере двумерных систем —
пленочные структуры типа квантовой ямы с бо-
лее чем одним заселенным уровнем поперечного
квантования, двойные квантовые ямы или много-
слойные сверхрешетки. В случае магнитоплазмонов
в полосе 2D-электронного газа отдельным компо-
нентам плазмы соответствуют группы электронов
на различных уровнях Ландау (подзоны En(X)),
т. е. одномерные системы. Поэтому меняется вид
гриновской функции уравнения Пуассона: теперь
Gk(x − x′) = −K0(|k(x − x′)|)/2π, где K0 — функ-
ция Макдональда. Другим существенным отличи-
ем от [8] является зависимость волновых функций

поперечного движения ψn,X(x) (2) от продольно-
го импульса электрона p через точку подвеса ос-
циллятора. С учетом этих отличий уравнение для
матричных элементов потенциала плазменной вол-
ны ϕ(x)eiky приобретает вид (мы учли, что правила
отбора по импульсу вдоль полосы допускают лишь
переходы (n,X)→ (m,X + kl2))

ϕn,X;m,X+kl2 =

=
2e2

εLy

∑
m′,n′,X′

f(Em′(X ′ + kl2))− f(En′(X ′))

Em′(X ′ + kl2)− En′(X ′) + ω + iδ
×

× Jm,n;m′,n′(X,X ′)ϕn′,X′;m′,X′+kl2 , (3)

где ε — средняя диэлектрическая постоянная двух
сред, разделенных 2D-электронным газом, f —
фермиевские числа заполнения, а формфакторы
Jmn;m′n′ определяются формулой

Jm,n;m′,n′(X,X ′) =

=

w∫
−w

w∫
−w

dxdx′ψ̃n,X(x)ψ̃m,X+kl2 (x)×

×K0(|k(x− x′)|)ψ̃n′,X′(x′)ψ̃m′,X′+kl2 (x
′). (4)

В выражении (4) ψ̃n,X(x) = Nn,Xψn,X(x) — нор-
мированная волновая функция поперечного движе-
ния. Таким образом, имеем систему линейных од-
нородных интегральных уравнений для функций
ϕn,X;m,X+kl2 , которые для краткости будем обо-
значать Φnm(X). При неограниченном дискретном
спектре электронов число уравнений, а следователь-
но, и число различных плазмонных мод также бес-
конечно, даже если заселенным будет только один
уровень, например, E0(X). Недиагональные члены
в (3) m 	= n соответствуют виртуальным переходам
с изменением энергии не меньшим ωc, т. е. отвеча-
ют межподзонным плазмонам, спектр которых име-
ет щель Δ > ωc при k = 0. Если интересоваться
только низкочастотной частью плазмонного спек-
тра ω 
 ωc, то нужно ограничиться лишь случаем
m = n (внутриподзонные плазмоны) и дополнитель-
но потребовать выполнения условия длинноволно-
вого приближения kl
 1. Мы рассмотрим далее как
внутри-, так и межподзонные плазмоны из низшей
части спектра, т. е. те, которые связаны с уровнями
E0(X) и E1(X).
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3. ВНУТРИЗОННЫЙ ПЛАЗМОН НУЛЕВОЙ
ПОДЗОНЫ

В этом случае вместо (3) имеем

Φ00(X) =

=
e2

πε l2

∫
dX ′ f(E0(X

′ + kl2))− f(E0(X
′))

E0(X ′ + kl2)− E0(X ′) + ω + iδ
×

× J00,00(X,X ′)Φ00(X
′). (5)

Считая k 
 p ∼ pF (pF — фермиевский им-
пульс), разложим в (5) разности до линейного по
k члена. При этом в формфакторах J следует по-
ложить k = 0. При T = 0 в числителе появится
δ(E0(X

′) − EF ) (EF — энергия Ферми) и интеграл
сведется к сумме двух слагаемых — к сумме значе-
ний подынтегральной функции в точках X ′ = ±X0,
где ±X0 — корни уравнения E0(X) = EF (E0(X) —
четная функция X).

Придавая в левой части (5) переменной X зна-
чения ±X0, придем к двум линейным однородным
уравнениям для величин Φ± ≡ Φ00(±X0):

Φ+ = βk

(
J+−

ω − kV0
Φ− −

J++

ω + kV0
Φ+

)
,

Φ− = βk

(
J−−

ω − kV0
Φ− −

J−+

ω + kV0
Φ+

)
,

(6)

где β = e2/πε, V0 — фермиевская скорость в нулевой

подзоне, а

J±± = J00;00(±X0,±X0),

J±∓ = J00;00(±X0,∓X0).

Очевидно, что J−+ = J+−. В Приложении показано,
что J−− = J++. Таким образом, имеются два неза-
висимых формфактора. Корни детерминанта систе-
мы (6) определяют частоту плазмона ω0(k):

ω2
0(k) = k2

(
V 2
0 + β2(J2

++ − J2
+−) + 2βV0J++

)
. (7)

В интегралах, определяющих J+±, функции ψ2
0(x)

локализованы вблизи точек X0,±X0 в окрестности
порядка l. Поэтому для J++ аргумент K0 мал при
условии k→ 0 и можно воспользоваться асимптоти-
кой функции Макдональда

K0(|k(x− x′)|) = − ln(|k(x− x′)|eγ/2),

γ — константа Эйлера. Тогда для J++ получаем

J++ = ln

(
2e−γ

|k|l

)
+ J++, (8)

где

J++ =

∫
dxdx′ψ̃2

0,X0
(x) ln

(
l

|x− x′|

)
ψ̃2
0,X0

(x′). (9)

Главный член в J++ есть | ln(|k|l)|. Для формфак-
тора J+− аргумент у функции K0 можно положить
равным 2|k|X0, что может и не быть малой вели-
чиной даже при kl 
 1. Тогда J+− = K0(2|k|X0)

и дает логарифмический вклад при более сильном
условии kX0 
 1. При выполнении этого условия
для частоты плазмона имеем

ω2
0(k) = k2

{
2β
[
β
(
J++ − J+−

)
+ V0

]
ln

(
2e−γ

|k|l

)
+

+ V 2
0 + β2

(
J
2

++ − J
2

+−

)
+ 2βV0J++

}
. (10)

Таким образом, получен ожидаемый результат
для одномерного (1D) плазмона, найденный в [9,10]:

ω ∼ k
√
| ln(|k|l)|.

Заметим, однако, что в рассматриваемом нами слу-
чае зависимость частоты магнитоплазмона от кон-
центрации электронов и от магнитного поля не мо-
жет быть выражена аналитически. Другим важным
отличием является изменение коэффициента перед
главным членом с логарифмом: к фермиевской ско-
рости V0 (случай 1D-плазмона без магнитного поля)
добавляется первое слагаемое в квадратной скобке в
(10), которое может значительно превышать V0 (на-
пример, при NL = 106 см−1, H = 1.6 Тл превышение
более, чем на порядок). Результаты численного рас-
чета приведены ниже.

В заключение этого раздела заметим, что полу-
ченные в нем формулы применимы вплоть до са-
мого начала плазмонного спектра (k=0), когда дли-
на волны плазмона много больше всех характерных
длин задачи, в том числе и ширины полосы L. В
этом пределе система эффективно одномерна. Пере-
ход в полученных формулах к пределу полуплоско-
сти, исследованной в [1,2], невозможен, так как ему
соответствует бесконечно большая L. Законы дис-
персии различаются: в полуплоскости частота про-
порциональна ln k, а в полосе —

√
ln k, как и должно

быть для одномерных систем [9, 10].

4. ВНУТРИПОДЗОННЫЕ ПЛАЗМОНЫ В
ДВУХПОДЗОННОЙ СИСТЕМЕ

Пусть теперь заселены состояния E0(X) и
E1(X), но недиагональным вкладом Φ0,1 будем
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Рис. 1. Электронный спектр полосы. Показаны две нижние

подзоны Ландау, горизонтальная прямая указывает поло-

жение уровня Ферми; w/l = 4

пренебрегать. Уровень Ферми лежит между E1(0) и
E2(0) и пересекает кривые E0(X) и E1(X) соответ-
ственно в точках ±X0 и ±X1 (см. рис. 1). Четыре
уравнения для Φ00(±X0) и Φ11(±X1) приводят к
биквадратному уравнению для частот, корни ко-
торого равны (здесь мы приводим результаты для
предельно малых импульсов плазмона kX0 
 1,
чтобы выяснить поведение ω(k) в самом начале
спектра):

ω2
ac =

k2

2

(
V 2
0 + V 2

1 + β2
[
J
2

0+;0+− J
2

0+;0− + J
2

1+;1+−

− J
2

1+;1− + 2J
2

0+;1+ − 2J
2

0+;1−
]
+

+ 2β
(
V0J0+;0+ + V1J1+;1+

))
, (11)

ω2
opt = ω2

ac + 2k2 ln

(
2e−γ

|k|l

)[
β(V0 + V1)+

+ β2
(
J0+;0+ − J0+;0− + J1+;1+−

− J1+;1− + 2J0+;1+ − 2J0+;1−
)]

. (12)

Здесь V0,1 — фермиевские скорости в нулевой и пер-
вой подзонах; шесть независимых формфакторов
вида J0+,0+, J0+,1+ и т. п. определяются аналогич-
но тому, как это сделано в предыдущем разделе.

Подчеркнем, что в формуле (11) все логариф-
мические вклады в точности сокращаются. Соот-
ветствующий корень дисперсионного уравнения да-
ет линейную зависимость ωac(k) при k → 0, что

и служит основанием назвать эту ветвь акустиче-
ской. Второй корень (оптическая ветвь, формула
(12)) при k → 0 дает уже известную сингулярность
в нуле:

ω2
opt(k) ∼ k2| ln(|k|l)|.

5. МЕЖПОДЗОННЫЙ ПЛАЗМОН В
ДВУХУРОВНЕВОЙ СИСТЕМЕ

Ранг характеристического детерминанта при
учете N подзон равен N2, т.к. диэлектрическая
функция есть матрица 4-го ранга. Из N2 корней
N соответствуют внутриподзонным плазмонам,
а в остальных N(N − 1) каждая пара дает од-
ну межподзонную ветвь, число которых, таким
образом, равно N(N − 1)/2. Мы рассмотрим низ-
шую из них, связанную с уровнями E0 и E1.
Решение задачи в общем виде (при произвольных
импульсах плазмона k) связано с чрезвычайно
сложными численными расчетами, поскольку ни
законы дисперсии электронов, ни формфакторы
не выражаются в аналитическом виде. Ограни-
чимся поэтому нахождением пороговой частоты
ω01(k = 0), определяющей щель в спектре меж-
подзонного плазмона. Отличие этой величины от
минимального расстояния между уровнями E0 и
E1 известно под названием деполяризационного
сдвига.

Если в системе (3) оставить лишь уравнения с
m = 0, 1 и n = 0, 1 и перейти к пределу k → 0, то
в правых частях останется только недиагональный
элемент ϕ, т.к. в диагональных разность чисел за-
полнения в числителе при k = 0 обратится в нуль. В
том же пределе функция K0(|k(x− x′)|) заменяется
выражением

ln(2e−γ/|k(x− x′)|) = ln(2e−γ/|k|l) + ln(l/|x− x′|).

Первое слагаемое не дает вклада в формфактор
J01,01 из-за ортогональности волновых функций
ψ0,X(x) и ψ1,X(x). В результате приходим к
уравнению

Φ01(X) =
2β

l2

X0∫
−X0

dX ′×

× Δ(X ′)

ω2 −Δ(X ′)2
Q(X,X ′)Φ01(X

′), (13)
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Рис. 2. Зависимость деполяризационного сдвига межпод-

зонного плазмона на уровнях 0 и 1 от магнитного поля;

D = Ω/Δ(X = 0) − 1, NL = 0.47 · 106 см−1, L = 0.1мкм

где Δ(X) = E1(X) − E0(X). В однородном инте-
гральном уравнении (13) ω2 является искомым соб-
ственным числом, причем нужно его минимальное
значение ω2

min, а множитель Q(X,X ′) в ядре
уравнения равен

Q(X,X ′) =

w∫
−w

w∫
−w

dxdx′ψ̃0,X(x)ψ̃1,X(x)×

× ln(l/|x− x′|) ψ̃0,X′(x′)ψ̃1,X′(x′). (14)

Значение ω2
min было найдено численно. Мы за-

менили интеграл соответствующей ему суммой Ри-
мана, разбив интервал интегрирования на боль-
шое число точек, т. е. свели задачу к нахождению
собственных чисел системы линейных однородных
уравнений, число которых равно числу точек раз-
биения. Деполяризационный сдвиг Ω определяется
как разность минимальной частоты ωmin и мини-
мального расстояния между уровнями Δ(0). Его за-
висимость от магнитного поля приведена на рис. 2.

Как известно, деполяризационный сдвиг опреде-
ляет также частоту ИК-поглощения при межпод-
зонном (в безграничной плоскости межуровневом)
переходе, которая не равна расстоянию между уров-
нями из-за динамического экранирования электри-
ческого поля возбуждающей волны.

� �

��

� �

Рис. 3. Распределение потенциала плазменной волны по

поперечной коорлинате для двух противоположных на-

правлений распространения или направлений магнитного

поля; NL = 106 см−1, L = 0.2мкм, H = 1Тл

6. ПРОСТРАНСТВЕННОЕ РАСПРЕДЕЛЕНИЕ
ПОЛЯ ПЛАЗМЕННОЙ ВОЛНЫ

В этом разделе мы получим выражение для ко-
ординатной зависимости потенциала ϕ(x) плазмона,
соответствующего нулевой подзоне, т. е. самой ниж-
ней по частоте ветви плазмонного спектра. В рамках
теории самосогласованного поля ϕ(x) подчиняется
уравнению Пуассона (квазистатическое приближе-
ние, запаздывание не учитывается), в правой части
которого стоит добавка к электронной плотности,
индуцированная плазменной волной. В рассматри-
ваемом случае нужно учесть лишь вклад в эту до-
бавку от нулевой подзоны:

Δx,zϕ0(x, z, k)− k2ϕ0(x, z, k) =

= −4πe2

εLy
δ(z)

∑
X

f(E0(X + kl2))− f(E0(X))

E0(X + kl2)− E0(X) + ω + iδ
×

× Φ00(X)ψ̃2
0,X(x). (15)

Уравнение (15) соответствует плазмону в виде плос-
кой волны Ceiky , а матричный элемент Φ00(X) в
правой части берется на плоскости полосы z = 0.
Решение уравнения (15) записывается через гринов-
скую функцию G(x−x′), определенную в разд. 2 уже
на плоскости z = 0. Получившийся интеграл для
ϕ0(x) в длинноволновом пределе и при T = 0 вы-
числяется таким же образом, как при нахождении
частоты ω0(k). Теперь необходимо найти сами ре-
шения системы двух уравнений (6) для матричных
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Рис. 4. Зависимость частоты плазмона от линейной кон-

центрации электронов. Магнитное поле H = 1 Тл, ширина

полосы L = 0.2 мкм

элементов Φ00(X) в точках ±X0. Результат имеет
вид (C — амплитуда волны, задаваемая условиями
ее возбуждения)

ϕ0(x) = Ckβ

(
I−(x)

ω0(k)− kV0
− RI+(x)

ω0(k) + kV0

)
,

I±(x) =

w∫
−w

dx′K0(|k(x − x′)|)ψ̃2
0,±X0

(x′), (16)

R =
ω0(k) + kV0

ω0(k)− kV0

kβJ++ − ω0(k) + kV0

kβJ+−
.

На рис. 3 показано поле плазмона ϕ0(x) для про-
тивоположных направлений распространения. Как
видно, при заданном направлении распространения
максимум ϕ(x) имеется лишь у какого-то одного
края полосы. Этот результат был получен в рабо-
те [2] в рамках гидродинамического подхода.

Такое же зеркальное отображение имеет место
при изменении направления магнитного поля: легко
понять, что под X следует понимать −pl2sign(H),
а l2 = c/|eH |. Поэтому при смене знака H точки
X0 и −X0 меняются местами. Это «oтражение» по-
ля плазмона относительно срединной линии поло-
сы при изменении знака магнитного поля в принци-
пе доступно экспериментальному наблюдению. При
l 
 w и при энергии Ферми такой, что точки ±X0

близки к краям полосы, максимум ϕ(x) также бли-
зок к одному из краев, и в этом смысле такую волну
можно назвать краевым магнитоплазмоном.

�

�

Рис. 5. Магнитополевая зависимость частоты плазмона;

NL = 106 см−1, L = 0.2мкм, k = 0.4 · 106 см−1

7. ЗАВИСИМОСТИ ОТ КОНЦЕНТРАЦИИ И
МАГНИТНОГО ПОЛЯ

Дисперсия электрона E0(p) (см. рис. 1) суще-
ственно отличается от стандартной параболической
p2/2m. Соответственно, и все характеристики маг-
нитоплазмона в полосе (зависимость частоты от
концентрации электронов и от магнитного поля) вы-
глядят необычно. Для внутриподзонного плазмона
нулевой подзоны система эффективно одномерна,
поэтому pF = πNL/2, где NL — линейная плот-
ность электронов (спиновым расщеплением прене-
брегаем), а X0 = πNLl

2/2. Зависимость EF от NL

дается, следовательно, правой половиной нижней
кривой на рис. 1. Зависимость частоты ω0 от линей-
ной плотности содержится в фермиевской скорости
V0 и через X0 в формфакторах, входящих в форму-
лу (7). Результаты приведены на рис. 4.

Пунктирная прямая на этом рисунке проведена,
чтобы показать суперлинейный характер зависимо-
сти. Напомним в связи с этим, что классический 2D-
плазмон имеет частоту, сублинейно зависящую от
поверхностной плотности Ns:

ω = (ω2
c + ω2

p)
1/2,

где ω2
p ∝ Ns.

Магнитная дисперсия плазмона еще более
необычна: кривая на рис. 5 имеет минимум при
H ≈ 2 Тл. Дело в том, что, как видно из (10),
зависимость частоты плазмона от магнитного поля
обусловлена вкладами двух типов. Члены, содер-
жащие фермиевскую скорость V0, обеспечивают
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падающий участок кривой на рис. 5, поскольку при
заданной плотности уровень Ферми быстро опуска-
ется с ростом H и приближается к плоскому участ-
ку электронной дисперсии E0(p), где V0 обращает-
ся в нуль. Тогда главным остается первое (кулонов-
ское) слагаемое в (10), которое дает логарифмиче-
ски медленный рост частоты.

Для деполяризационного сдвига (рис. 2) харак-
терно быстрое убывание при относительно неболь-
шом увеличенииH : более, чем на порядок при δH/H

= 75%. C увеличением поля поведение волновых
функций электронов приближается к тому, кото-
рое реализуется в безграничной плоскости, так как
уменьшается влияние границ полосы. Но в беско-
нечной плоскости Ω = 0, поскольку в сильном маг-
нитном поле отсутствует экранирование (во всяком
случае линейное) и вместе с ним отсутствуют воз-
мущения плотности электронов, линейные по воз-
мущающему потенциалу.

8. ЗАКЛЮЧЕНИЕ

Мы показали, что на магнитоплазменные коле-
бания двумерного электронного газа существенно
влияет учет границ образца. Математически зада-
ча значительно усложняется нестандартным зако-
ном дисперсии «замагниченных» электронов – за-
висимостью энергии от сохраняющейся компоненты
импульса в калибровке Ландау. В простом случае
прямолинейной полосы аналитически удается най-
ти лишь дисперсию внутриподзонных плазмонов в
длинноволновом пределе, относящихся к нижней ча-
сти спектра плазменных колебаний, содержащего,
вообще говоря, бесконечное число ветвей. Концен-
трационные и магнитополевые зависимости плаз-
менной частоты найдены численными методами.

Благодарности. Авторы благодарны В. А. Вол-
кову и И. В. Кукушкину за помощь в ознакомлении
с библиографией вопроса, а также А. В. Ненаше-
ву за полезные советы при проведении численных
расчетов.

ПРИЛОЖЕНИЕ

Здесь мы покажем справедливость соотношения
J−− = J++. Для этого нам понадобится выражение
для ψn,X(x), уже учитывающее граничные условия.
Оно имеет вид

ψn,X(x) = e−(x−X)2/2l2×

×
[
Φ
(
−qn(X)/2, 1/2, (x−X)2/l2

)
−

− Φ
(
(1− qn(X))/2, 3/2, (x−X)2/l2

)
×

×
(x−X)Φ

(
−qn(X)/2, 1/2, (w−X)2/l2

)
(w −X)Φ

(
(1− qn(X))/2, 3/2, (w−X)2/l2

)]. (17)

Кроме того, необходим явный вид уравнения, опре-
деляющего спектр электрона, т. е. параметр qn(X).
Для него имеем

F (qn(X)) = 0, (18)

F (q) =
Φ
(
−q/2, 1/2, (w−X)2/l2

)
(w −X)Φ ((1− q)/2, 3/2, (w−X)2/l2)

+

+
Φ
(
−q/2, 1/2, (w+X)2/l2

)
(w +X)Φ ((1− q)/2, 3/2, (w+X)2/l2)

. (19)

Используя явные выражения для формфакторов
J±±, запишем разность J−− − J++:

J−− − J++ =

w∫
−w

w∫
−w

dxdx′K0(|k(x− x′)|)×

×
[
N4

0,−Xψ2
0,−X(x)ψ2

0,−X(x′)−

−N4
0,Xψ2

0,X(x)ψ2
0,X(x′)

]
, (20)

где ψn,X(x) определена в (17). Сделав замену пере-
менных интегрирования в первом слагаемом в квад-
ратных скобках (20), приходим к выражению

J−− − J++ =

w∫
−w

w∫
−w

dxdx′K0(|k(x− x′)|)×

×
[
N4

0,−Xψ2
0,−X(−x)ψ2

0,−X(−x′)−

−N4
0,Xψ2

0,X(x)ψ2
0,X(x′)

]
. (21)

Видно, что для доказательства равенства
J−− = J++ достаточно показать, что выполняются
соотношения ψ0,−X(−x) = ψ0,X(x) и N0,−X = N0,X .
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Воспользовавшись (17), получаем

ψ0,−X(−x)− ψ0,X(x) = e−(x−X)2/2l2(x −X)×
× Φ((1− q0(X))/2, 3/2, (x−X)2/l2)×

×
[

Φ
(
−q0(X)/2, 1/2, (w−X)2/l2

)
(w −X)Φ

(
(1− q0(X))/2, 3/2, (w−X)2/l2

)+
+

Φ
(
−q0(X)/2, 1/2, (w+X)2/l2

)
(w +X)Φ

(
(1− q0(X))/2, 3/2, (w+X)2/l2

)].
(22)

В квадратные скобки в (22) заключена функция
F (q0(X)), определенная в (19), и следовательно

ψ0,−X(−x) = ψ0,X(x). (23)

Для N0,−X имеем

N0,−X =

( w∫
−w

dxψ2
0,−X(x)

)−1/2

.

Сделаем в интеграле по x замену x→ −x. В резуль-
тате с учетом (23) доказывается четность нормиро-
вочного коэффициента по X .
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Построены фазовые диаграммы (магнитное поле H–одноионная анизотропия D) для трехподрешеточ-

ного SU(3)-ферримагнетика на треугольной решетке с разными спинами подрешеток (S = 1, 1/2, 1/2)

при различных значениях параметров обмена I (между спинами S = 1 и S = 1/2) и J (между спина-

ми S = 1/2). Для корректного учета алгебры генераторов группы SU(3), включающей квадрупольные

операторы, использовалось представление операторов Хаббарда. Показано, что в зависимости от значе-

ний параметров системы могут быть реализованы ферримагнитные Y - или перевернутая Y (Ȳ )-фазы,

скошенная V -фаза (спины S = 1/2 параллельны), веерная W -фаза, а также коллинеарные ферримаг-

нитная и ферромагнитная фазы. В случае I < J на фазовой диаграмме возникает линия, на которой

SU(3)-ферримагнетик распадается на две независимые подсистемы, одна из которых парамагнитная со

спинами S = 1, а вторая антиферромагнитная со спинами S = 1/2 в нулевом эффективном магнитном

поле. В спин-волновом приближении рассчитаны зависимости средних значений квадрупольного момен-

та и дипольных моментов трех подрешеток от магнитного поля и параметра одноионной анизотропии.

Проанализирован спектр спин-волновых возбуждений как при I > J , так и при I < J . Показано, что при

I = J в SU(3)-ферримагнетике возникает случайное вырождение, которое может быть снято при учете

квантовых флуктуаций.

DOI: 10.31857/S0044451025010092

1. ВВЕДЕНИЕ

В последнее время значительно возрос инте-
рес к материалам, в которых релятивистское спин-
орбитальное взаимодействие приводит к проявле-
нию квантовых эффектов на макроскопическом
уровне [1, 2]. Такие материалы принято называть
квантовыми магнетиками [3]. Одним из наиболее яр-
ких проявлений квантовых эффектов является зна-
чительное сокращение среднего значения спина в
магнетиках с S > 1/2 [4]. Причина сокращения
спина обусловлена учетом одноионной анизотропии
(ОА), возникающей вследствие спин-орбитального
взаимодействия, или учетом парных взаимодей-
ствий, связанных с высшими спиновыми инвариан-
тами вида (SfSg)

2S [5–15]. Для магнитных систем, в

* E-mail: ddm@iph.krasn.ru

которых указанные негейзенберговские взаимодей-
ствия достаточно сильны, были обнаружены фазы
спинового нематика, которые характеризуются ну-
левой намагниченностью даже при нулевой темпе-
ратуре (т. е. полное сокращение спина), но в которых
имеется спонтанное нарушение симметрии за счет
квадрупольных параметров порядка (средних зна-
чений операторов, билинейных по компонентам спи-
на) [10]. Усилению указанных квантовых эффектов
способствуют фрустрации [2], низкая температура,
низкая размерность системы [16], а также фактор
многоподрешеточности.

Например, в многоподрешеточных ферримагне-
тиках с различными магнитными ионами проявле-
ние квантовых эффектов может быть значительно
усилено за счет возможной компенсации эффектив-
ного поля, действующего на спины магнитоактив-
ных ионов [17–26]. Действительно, как было показа-
но в работе [27], в ферримагнетике с двумя подре-
шетками квантовое сокращение спина в анизотроп-
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ной подрешетке (с S = 1) при низких температурах
может быть существенно уменьшено под действи-
ем поля обменного взаимодействия со стороны изо-
тропной подрешетки (S = 1/2). Если же имеется
более двух подрешеток, то суммарное эффективное
поле двух изотропных антиферромагнитно связан-
ных подрешеток, действующее на ионы третьей ани-
зотропной подрешетки, может обратиться в нуль,
устраняя тем самым упомянутый механизм подав-
ления квантового сокращения спина.

В этой связи одна из задач теории квантовых
магнетиков видится в поиске такой микроскопиче-
ской модели, которая позволила бы предсказать и
изучить новые квантовые эффекты, имеющие пер-
спективы как с экспериментальной точки зрения,
так и с прикладной. С учетом сказанного выше оче-
видно, что один из путей в данном направлении
состоит в изучении совместного действия несколь-
ких различных аспектов, способствующих реализа-
ции явлений квантового магнетизма.

В контексте данного направления развития тео-
рии были выполнены, например, работы [28–30],
в которых была предложена модель трехподреше-
точного ферримагнетика со смешанными спинами
S = 1, 1/2, 1/2 на треугольной решетке с изингов-
ским обменным взаимодействием и ОА в подсисте-
ме спинов с S = 1. В указанных работах главный
акцент исследований, основанных на методе Монте-
Карло, был сделан на построении фазовых диа-
грамм температура–ОА, а также на поиске интерес-
ного с технологической точки зрения режима ком-
пенсации, в котором достигается нулевая полная на-
магниченность при температуре ниже критической.
Важно отметить, что наряду с ОА в подсистеме спи-
нов S = 1 предложенная в [28–30] модель обладала
такими важными свойствами, как низкая размер-
ность и геометрическая фрустрация, которые, как
отмечалось выше, способствуют усилению кванто-
вых эффектов.

В недавней работе [31] авторами была исследова-
на модель SU(3)-ферримагнетика (SU3F), которая
в основных моментах совпадает с моделью, предло-
женной в [28–30], однако имеет два важных обоб-
щения. Во-первых, вместо изинговского обменного
взаимодействия в модели SU3F используется изо-
тропный гейзенберговский обмен. Как известно, в
неколлинеарных магнитных структурах поперечные
вклады в обменное взаимодействие являются источ-
ником нулевых квантовых колебаний и, как след-
ствие, антиферромагнитных флуктуаций (АФ). Эти

АФ, так же как и ОА, могут приводить к квантовому
сокращению спина, и поэтому квантовые эффекты,
обусловленные АФ и ОА, следует различать. Вто-
рое важное отличие SU3F от модели, предложенной
в [28–30], состоит в использовании разных значений
интегралов I и J обменных взаимодействий между
подрешетками со спином S = 1 и S = 1/2, и меж-
ду двумя подрешетками с S = 1/2 соответственно.
Как будет показано ниже, для разных соотношений
между обменными интегралами фазовые диаграм-
мы SU3F качественно отличаются.

Кроме того, необходимо указать на важную кон-
цептуальную особенность модели SU3F. Она свя-
зана с тем, что наличие немалой ОА, как извест-
но [8–12,14,15,27,32–36], приводит к необходимости
учета полного набора генераторов алгебры SU(3),
действующих в гильбертовом пространстве состоя-
ний спина S = 1. Поэтому для описания таких си-
стем алгебры обычных спиновых операторов недо-
статочно. Чтобы подчеркнуть данное обстоятель-
ство, предложенная в работе [31] модель была на-
звана моделью квантового SU(3)-ферримагнетика.

Общая особенность модели SU3F состоит в од-
новременном учете нескольких из перечисленных
выше аспектов, способствующих проявлению кван-
товых эффектов: ОА, АФ, многоподрешеточность,
низкая размерность, фрустрация обменных связей.

Исследование SU3F в работе [31] проводилось в
отсутствие внешнего магнитного поля и при нулевой
температуре. Были рассчитаны зависимости сред-
них моментов подрешеток и квадрупольного момен-
та от параметра ОА при различных соотношениях
обменных интегралов I/J . Оказалось, что критиче-
ское значение ОА Dc, при котором SU3F переходит
в квадрупольную фазу, может быть много меньше
как I, так и J . Кроме того, при I > J в зависимо-
сти полного момента M от параметра ОА наблюда-
лась точка компенсации, т. е. обращение в нуль M

при D < Dc.

Данная работа является логическим продолже-
нием проведенных в [31] исследований. Ее основ-
ная цель состоит в построении фазовой диаграммы
SU3F в координатах внешнее магнитное поле — па-
раметр ОА, а также в анализе модификации маг-
нитной структуры и параметров порядка при пере-
сечении границ различных фаз. Расчет энергии ос-
новного состояния и определение спиновой конфи-
гурации, отвечающей данной энергии, проводятся в
приближении среднего поля в пределе нулевых тем-
ператур. Последнее условие, как известно, является
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недостижимым для метода Монте-Карло, исполь-
зованного в цитированных выше работах [28–30].
Для корректного учета алгебры генераторов груп-
пы SU(3) в подсистеме спинов S = 1 применяет-
ся формализм операторов Хаббарда [11,35,37]. При
расчете параметров порядка проводится бозониза-
ция спиновых операторов: для подсистемы спинов
S = 1/2 используются преобразования Гольштей-
на –Примакова, а для подсистемы спинов S = 1 —
формализм индефинитной метрики [11, 14].

Дальнейшее изложение статьи организовано сле-
дующим образом. Во втором разделе сформулиро-
ван гамильтониан SU3F во внешнем магнитном по-
ле, лежащем в плоскости легкого намагничивания.
В разд. 3 проводится SU(2)-преобразование спино-
вых операторов с S = 1/2, отвечающее повороту ло-
кальных осей координат. В разд. 4 проводится пре-
образование Гольштейна –Примакова для подсисте-
мы спинов с S = 1/2. В пятом разделе описывает-
ся переход к представлению операторов Хаббарда
и их трехкратное SU(3)-преобразование для диаго-
нализации одноионного гамильтониана подсистемы
спинов с S = 1. Бозонизация операторов Хаббарда
с последующим получением дисперсионного урав-
нения описывается в разд. 6. В седьмом и восьмом
разделах анализируются особенности фазовых диа-
грамм и характер изменений параметров порядка
при I < J и I > J соответственно. В разд. 9 проде-
монстрировано вырождение среднеполевого основ-
ного состояния SU3F при I = J . В разд. 10 обсуж-
даются изменения спектра спин-волновых возбуж-
дений при увеличении магнитного поля при разных
соотношениях параметров обмена. Основные выво-
ды работы представлены в разд. 11.

2. МОДЕЛЬ SU(3)-ФЕРРИМАГНЕТИКА

Кристаллическая структура рассматриваемого
SU3F представлена на рис. 1. Красными кружка-
ми отмечены узлы подрешетки со значением спина
S = 1, обозначаемой далее как L-подрешетка. Зе-
леным и синим цветом отмечены узлы подрешеток
со значением спина S = 1/2. Эти подрешетки далее
обозначаются символами F и G соответственно. Пе-
риодичность системы определяется одинаковыми по
модулю базисными векторами a1 и a2. Векторы ζ и
ξ соединяют узлы из разных подрешеток.

Гамильтониан SU3F во внешнем магнитном поле
может быть представлен в виде

H = HA +Hexch +Hfield, (1)

Рис. 1. Кристаллическая структура трехподрешеточного

SU3F на треугольной решетке. Красными, зелеными и си-

ними кружками обозначены положения узлов в L-, F - и

G-подрешетках соответственно, |a1| = |a2| = a — векторы

решетки Браве, а ξ и ζ — векторы базиса

где

Hexch = J
∑
{fg}

SfSg + I
∑
{fl}

SfSl + I
∑
{gl}

SgSl,

HA = D
∑
l

(Sy
l )

2
, (2)

Hfield = −h
∑
f

Sz
f − h

∑
g

Sz
g − hL

∑
l

Sz
l .

Оператор Hexch описывает парное обменное взаи-
модействие между ближайшими спинами из разных
подрешеток. Нижние индексы f , g и l у операторов
спина обозначают узлы из F -,G- и L-подрешеток со-
ответственно. Обменный интеграл J определяет ин-
тенсивность антиферромагнитных взаимодействий
между ближайшими спинами из F - и G-подрешеток,
а интеграл I — из F (G)- и L-подрешеток. Фигурные
скобки под тремя символами суммы в (2) означают,
что суммирование ведется только по ближайшим уз-
лам, и каждая пара узлов учитывается только один
раз. Оператор HA описывает влияние ОА типа лег-
кая плоскость на спины S = 1 в L-подрешетке. Па-
раметр одноионной анизотропии D — положитель-
ный. Ось y направлена перпендикулярно плоско-
сти ферримагнетика xz, являющейся, следователь-
но, плоскостью легкого намагничивания. Оператор
Hfield учитывает зеемановскую энергию спинов во
внешнем магнитном поле H , лежащем в плоскости
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ферримагнетика (легкой плоскости) и определяю-
щем параметры h = gμBH и hL = gLμBH , где μB —
магнетон Бора, а g и gL —факторы Ланде для F (G)-
подрешетки со спином S = 1/2 и L-подрешетки c
S = 1 соответственно. В общем случае g-факторы
могут различаться для разных подрешеток. В дан-
ной работе мы будем считать, что моменты форми-
руются без участия орбитальных степеней свободы,
т. е. являются чисто спиновыми, и, таким образом,
gL = g = 2.

Направление магнитного поля и тип ОА способ-
ствуют тому, что средней момент L-подрешетки RL

оказывается ориентированным в плоскости xz, пер-
пендикулярной оси анизотропии y. Кроме того, учи-
тывая характер обменных взаимодействий, а так-
же результаты работы [38], можно утверждать, что
магнитная структура основного состояния SU3F при
любых значенияхD иH характеризуется планарной
конфигурацией средних значений спинов. Поэтому
без ограничения общности будем считать, что спи-
ны всех трех подрешеток лежат в плоскости фер-
римагнетика xz. Ось z исходной системы координат
удобно направить вдоль магнитного поля.

3. SU(2)-ПРЕОБРАЗОВАНИЕ
ГАМИЛЬТОНИАНА

Вычисление энергии основного состояния SU3F
целесообразно начать с проведения унитарного пре-
образования гамильтониана H:

H(θF , θG) = U2(θF , θG)HU+
2 (θF , θG), (3)

с оператором

U2(θ) =
∏
f∈F

exp
(
−iθFSy

f

) ∏
g∈G

exp
(
−iθGSy

g

)
. (4)

Преобразование (3) позволяет перейти для F - и G-
подрешеток к новым локальным координатам, в ко-
торых оси квантования z′ и z′′ повернуты на углы
θF и θG вокруг оси y и направлены вдоль равно-
весных намагниченностей RF и RG соответственно
(см. рис. 2).

Унитарное преобразование (3) гамильтониана (1)
отвечает следующей формальной замене спиновых
операторов из F - и G-подрешеток [39]:

Sx
f → Sx

f cos θF + Sz
f sin θF , Sy

f → Sy
f ,

Sz
f → Sz

f cos θF − Sx
f sin θF , (5)

Sx
g → Sx

g cos θG + Sz
g sin θG, Sy

g → Sy
g ,

Sz
g → Sz

g cos θG − Sx
g sin θG. (6)

Рис. 2. Поворот локальных осей координат при унитарном

преобразовании (3). В F - и G-подрешетках с S = 1/2 оси

z поворачиваются на углы θF и θG и занимают новые по-

ложения z′ и z′′. Локальные координаты в L-подсистеме с

S = 1 остаются неизменными, а угол, образованный мо-

ментом RL и осью z, обозначен посредством θL

В результате оператор Гамильтона (1) преобразует-
ся к виду

H = D
∑
l

(Sy
l )

2 +

+J
∑
{fg}

{(Sx
fS

x
g + Sz

fS
z
g ) cos(θF − θG) +

+Sy
fS

y
g + (Sz

fS
x
g − Sx

fS
z
g) sin(θF − θG)} +

+I
∑
{fl}
{(Sx

fS
x
l + Sz

fS
z
l ) cos θF + Sy

fS
y
l +

+(Sz
fS

x
l − Sx

fS
z
l ) sin θF }+

+I
∑
{gl}
{(Sx

gS
x
l + Sz

gS
z
l ) cos θG + Sy

gS
y
l +

+(Sz
gS

x
l − Sx

gS
z
l ) sin θG} −

−h
∑
f

{Sz
f cos θF − Sx

f sin θF } −

−h
∑
g

{Sz
g cos θG − Sx

g sin θG} − hL

∑
l

Sz
l , (7)

где операторы Sβ
f и Sβ

g (β = x, y, z), относящи-
еся к F - и G-подсистемам, определяют проекции
спиновых моментов на соответствующую индексу
β ось в новых (повернутых) локальных системах
координат.
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4. ПРЕОБРАЗОВАНИЕ
ГОЛЬШТЕЙНА–ПРИМАКОВА

Согласно изложенной во введении стратегии вы-
числения энергии основного состояния SU3F, про-
ведем преобразование Гольштейна –Примакова от-
дельно для F - и G-подрешеток:

S+
f =

√
2S − a+f af · af , Sz

f = S − a+f af ,

S+
g =

√
2S − b+g bg · bg, Sz

f = S − b+g bg,

(8)

где операторы рождения a+f (b
+
g ) и уничтожения

af (bg) бозонов описывают переходы спина в F (G)-
подрешетке на узле f(g) из состояния | ↑′〉(| ↑′′〉), от-
вечающего ориентации спина вдоль оси z′(z′′), в со-
стояние с противоположной ориентацией | ↓′〉(| ↓′′〉)
и обратно.

Результат подстановки (8) в гамильтониан (7) за-
пишем в виде

H = E0 +H(0) +H(1) +H(2). (9)

В этом выражении

E0 = J0S
2N cos(θF − θG)−

−hSN(cos θF + cos θG), (10)

а следующие три операторных слагаемых H(n)

(n = 0, 1, 2) классифицируются по степеням бозе-
операторов n. Величина N в формуле (10) обозна-
чает число узлов в подрешетке.

Оператор H(0) представляет собой сумму одно-
ионных гамильтонианов L-подсистемы:

H(0) =
∑
l

H0(l),

где

H0(l) = D(Sy
l )

2 + H̄zS
z
l + H̄xS

x
l , (11)

а эффективные поля определяются выражениями

H̄z = I0S(cos θF + cos θG)− hL,

H̄x = I0S(sin θF + sin θG), I0 = 3I.
(12)

Линейное по бозе-операторам слагаемое гамиль-
тониана (9) запишем в следующей форме:

H(1) =
∑
{fl}

I

√
S

2
[cos θFS

x
l − sin θFS

z
l ] (af + a+f ) +

+
∑
f

√
S

2
[J0S sin(θG − θF ) + h sin θF ] (af + a+f ) +

+
∑
{gl}

I

√
S

2
[cos θGS

x
l − sin θGS

z
l ] (bg + b+g ) +

+
∑
g

√
S

2
[J0S sin(θF − θG) + h sin θG] (bg + b+g ) +

+
I

i

√
S

2

⎧⎨⎩∑
{fl}

Sy
l (af − a+f ) +

∑
{gl}

Sy
l (bg − b+g )

⎫⎬⎭ , (13)

где J0 = 3J .

Последнее слагаемое в выражении (9) описывает
возбуждения в F - и G-подсистемах и имеет вид

H(2) = J
S

2

∑
{f,g}

{[
(af + a+f )(bg + b+g ) −

−2(a+f af + b+g bg))
]
cos(θF − θG)−

−(af − a+f )(bg − b+g )
}
−

−I
∑
{f,l}

(cos θFS
z
l + sin θFS

x
l )a

+
f af −

−I
∑
{g,l}

(cos θGS
z
l + sin θGS

x
l )b

+
g bg +

+h cos θF
∑
f

a+f af + h cos θG
∑
g

b+g bg. (14)

Далее, логика среднего поля диктует проведе-
ние замены в выражениях для H(1) и H(2) спино-
вых операторов L-подсистемы их средними значени-
ями. В рассматриваемом режиме нулевых темпера-
тур усреднение операторов Sα

l (α = x, y, z) достаточ-
но проводить по основному состоянию одноузельно-
го гамильтониана (11).

5. ДИАГОНАЛИЗАЦИЯ ОДНОИОННОГО
ГАМИЛЬТОНИАНА

Для диагонализации одноионного гамильтониа-
на (11), как и в работе [31], воспользуемся подхо-
дом развитым в [40]. Перейдем от спиновых операто-
ров к операторам Хаббарда [37] Xm,n

l = |m〉〈n|, где
m,n = {−1, 0,+1} — собственные значения операто-
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ра Sz
l , а |m〉 и |n〉 — соответствующие собственные

состояния: Sz
l |n〉 = n|n〉. Подставляя выражения

Sx
l =

1√
2

(
X1,0

l +X 1̄,0
l +X0,1

l +X0,1̄
l

)
,

Sy
l =

i√
2

(
−X1,0

l +X 1̄,0
l +X0,1

l −X0,1̄
l

)
,

(Sy
l )

2 =
1

2

(
X1,1̄

l +X 1̄,1
l −X1,1

l −X 1̄,1̄
l

)
+X0,0

l ,

Sz
l = X1,1

l −X 1̄,1̄
l , 1̄ ≡ −1,

(15)

описывающие переход к представлению операто-
ров Хаббарда, в одноионный гамильтониан (11)
получаем

H0(l) =

(
D

2
+ H̄z

)
X1,1

l +DX0,0
l +

+

(
D

2
− H̄z

)
X 1̄,1̄

l − D

2

(
X1,1̄

l +X 1̄,1
l

)
+

+
H̄x√
2

(
X1,0

l +X0,1
l +X 1̄,0

l +X0,1̄
l

)
. (16)

В отсутствие магнитного поля основное состоя-
ние системы вырождено относительно вращения во-
круг оси y. Тогда, выбирая направление оси z вдоль
вектораRL и учитывая справедливое в силу эквива-
лентности F - и G-подрешеток равенство θF = −θG,
получаем, что величина H̄x обращается в нуль, а
последнее слагаемое в выражении (16) исчезает. В
этом случае гамильтонианH0(l) перемешивает толь-
ко два из трех состояния (| + 1〉 и | − 1〉) и для его
диагонализации достаточно провести одно унитар-
ное преобразование (см. [31]). Наличие магнитного
поля приводит к тому, что перемешанными оказы-
ваются все три состояния |n〉 (n = {−1, 0,+1}), а для
диагонализации одноионного гамильтониана необ-
ходимо проводить три последовательных преобра-
зования.

Унитарный оператор Unm(α, l) каждого пре-
образования определяется своим генератором
Γnm(l) = Xnm

l − Xmn
l из группы SU(3), согласно

выражению

Unm(α, l) = exp{αΓnm(l)} =
= 1 + (cosα− 1)(Xnm

l +Xmn
l ) + sinα Γnm(l). (17)

Новые операторы Хаббарда X r̃s̃
l = |r̃, l〉〈s̃, l|, опреде-

ленные посредством новых состояний

|r̃, l〉 = Unm(−α, l)|r, l〉, (18)

выражаются через исходные операторы Хаббарда
следующим образом:

X r̃s̃
l = Unm(−α, l) Xrs

l U+
nm(−α, l). (19)

Тогда рассматриваемое унитарное преобразова-
ние сводится к простой замене в одноузельном
гамильтониане:

Xrs
l → Uñm̃(α, l) X r̃s̃

l U+
ñm̃(α, l). (20)

Явные выражения для правой части последней фор-
мулы в общем случае были получены в работе [40]
и для полноты изложения приведены в Приложе-
нииА. Вариационный параметр α в формуле (17)
подбирается из условия обращения в нуль числен-
ного коэффициента перед недиагональными опера-
торами X ñm̃

l и Xm̃ñ
l в преобразованном с помощью

подстановки (20) гамильтониане.
Проводя последовательно три унитарных пре-

образования с операторами U1,0(α2), U0,−1(α3) и
U1,−1(α1) по правилу (20) и сохраняя в конечном вы-
ражении прежние обозначения для индексов новых
состояний n = {−1, 0,+1} (т. е. без тильды), полу-
чаем диагональную по операторам Хаббарда форму
для одноионного гамильтониана H0(l):

H0(l) =
∑
n

εnX
nn
l , n = −1, 0,+1. (21)

Собственные значения εn одноионного гамильтони-
ана можно представить в виде (1̄ = −1)

ε1= e1̄,1̄ sin
2 α1 + e1,1 cos

2 α1 + e1,1̄ sin 2α1,

ε1̄= e1̄,1̄ cos
2 α1 + e1,1 sin

2 α1 − e1,1̄ sin 2α1, (22)

ε0= e0,0,

где

e1,1 = D sin2 α2 +

(
D

2
+ H̄z

)
cos2 α2+

+
H̄x√
2
sin 2α2,

e1̄,1̄ = D cos2 α2 sin
2 α3 −

D

2
sinα2 sin 2α3+

+

(
D

2
+ H̄z

)
sin2 α2 sin

2 α3+

+

(
D

2
− H̄z

)
cos2 α3−

− H̄x√
2
(cosα2 sin 2α3 + sin 2α2 sin

2 α3),

e0,0 = D cos2 α2 cos
2 α3 +

D

2
sinα2 sin 2α3+

+

(
D

2
+H̄z

)
sin2 α2 cos

2 α3+

(
D

2
−H̄z

)
sin2 α3+

+
H̄x√
2
(cosα2 sin 2α3 − sin 2α2 cos

2 α3),

(23)
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e1,1̄ =

(
H̄z

2
− D

4

)
sin(2α2) sinα3 −

−D

2
cosα2 cosα3 +

+
H̄x√
2
(− cos 2α2 sinα3 + sinα2 cosα3).

Из требования обращения в нуль коэффициентов
при недиагональных X-операторах в преобразован-
ном гамильтониане получается следующая система
уравнений для углов αj (j = 1, 2, 3):

tgα3 =

(
D
2 − H̄z

)
sin 2α2 +

√
2 H̄x cos 2α2

D cosα2 −
√
2 H̄x sinα2

,

tg 2α3 =

√
2 H̄x cosα2 +D sinα2

2H̄z +
(
D
2 − H̄z

)
cos2 α2 − H̄x√

2
sin 2α2

, (24)

tg 2α1 = 2e1,1̄/(e1,1 − e1̄,1̄).

Аналогичным образом применяя к представле-
нию (15) последовательно три раза формулу (20)
с операторами U1,0(α2), U0,1̄(α3) и U1,1̄(α1), можно
выразить спиновые операторы Sx

l , S
y
l , S

z
l и (Sy

l )
2

через новые (преобразованные)X-операторы. Тогда
коэффициенты разложения операторов спина Sα

l по
новым операторам Хаббарда Xnm

l будут представ-
лять матричные элементы спиновых операторов по
новым состояниям: sαn,m ≡ 〈n|Sα

l |m〉 (α = x, y, z).
Явные выражения для этих матричных элементов
приведены в ПриложенииВ.

В рамках приближения среднего поля следует
заменить в гамильтониане H(1) спиновые операто-
ры их средними значениями, т. е. диагональными
матричными элементами sαn,n, вычисленными по ос-
новному состоянию |n〉, отвечающему минимально-
му значению εn. Ниже мы будем выбирать набор
решений уравнений (24) для углов αj (j = 1, 2, 3)

так, чтобы состояние |+ 1〉 было основным.
Поскольку synn = 0 для любого n (см. Прило-

жениеВ), то последние две суммы в формуле (13)
дляH(1) обращаются в нуль. Сокращение же осталь-
ных слагаемых в (13) имеет место при выполнении
равенств

I0(s
x
1,1 cos θF − sz1,1 sin θF )+

+ J0S sin(θG − θF ) + h sin θF = 0,

I0(s
x
1,1 cos θG − sz1,1 sin θG)+

+ J0S sin(θF − θG) + h sin θG = 0,

(25)

используемых далее для определения равновесных
значений углов θF и θG. Угол θL, введенный на рис. 2

для наглядности, параметром согласования не яв-
ляется и может быть определен через отношение
средних значений проекций спиновых операторов
Sz
l и Sx

l .
Магнитная структура основного состояния SU3F

определяется решениями пяти уравнений (24) и (25)
для углов αj (j = 1, 2, 3), θF и θG с последующем вы-
бором того набора решений, который отвечает ми-
нимальному значению среднеполевой энергии всей
системы

EMF = E0 +N ε1, (26)

где величины E0 и ε1 определены уравнениями (10)
и (22) соответственно. В разд. 7 будут представле-
ны фазовые h–D-диаграммы SU3F, рассчитанные
на основе изложенной здесь методики.

6. БОЗОНИЗАЦИЯ L-ПОДСИСТЕМЫ И
ДИСПЕРСИОННОЕ УРАВНЕНИЕ

В рамках выбранного приближения энергия ос-
новного состояния EMF определяется без учета АФ.
Поэтому вклады от последнего слагаемого в гамиль-
тониане (9), квадратичные по бозе-операторам, в
выражении (26) для EMF отсутствуют. Тем не ме-
нее при расчете зависимостей параметров порядка
от магнитного поля и ОА требуется энергетический
спектр спин-волновых возбуждений, и для опреде-
ления этого спектра оператор H(2) уже необходимо
учитывать.

Для вычисления энергетического спектра в спин-
волновом приближении выразим сначала спино-
вые операторы через новые (преобразованные) X-
операторы. Используя (15) и формулы из Приложе-
нияА, получим для S-операторов выражения вида

Sα
l =

∑
n,m

sαnmXnm
l , α = x, y, z, (27)

где матричные элементы sαnm приведены в При-
ложенииВ.

Далее учитывая, что спектр состояний H0(l) ха-
рактеризуется тремя уровнями, а основным состоя-
нием одноионного гамильтониана является состоя-
ние |+ 1〉, введем, следуя работам [11,14], два сорта
бозе-операторов: c и d. Рождение одного c(d)-бозона
на узле l описывается действием оператора рожде-
ния c+l (d

+
l ) и отвечает переходу системы из «ваку-

умного» состояния | + 1〉 в состояние |0〉(| − 1〉) с
одним c(d)-бозоном. Эрмитово-сопряженный опера-
тор cl(dl), действуя в обратном направлении, уни-
чтожает c(d)-бозон. Состояния с большим числом

101



A. С. Мартынов, Д.М. Дзебисашвили ЖЭТФ, том 167, вып. 1, 2025

бозонов отсекаются метрическим оператором как
нефизические.

Представление операторов Хаббарда через бозе-
операторы, предложенное в работе [40] в рамках
формализма индефенитной метрики [41], имеет вид

X1,0
l = (1− c+l cl − d+l dl)cl, X0,1

l = c+l ,

X1,1̄
l = (1− c+l cl − d+l dl)dl, X 1̄,1

l = d+l ,

X0,1̄
l = c+l dl, X 1̄,0

l = d+l cl, X0,0
l = c+l cl,

X 1̄,1̄
l = d+l dl, X1,1

l = (1− c+l cl − d+l dl).

(28)

Используем представление (28) в формулах
(27) и подставим полученные выражения для S-
операторов (см. ПриложениеС) в слагаемые H(1)

и H(2) гамильтониана (9). В результате возникает
выражение, в котором необходимо оставить только
вклады не выше второго порядка по a, b, c и d-
операторам. Проводя фурье-преобразование

af =
1√
N

∑
k

eikfak, bg =
1√
N

∑
k

eikgbk,

cl =
1√
N

∑
k

eiklck, dl =
1√
N

∑
k

eikldk,

(29)

получаем искомый гамильтониан, который можно
записать следующим образом:

H = EMF +HSW . (30)

Здесь первое слагаемое EMF отвечает энергии ос-
новного состояния в приближении среднего поля
(см. формулу (26)), а второе слагаемое HSW опи-
сывает спин-волновые возбуждения и определяется
выражением

HSW =
∑
k

{Eaa
+
k ak + Ebb

+
k bk + Ecc

+
k ck + Edd

+
k dk +

+J+ (γk a
+
k bk + γ∗

k b
+
k ak)}+

+J− (γk a
+
k b

+
−k + γ∗

k akb−k) +

+I+0F (γk c
+
k ak + γ∗

k a
+
k ck) +

+I−0F (γk c
+
k a

+
−k + γ∗

k cka−k) +

+I+
1̄F

(γk d
+
k ak + γ∗

ka
+
k dk) +

+I−
1̄F

(γk d
+
k a

+
−k + γ∗

k dka−k) +

+I+0G (γ∗
k c

+
k bk + γk b

+
k ck) +

+I−0G (γ∗
k c

+
k b

+
−k + γk ckb−k) +

+I+
1̄G

(γ∗
k d

+
k bk + γk b

+
k dk) +

+I−
1̄G

(γ∗
k d

+
k b

+
−k + γk dkb−k). (31)

При записи этого выражения были введены следу-
ющие обозначения:

Ea = −J0S cos(θF − θG) + h cos θF −
−I0(sz11 cos θF + sx11 sin θF ),

Eb = −J0S cos(θG − θF ) + h cos θG −
−I0(sz11 cos θG + sx11 sin θG),

Ec = ε0 − ε1, Ed = ε1̄ − ε1,

J± =
J0S

2
(cos(θF − θG)± 1) ,

I±nA = I0

√
S

2

(
sxn1 cos θA − szn1 sin θA ±

syn1
i

)
,

n = {0, 1̄}, A = {F,G},

γk =
1

3

∑
δ

eikδ =
1

3

(
2 cos

kz
2
e
i kx

2
√

3 + e
−i kx√

3

)
. (32)

В сумме, определяющей инвариант треугольной
решетки γk, вектор δ пробегает три значения:
{ξ,−ζ, ζ − ξ} (см. рис. 1). Зона Бриллюэна, огра-
ничивающая область значений квазиимпульса k,
представлена на рис. 3.

Для получения дисперсионного уравнения опре-
делим матричную запаздывающую функцию Грина
〈〈Xk|X+

k 〉〉ω , где

X
+
k = (a+k , b

+
k , c

+
k , d

+
k , a−k, b−k, c−k, d−k).

Из требования существования нетривиальных реше-
ний уравнения движения для 〈〈Xk|X+

k 〉〉ω следует
уравнение для спектра∣∣∣∣∣ω −Ak −Bk

Bk ω +Ak

∣∣∣∣∣ = 0, (33)

где

Ak =

⎛⎜⎜⎜⎜⎝
Ea J+γk I+0F γ

∗
k I+

1̄F
γ∗
k

J+γ
∗
k Eb I+0Gγk I+

1̄G
γk

I+0F γk I+0Gγ
∗
k Ec 0

I+
1̄F

γk I+
1̄G

γ∗
k 0 Ed

⎞⎟⎟⎟⎟⎠ (34)

и

Bk =

⎛⎜⎜⎜⎜⎝
0 J−γk I−0F γ

∗
k I−

1̄F
γ∗
k

J−γ
∗
k 0 I−0Gγk I−

1̄G
γk

I−0F γk I−0Gγ
∗
k 0 0

I−
1̄F

γk I−
1̄G

γ∗
k 0 0

⎞⎟⎟⎟⎟⎠ . (35)

Дисперсионное уравнение (33) является уравне-
нием четвертой степени относительно ω2, а его
решения εjk (j = 1, . . . , 4) представляют четы-
ре ветви коллективных спиновых возбуждений
рассматриваемого SU3F.
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Рис. 3. Зона Бриллюэна треугольной решетки и три точки

высокой симметрии: Γ, K, M

7. ФАЗОВАЯ ДИАГРАММА SU3F ПРИ I < J

Обсуждение фазовой диаграммы SU3F в коор-
динатах магнитное поле — параметр ОА проведем
отдельно для трех вариантов соотношений между
обменными параметрами: I < J , I > J , I = J . В дан-
ном разделе мы рассмотрим первый вариант: I < J .

На рис. 4 изображена фазовая диаграмма основ-
ного состояния SU3F, рассчитанная согласно мето-
дике, изложенной в разд. 5, при соотношении обмен-
ных параметров I/J = 0.8. Видно, что в рассматри-
ваемом режиме реализуются три фазы: переверну-
тая Y -фаза (обозначаемая далее как Ȳ ), W -фаза и
ферромагнитная фаза.

В Ȳ -фазе вектор среднего значения спина L-
подрешетки RL направлен вдоль направления маг-
нитного поля (оси z), а векторы средних значений
спинов F - и G-подрешеток RF и RG составляют с
осью z одинаковые по модулю, но противоположные
по знаку углы: θF = −θG. При этом модуль углов θF
и θG изменяется в интервале [π/2, π]. В симметрич-
ной W -фазе углы θF и θG также равны по моду-
лю и противоположны по знаку, однако, в отличие
от Ȳ -фазы, интервал изменения модулей этих уг-
лов другой: [0, π/2]. В этом случае проекции всех
трех векторов RF , RG и RL на ось x положитель-
ны. Граница раздела Ȳ - и W -фаз на рис. 4 обозна-
чена штриховой линией. Справа от красной линии
на фазовой диаграмме реализуется ферромагнитная
фаза: векторы средних значений спинов из L-, F - и
G-подрешеток направлены вдоль магнитного поля.

Эволюция магнитной структуры при I < J ха-
рактеризуется монотонным уменьшением абсолют-

0                     2                     4                     6
h/J

0

2

4

6

8

10

D
/J

4.8

3

2.41

Рис. 4. Фазовая h–D-диаграмма основного состояния

SU3F при I/J = 0.8. Черная штриховая линия отвечает

границе между Ȳ - и W -фазами, а сплошная красная —

между W -фазой и ферромагнитной. На пиктограммах,

условно изображающих магнитную структуру SU3F, крас-

ная стрелка символизирует вектор RL, синие стрелки —

RF (G), а магнитное поле h считается направленным вверх.

На штриховой линии реализуется фаза, в которой подси-

стемы со спинами S = 1 и 1/2 становятся эффективно

независимыми

ных значений углов θF и θG с увеличением H и об-
ращением их в нуль при некотором значении поля,
зависящем от параметра ОА (см. красную линию на
рис. 4). Сказанное поясняется тремя пиктограмма-
ми, условно изображающими магнитную структуру
в каждой из трех областей фазовой диаграммы.

Для понимания представленной фазовой диа-
граммы рассчитаем зависимости параметров поряд-
ка SU3F от магнитного поля при фиксированном
значении параметра ОА и от параметра ОА при
фиксированном h.

Средние значения спинов RF и RG в F - и
G-подрешетках можно рассчитать, воспользовав-
шись представлением Гольштейна –Примакова (8),
согласно которому

RF = 〈Sz′

f 〉 = S − na,

RG = 〈Sz′′

g 〉 = S − nb,
(36)

где числа заполнения бозонов na = 〈a+f af 〉 и
nb = 〈b+g bg〉 вычисляются по спектральной теореме
из матричной функции Грина 〈〈Xk|X+

k 〉〉ω, введен-
ной в разд. 6.

Средний спиновый магнитный момент L-под-
решетки RL можно найти по формуле
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RL =

√
(Rz

L)
2
+ (Rx

L)
2
, (37)

где величины Rz
L и Rx

L определяются средними
числами заполнения c- и d-бозонов: nc = 〈c+k ck〉
и nd = 〈d+k dk〉, а также корреляторами 〈c+k dk〉 и
〈d+k ck〉. Соответствующие выражения получаются в
результате усреднения формул, приведенных в При-
ложенииС. Поскольку суммарный магнитный мо-
ментM = RF +RG+RL направлен вдоль внешнего
магнитного поля (т. е. оси z ), то его поперечная ком-
понента должна обращаться в нуль тождественно

Rx
L +RF sin θF +RG sin θG = 0,

а продольная компонента равна

M = Rz
L +RF cos θF +RG cos θG. (38)

Среднее значение квадрупольного момента [42]

Q0
2(l) = 3 (Sy

l )
2 − 2 (39)

рассчитывается аналогичным образом после усред-
нения соответствующих формул из ПриложенияС.

Графики, демонстрирующие зависимость полно-
го момента M , средних значений спиновых магнит-
ных моментов RL, RF (G) и квадрупольного момента
Q0

2 от внешнего поля h при значении параметра ОА
D/J = 3 и соотношении между обменными интегра-
лами I/J , равном 0.8, представлены на рис. 5. Из-
менению магнитного поля на этом рисунке отвечает
движение по горизонтальной пунктирной линии на
фазовой диаграмме рис. 4. Видно, что в точке пере-
хода из W -фазы в ферромагнитную все кривые на
рис. 5 испытывают излом. При этом значения M и
RL ожидаемо увеличиваются при увеличении поля
h, а квадрупольный момент — уменьшается.

Зависимости параметров порядкаM ,RL,RF , RG

и Q0
2 от параметра D при значении магнитного поля

h/J = 1 представлены на рис. 6. Изменению пара-
метра D на этом рисунке отвечает движение по вер-
тикальной пунктирной линии на фазовой диаграмме
рис. 4. Видно, что при пересечении границы Ȳ - иW -
фаз зависимости параметров RF (G) от D испытыва-
ют излом, а квадрупольный момент выходит на на-
сыщение. Среднее значение момента L-подрешетки
быстро уменьшается в окрестности границы, но при
дальнейшем увеличении D спадает медленно. Оче-
видно, что именно уменьшение RL способствует раз-
вороту вверх векторов RF (G), поскольку уменьшает
проигрыш в обменной энергии между спинами S = 1

и S = 1/2.
Важной особенностью фазовой диаграммы,

представленной на рис. 4, является то, что на всей

0         1         2         3         4         5         6
h/J

0

0.5

1

1.5

2

|Q0
2
|/3

R
L

M

R
F(G)

Рис. 5. Зависимость величин RL (красная линия), RF (G)

(синяя линия), M (черная линия) и |Q0
2|/3 (зеленая ли-

ния) от магнитного поля h. Соотношение между обменны-

ми интегралами I/J = 0.8, а D/J = 3. Три пиктограммы,

составленные из одной красной и двух синих стрелок, име-

ют тот же смысл, что и на рис. 4
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Рис. 6. Зависимости величин RL (красная линия), RF (G)

(синяя линия), M (черная линия) и |Q0
2|/3 (зеленая ли-

ния) от параметра ОА D. Соотношение между обменными

интегралами I/J = 0.8, а h/J = 1

границе между Ȳ - и W -фазами (черная штриховая
линия) угол между векторами RF и RG равен π. В
этом случае из выражений (12) для эффективных
полей находим

H̄z = −hL, H̄x = 0. (40)
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При учете этих соотношений и при условии hL 	= 0

решения уравнений (24) для углов αj (j = 1, 2, 3)
получаются в виде

tg 2α1 =
D

2hL
(−1)n+m, α2 = πn, α3 = πm, (41)

где n иm — целые числа. Подстановка этих решений
в выражения для матричных элементов спиновых
операторов из приложенияВ дает

sz11 = cos 2α1, sx11 = 0. (42)

Поскольку sx11 = 0 и θF − θG = π, то из уравнений
(25) для углов θF и θG находим условие

sz11 = h/I0, (43)

которому должен удовлетворять элемент sz11 на гра-
нице раздела Ȳ - иW -фаз. Уравнение, описывающее
границу этих фаз, нетрудно получить из условия
совместности трех уравнений для угла α1 и матрич-
ный элемент sz11 в формулах (41), (42) и (43). В ре-
зультате получается следующая связь между пара-
метрами модели и магнитным полем:

D =
2 gL
g

√
I20 − h2. (44)

Это выражение описывает аналитически штрихо-
вую линию на рис. 4.

Важно отметить, что в точках фазовой диаграм-
мы, лежащих на этой штриховой линии, ориентация
(антипараллельных) векторовRF иRG относитель-
но оси z не фиксирована. Последнее обстоятельство
означает вырождение основного состояния SU3F от-
носительно одновременного вращения спинов из F -
и G-подрешеток вокруг оси y при условии, что век-
торы RF и RG остаются антипараллельными.

Действительно, подставляя решения (41) для уг-
лов αj (j = 1, 2, 3) в формулы (22) и (23), а также
фиксируя в выражении (10) разницу в π между уг-
лами θF и θG, получаем

ε1 = D/2−
√
h2
L + (D/2)

2
, E0 = −J0S2N.

Следовательно, в точках фазовой диаграммы, лежа-
щих строго на границе Ȳ - и W -фаз (т. е. на штри-
ховой линии на рис. 4), энергия основного состо-
яния EMF = E0 + Nε1 (см. (26)) не зависит от
углов θF и θG.

Физическая причина такого поведения обуслов-
лена тем, что при θF − θG = π два эффективных по-
ля, действующих на спины из L-подрешетки со сто-
роны F - и G-подсистем, компенсируют друг друга

(см. формулу (12)). В результате L-подрешетка пе-
рестает «чувствовать» как F -, так и G-подсистемы.
При этом внешнее магнитное поле hL продолжа-
ет действовать на L-подсистему, ориентируя вектор
RL вдоль направления hL.

Одновременно с этим F - и G-подрешетки пе-
рестают «чувствовать» L-подсистему, поскольку
создаваемые ею эффективные поля в F - и G-
подрешетках полностью компенсируются внешним
магнитным полем h. Действительно, как следует,
например, из выражения (7), величины Ea и Eb

(см. обозначения (32)) являются теми самыми эф-
фективными полями, которые действуют на спины
соответственно из F - и G-подрешеток. Поскольку
в точках, лежащих на штриховой линии фазовой
диаграммы рис. 4, выполняются соотношения (42)
и (43), то указанные выше вклады в эффективные
поля Ea и Eb от L-подсистемы (−I0sz11 cos θF (G)) и
от внешнего магнитного поля (h cos θF (G)) взаимно
сокращаются.

Таким образом, в точках, принадлежащих пунк-
тирной линии на фазовой диаграмме на рис. 4, SU3F
распадается на две эффективно невзаимодейству-
ющие подсистемы, одна из которых образована из
спинов S = 1 (L-подрешетка), а вторая — из спинов
S = 1/2 (F - и G-подрешетки). При этом спины с
S = 1 ведут себя как парамагнетик во внешнем маг-
нитном поле, поскольку они продолжают испыты-
вать действие поля hL, а взаимодействие между ни-
ми отсутствует. Спины S = 1/2 ведут себя как двух-
подрешеточный (F и G) коллинеарный антиферро-
магнетик в эффективном нулевом магнитном по-
ле. Последнее обстоятельство, допускающее произ-
вольную ориентацию вектора антиферромагнетизма
в плоскости zx, обуславливает дополнительное вы-
рождение основного состояния.

8. ФАЗОВАЯ ДИАГРАММА SU3F ПРИ
I/J > 1

При I > J фазовая диаграмма SU3F в магнит-
ном поле качественно меняется. На рис. 7 представ-
лена фазовая диаграмма, рассчитанная при соот-
ношении обменных параметров I/J = 1.2. Видно,
что в этом случае реализуются четыре магнитные
фазы: Y -фаза, коллинеарная ферримагнитная фа-
за, V (V̄ )-фаза, ферромагнитная фаза.

В Y -фазе вектор RL среднего значения спи-
на в L-подрешетке (красная стрелка на пикто-
граммах рис. 7) направлен против магнитного поля
(оси z), а векторы RF и RG среднего спина в F -
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Рис. 7. Фазовая диаграмма основного состояния SU3F при

I/J = 1.2. Зеленая линия обозначает границу раздела

между Y -фазой и коллинеарной ферримагнитной фазой,

синяя линия — между коллинеарной ферримагнитной и V̄ -

фазой, черная линия — между ферромагнитной и коллине-

арной ферримагнитной фазами, красная линия — между

ферромагнитной и V -фазами, штриховая линия — между

V̄ - и V -фазами (на этой линии θL = −π/2)

и G-подрешетках (синие стрелки) составляют оди-
наковые по модулю, но противоположные по знаку
углы с осью z: θF = −θG. При этом |θF (G)| ∈ [0, π/2].

При переходе из Y -фазы в коллинеарную ферри-
магнитную углы θF и θG одновременно обращаются
в нуль и все три вектора RF , RG и RL оказывают-
ся коллинеарны: первые два направлены по полю, а
третий — против.

В области под синей и красной кривыми на рис. 7
реализуется так называемая V -фаза, в которой век-
тор RL составляет с осью z ненулевой угол θL, а
векторы RF и RG — равные друг другу углы θF
и θG. Последние принимают значения в интервале
(0, π/2). Данную область можно разделить прямой
линией (штриховой на рис. 7) на две подобласти.
Справа от этой линии угол |θL| < π/2, а слева угол
|θL| > π/2. За первой областью оставим обозначение
V -фаза, а вторую, чтобы отличать от первой, обо-
значим V̄ -фазой. Во всех точках штриховой линии
угол θL строго равен π/2.

В ферромагнитной фазе все три вектораRF , RG

и RL ориентированы вдоль магнитного поля.
Как и в предыдущем разделе, для понимания

магнитной структуры рассмотрим изменения пара-
метров порядка при движении по двум направле-
ниям на фазовой диаграмме: вдоль горизонталь-
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Рис. 8. Зависимости величин RL (красная линия), RF (G)

(синяя линия), M (черная линия) и |Q0
2| (зеленая ли-

ния) от напряженности внешнего магнитного поля h при

I/J = 1.2 и D/J = 6

ной пунктирной линии при фиксированном значе-
нии D/J = 6 и вдоль вертикальной пунктирной ли-
нии при значении поля h/J = 1 (см. рис. 7).

На рис. 8 представлены зависимости величин RL,
RF (G), M и Q0

2 от внешнего магнитного поля h при
D/J = 6. Это отвечает движению по горизонталь-
ной пунктирной линии на рис. 7. Видно, что измене-
ния RF (G) и Q0

2 при увеличении поля h на указан-
ном интервале незначительны, причем сокращение
среднего значения спина RF (G) из-за АФ невелико.
Средний момент L-подрешетки, напротив, подавлен
существенно как за счет АФ, так и ОА. В ферри-
магнитной фазе вектор RL направлен против поля,
и величина RL ожидаемо уменьшается с увеличени-
ем h. В ферромагнитной фазе вектор RL направлен
по полю, и величина RL — увеличивается.

Важный факт, который демонстрируют графики
на рис. 8, состоит в том, что эволюция магнитной
структуры происходит в той же последовательно-
сти, что и для антиферромагнетика на треугольной
решетке (АФМТР) с S = 1/2, но без ОА [38,43]. При
этом если в АФМТР существование протяженной
ферримагнитной (или uud) фазы может быть описа-
но только при учете квантовых флуктуаций (снима-
ющих случайное вырождение), то в SU3F эта фаза
возникает исключительно за счет ОА. Кроме того,
поведение полного момента M качественно воспро-
изводит основные этапы эволюцииM в АФМТР: мо-
нотонное возрастание M в Y -, V̄ - и V -фазах; поло-
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Рис. 9. Зависимости величин RL (красная линия), RF (G)

(синяя линия), M (черная линия) и |Q0
2| (зеленая линия)

от параметра D для I/J = 1.2 и при h/J = 1

гий участок в ферримагнитной (uud) фазе (то, что
в АФМТР принято называть 1/3-плато намагничен-
ности); и область насыщения M в ферромагнитной
фазе которое, однако, вследствие учета ОА слабо
выражено.

Отметим также, что при увеличении параметра
ОА интервал существования V̄ - и V -фаз на рис. 8
сжимается и, как следует из фазовой диаграммы на
рис. 7, при D/J � 7 этот интервал схлопывается в
точку.

На рис. 9 представлена зависимость величин RL,
RF (G), M и |Q0

2| от параметра анизотропии D при
I/J = 1.2 и величине магнитного поля h/J = 1.
Эти зависимости строятся при движении вдоль вер-
тикальной пунктирной линии на рис. 7. Видно, что
квадрупольный момент при увеличении h ожида-
емо возрастает, в то время как спиновый момент
RL из L-подрешетки после небольшого увеличения
в области малых полей далее монотонно уменьшает-
ся. Спиновые моменты RF (G) из F - и G-подрешеток
не меняют существенно своих значений на всем ин-
тервале изменения D. Поэтому заметное увеличение
полного моментаM в ферримагнитной фазе связано
не с изменением ориентации моментов или абсолют-
ных значений RF (G), а именно с уменьшением вели-
чины RL за счет ОА. При переходе в Y -фазу полный
момент M начинает уменьшаться, поскольку пово-
рот векторов RF и RG вокруг оси y уменьшает их
проекцию на ось z.

Три вертикальные линии на рис. 9 разделяют че-
тыре описанные выше фазы. При переходе из V -
фазы в ферримагнитную и из ферримагнитной в
Y -фазу все зависимости параметров порядка испы-
тывают излом. В то же время переход из V -фазы в
V̄ -фазу не сопровождается никакими аномалиями в
представленных зависимостях.

9. ВЫРОЖДЕНИЕ ОСНОВНОГО
СОСТОЯНИЯ ПРИ I = J

Случай I = J является особым, поскольку
классический аналог гамильтониана SU3F, как
мы сейчас покажем, имеет непрерывное случайное
вырождение.

Действительно, определим зависящий от пара-
метра λ гамильтониан:

Hλ = J
∑
{fg}

SfSg + λJ
∑
{fl}

SfSl + λJ
∑
{gl}

SgSl +

+D
∑
l

(Sy
l )

2 − h

⎛⎝∑
f

Sf +
∑
g

Sg + λ
∑
l

Sl

⎞⎠ , (45)

где направление магнитного поля h = gμBH в об-
щем случае произвольно. Все обозначения в форму-
ле (45) такие же, как и в гамильтониане (1). Видно,
что если для λ удовлетворяются сразу два условия:
λ = I/J = gL/g и поле h направлено вдоль оси z, то
гамильтониан (45) совпадает с оператором H, опре-
деленным формулой (1).

С другой стороны, нетрудно проверить, что га-
мильтониан (45) с точностью до константы

−JN
(
3

2
λ2SL(SL + 1) +

9

4
+

h2

6J2

)
, SL = 1, (46)

может быть представлен в виде

Hλ = D
∑
l

(Sy
l )

2
+

+
J

4

∑
p

(
SpF + SpG + λSpL −

h

3J

)2

, (47)

где сумма по p обозначает суммирование по тре-
угольным плакетам, а нижние индексы F , G и L

у спиновых операторов указывают на их принад-
лежность к соответствующей подрешетке в p-ом
плакете.

Таким образом, если для параметров SU3F вы-
полняется соотношение

I

J
=

gL
g
, (48)
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то гамильтониан SU3F в выражении (1) может быть
представлен в виде (47) с h, направленным вдоль
оси z.

Если теперь вместо операторов спина в (47) рас-
смотреть классические моменты, т. е. обычные век-
торы фиксированной длины, то, как нетрудно за-
метить, минимальное значение гамильтониана (47)
будет достигаться при равенстве нулю обоих его
слагаемых. Обращение в нуль первого слагаемого
означает, что спины L-подрешетки лежат в плоско-
сти легкого намагничивания zx. Требование обра-
щения в нуль второго слагаемого в (47) сводится к
уравнению

SpF + SpG + λSpL −
h

3J
= 0. (49)

Очевидно, что в определенном интервале значений
магнитных полей h это уравнение может быть удо-
влетворено бесконечным множеством решений, т. е.
ориентаций трех векторовRL, RF и RG, даже в том
случае, когда поле h не лежит в плоскости zx. Кро-
ме того, если направление магнитного поля парал-
лельно плоскости zx (как в рассматриваемом нами
случае), то ориентация векторов RL, RF и RG, ре-
ализующая минимум гамильтониана (47), может и
не быть компланарна с плоскостью zx.

Проведенный анализ классического предела га-
мильтониана (47) позволяет предположить, что от-
меченное (непрерывное) вырождение основного со-
стояния SU3F будет иметь место и в квантовом слу-
чае при выполнении соотношения (48). Выполнен-
ные нами расчеты в приближении среднего поля при
I = J и gL = g показали, что это действительно так.

Аналогичное рассмотренному вырождение имеет
место и в других квантовых магнетиках, например,
в АФМТР с S = 1/2 [43]. Как было впервые показа-
но в работе [38], указанное вырождение может быть
снято при учете нулевых квантовых колебаний. Та-
кой подход требует учета более высоких порядков
(по сравнению с гармоническим приближением, ис-
пользованным в данной работе) при бозонизации
спиновых операторов в рамках представления Голь-
штейна –Примакова для F - и G-подсистем и в фор-
мализме индефинитной метрики для L-подсистемы.

По этой причине построение фазовой диаграммы
SU3F при критических параметрах, удовлетворяю-
щих соотношению (48), будет проведено авторами в
рамках отдельного исследования.

10. СПИН-ВОЛНОВЫЕ ВОЗБУЖДЕНИЯ В
SU3F В МАГНИТНОМ ПОЛЕ

Спектральные свойства SU3F в нулевом магнит-
ном поле были подробно исследованы в работе авто-
ров [31]. В данном разделе мы проведем анализ из-
менений спектра в ненулевом магнитном поле при
фиксированном значении параметра ОА. Четыре
дисперсионные кривые εjk (j = 1, . . . , 4) рассчиты-
вались для каждого набора параметров модели на
основе уравнения (33), полученного в разд. 6.

На рис. 10 представлены результаты численных
расчетов дисперсионных кривых для четырех зна-
чений магнитного поля при параметрах модели
I/J = 0.8 и D/J = 3. На фазовой диаграмме на
рис. 4 указанным четырем значениям поля h отвеча-
ют четыре черные точки, лежащие на горизонталь-
ной пунктирной прямой. Видно, что при h/J = 1

реализуется Ȳ -фаза; при h/J = 1.87 — антипарал-
лельная фаза для F - и G-подрешеток; при h/J = 3

— W -фаза; и при h/J = 5.5 — ферромагнитная фа-
за. На каждом из четырех графиков рис. 10 име-
ются четыре дисперсионные кривые в соответствии
с четырьмя типами введенных бозонов. Но толь-
ко в отношении одной кривой (черной на всех гра-
фиках) можно утверждать, что ее природа почти
полностью определяется высокоэнергетическими d-
бозонами; остальные три ветви в той или иной степе-
ни формируются с учетом гибридизации состояний
a-, b- и c-бозонов.

Важное наблюдение состоит в том, что на трех
первых графиках, a, b и c, имеется как минимум од-
на голдстоуновская мода (синие кривые), связанная
с нарушением симметрии основного состояния от-
носительно вращения спинов F - и G-подрешеток на
один и тот же угол относительно направления маг-
нитного поля. В ферромагнитной фазе (рис. 10 d)
основное состояние не нарушает указанную симмет-
рию и соответственно голдстоуновская (безщелевая)
мода отсутствует.

Кроме того, на рис. 10 b голдстоуновских мод две
(совпадающие синяя и красная кривые). Происхож-
дение второй моды связано с обсуждавшейся в кон-
це разд. 7 особенностью точек фазовой диаграммы,
лежащих на штриховой кривой (см. рис. 4). В этом
случае моменты RF и RG лежат в плоскости zx

вдоль одной линии и противоположно направлены,
а энергия системы оказывается вырождена относи-
тельно вращения линии векторов RF и RG вокруг
оси y.
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Как отмечалось в разд. 7, такое поведение свя-
зано с обращением эффективных полей в нуль и
фактической независимостью L-подсистемы от F - и
G-подсистем. В такой ситуации узлы L-подрешетки
оказываются эффективно изолированными (в том
числе друг от друга), чем, в частности, и объясняет-
ся бездисперсность двух высокоэнергетических вет-
вей (черной и коричневой) на рис. 10 b.

На рис. 11 представлены графики дисперсион-
ных зависимостей εjk, рассчитанные при следую-
щих параметрах модели: I/J = 1.2, D/J = 6

для четырех значений внешнего магнитного поля:
h/J = 0.3, 1, 4 и 6. На фазовой диаграмме на
рис. 7 указанным четырем значениям поля h отве-
чают четыре черные точки, лежащие на горизон-
тальной пунктирной прямой. При увеличении маг-
нитного поля h в указанных точках фазовой диа-
граммы последовательно реализуются четыре фа-
зы: Ȳ -фаза при h/J = 0.3; ферримагнитная — при
h/J = 1; V -фаза при h/J = 4.3; ферромагнитная —
при h/J = 6.

Из графиков, представленных на рис. 11 следу-
ет, что голдстоуновская мода реализуется только в
первом случае (рис. 11 a), поскольку нарушение сим-
метрии основного состояния (относительно враще-
ний вокруг оси z) имеет место только в Ȳ -фазе. Во
всех других областях фазовой диаграммы на рис. 7
спектр возбуждения спиновых волн всегда щелевой.

11. ЗАКЛЮЧЕНИЕ

Главным итогом проведенного исследования яв-
ляется построение фазовой диаграммы SU(3)-фер-
римагнетика на треугольной решетке в координа-
тах магнитное поле h (лежащее в плоскости лег-
кого намагничивания)–параметр одноионной анизо-
тропии D при нулевой температуре. Среди харак-
терных особенностей модели рассмотренного SU3F
выделим следующие три: 1) разная величина спи-
на в магнитных подрешетках — в двух подрешетках
(F и G) спины S = 1/2, в третьей L-подрешетке
S = 1; 2) наличие одноионной анизотропии типа
легкая плоскость на узлах L-подрешетки со спина-
ми S = 1; 3) разные значения обменных интегралов
между спинами из F - и G- подрешеток (J) и между
спинами из L- и F (G)-подрешеток (I).

Результаты численных расчетов в приближении
среднего поля показали, что в зависимости от соот-
ношения между обменными интегралами I и J име-
ются два типа фазовой диаграммы SU3F, качествен-

но различающихся как по количеству реализующих-
ся фаз, так и по типу их магнитной структуры.

При I < J основное состояние SU3F в разных об-
ластях фазовой диаграммы может быть охарактери-
зовано тремя магнитными конфигурациями: Ȳ , W
и ферромагнитной (см. рис. 4). При этом в точках,
лежащих на границе между Ȳ - и W -фазами (штри-
ховая линия на рис. 4), реализуются состояния, в ко-
торых SU3F можно представить в виде двух не свя-
занных между собой магнитных подсистем. Одна из
этих подсистем состоит из спинов S = 1 на треуголь-
ной решетке и ведет себя как парамагнетик. Вторая
подсистема состоит из спинов S = 1/2, образующих
плоскую гексагональную решетку и находящихся в
фазе двухподрешеточного коллинеарного антифер-
ромагнетика в эффективном нулевом магнитном по-
ле. Последнее обстоятельство приводит к дополни-
тельному вырождению основного состояния относи-
тельно вращения вектора антиферромагнетизма в
плоскости легкого намагничивания и проявляется в
виде дополнительной голдстоуновской моды в спек-
тре спин-волновых возбуждений.

При обратном соотношении между обменными
интегралами (I > J) фазовая h–D-диаграмма SU3F
качественно модифицируется. Теперь на ней мож-
но выделить уже четыре области, различающиеся
типом магнитной структуры основного состояния, а
именно: Y -фазу, две коллинеарные ферри- и фер-
ромагнитные фазы и V -фазу. При этом последнюю
можно разделить еще на две фазы V̄ и V в зави-
симости от того, превышает угол θL величину π/2

или нет.

Для случаев I < J и I > J проанализированы
зависимости квадрупольного и дипольных парамет-
ров порядка как от магнитного поля при фиксиро-
ванном значении ОА, так и от параметра ОА при
фиксированном значении h. Важным результатом
этой части исследования следует считать зависи-
мость полного момента M от внешнего магнитного
поля, которая при I > J и определенном конечном
значении параметра ОА качественно воспроизводит
аналогичную зависимость, наблюдаемую в хорошо
известных квантовых антиферромагнетиках на тре-
угольной решетке с одинаковым значением спина
S = 1/2 для всех подрешеток и без ОА [38, 43]. В
частности, на определенном интервале магнитного
поля в зависимости M(h) имеется плато намагни-
ченности (имеющее, однако, в нашем случае неболь-
шой наклон), которое в АФМТР возникает за счет
квантовых антиферромагнитных флуктуаций, а в
SU3F за счет ОА.
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Важно отметить, что качественное различие
двух фазовых диаграмм при I < J и при I > J

таково, что при I → J непрерывная трансформа-
ция одной диаграммы в другую не имеет места. Де-
ло в том, что при равенстве обменных интегралов
(I = J) возникает случайное вырождение, приво-
дящее при среднеполевом рассмотрении к неопре-
деленности магнитной конфигурации при заданных
значениях магнитного поля и ОА. Наше предполо-
жение состоит в том, что, как и в случае АФМТР,
учет квантовых флуктуаций должен снять отмечен-
ное случайное вырождение (как, возможно, и от-
мечавшееся выше дополнительное вырождение при
I < J). Однако эта задача является предметом от-
дельного исследования.

Завершая обсуждение полученных в работе ре-
зультатов, еще раз отметим, что в рассмотренном
нами случае магнитное поле h, приложенное к кван-
товому SU3F, ориентировано в плоскости легкого
намагничивания. При ориентации магнитного поля
вдоль нормали к этой плоскости поведение парамет-
ров порядка квантового магнетика может быть ка-
чественно иным.
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ПРИЛОЖЕНИЕ A.
УНИТАРНОЕ ПРЕОБРАЗОВАНИЕ
ОПЕРАТОРОВ ХАББАРДА

В результате унитарных преобразований опера-
торов Хаббарда по формуле (20) с унитарным опе-
ратором Uñm̃(α) (n 	= m), определенным формулой
(17), получаются следующие выражения [40]:

Xnn = cos2 αX ññ + sin2 αXm̃m̃−

−1

2
sin 2α

(
X ñm̃ +Xm̃ñ

)
,

Xmm = cos2 αXm̃m̃ + sin2 αX ññ+

+
1

2
sin 2α

(
X ñm̃ +Xm̃ñ

)
,

Xnm = cos2 αX ñm̃ − sin2 αXm̃ñ+

+
1

2
sin 2α

(
X ññ −Xm̃m̃

)
,

Xmn = cos2 αXm̃ñ − sin2 αX ñm̃+

+
1

2
sin 2α

(
X ññ −Xm̃m̃

)
,

Xnp = cosαX ñp̃ − sinαXm̃p̃,

Xpn = cosαX p̃ñ − sinαX p̃m̃,

Xpm = cosαX p̃m̃ + sinαX p̃ñ,

Xmp = cosαXm̃p̃ + sinαX ñp̃,

Xpq = X p̃q̃,

в которых все четыре индекса состояний p, q, n и m

разные, а индексы узлов опущены. В основном тек-
сте для индексов трехкратно преобразованных опе-
раторов Хаббарда знак тильды, обозначающий но-
вые (преобразованные) состояния, для краткости не
используется.

ПРИЛОЖЕНИЕ B.
МАТРИЧНЫЕ ЭЛЕМЕНТЫ СПИНОВЫХ

ОПЕРАТОРОВ

В данном приложении представлен явный вид
матричных элементов sαnm ≡ 〈n|Sα

l |m〉 (α = {x, y, z}
и n,m = {1̄, 0, 1}), использованных в разложе-
нии (27). Эти элементы получены в результате
трех последовательных преобразований операторов
Хаббарда с помощью трех унитарных операторов,
U1−1(−α1), U0−1(−α3) и U10(−α2), и последующей
подстановке результата преобразования в представ-
ление (15) для спиновых операторов L-подрешетки.

Матричные элементы в разложении для опера-
тора Sz

l :

sz11 = (cosα1 cosα2 + sinα1 sinα2 sinα3)
2−

− sin2 α1 cos
2 α3,

sz1̄1̄ = (cosα1 sinα2 sinα3 − sinα1 cosα2)
2−

− cos2 α1 cos
2 α3,

sz00 = sin2 α2 cos
2 α3 − sin2 α3,

sz10 = sz01 = −1

2
sinα1(1 + sin2 α2) sin 2α3−

−1

2
cosα1 sin(2α2) cosα3,

sz1̄0 = sz01̄ = −1

2
cosα1(1 + sin2 α2) sin 2α3+

+
1

2
sinα1 sin(2α2) cosα3,
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sz1̄1 = sz11̄ =
1

2
cos 2α1 sin 2α2 sinα3+

+
1

2
sin 2α1(sin

2 α2 sin2 α3 − cos2 α3 − cos2 α2).

Для оператора Sx
l :

sx11 =
√
2(cosα1 sinα2−

− sinα1 sinα3 cosα2)(cosα1 cosα2+

+sinα1 sinα3 sinα2 + sinα1 cosα3),

sx1̄1̄ =
√
2(sinα1 sinα2+

+cosα1 sinα3 cosα2)(sinα1 cosα2−

− cosα1 sinα3 sinα2 − cosα1 cosα3),

sx00 =
1√
2
(cosα2 sin 2α3 − sin 2α2 cos

2 α3),

sx1̄1 =
cos 2α1√

2
(sinα2 cosα3 − sinα3 cos 2α2)−

− sin 2α1

2
√
2

(cosα2 sin 2α3 + sin 2α2(1 + sin2 α3)),

sx10 =
cosα1√

2
(cos 2α2 cosα3 + sinα2 sinα3)+

+
sinα1√

2
(cosα2 cos 2α3 +

1

2
sin 2α2 sin 2α3),

sx1̄0 = − sinα1√
2

(cos 2α2 cosα3 + sinα2 sinα3)+

+
cosα1√

2
(cosα2 cos 2α3 +

1

2
sin 2α2 sin 2α3),

sx1̄1 = sx11̄, sx10 = sx01, sx1̄0 = sx01̄.

Для оператора Sy
l :

sy11 = sy
1̄1̄

= sy00 = 0,

sy01 =
i√
2
(− sinα1 cosα2+

+cosα1(cosα3 + sinα2 sinα3)),

sy
1̄0

=
i√
2
(cosα1 cosα2+

+sinα1(cosα3 + sinα2 sinα3)),

sy
1̄1

=
i√
2
(sinα2 cosα3 − sinα3),

sy
1̄1

= −sy
11̄
, sy10 = −sy01, sy

1̄0
= −sy

01̄
.

Для оператора (Sy
l )

2:

〈1|(Sy
l )

2|1〉 = 1

2
+

1

2
cos2 α1 sin

2 α2+

+
1

2
sin2 α1(cos

2 α2 sin
2 α3 − sinα2 sin 2α3)−

−1

2
sin 2α1 cosα2(sinα2 sinα3 + cosα3),

〈1̄|(Sy
l )

2|1̄〉 = 1

2
+

1

2
sin2 α1 sin

2 α2+

+
1

2
cos2 α1(cos

2 α2 sin
2 α3 − sinα2 sin 2α3)+

+
1

2
sin 2α1 cosα2(sinα2 sinα3 + cosα3),

〈0|(Sy
l )

2|0〉 = 1

2
(sinα2 sin 2α3+

+1+ cos2 α2 cos
2 α3),

〈1̄|(Sy
l )

2|1〉 = 1

4
(cos2 α2 sin

2 α3 −

− sinα2 sin 2α3 − sin2 α2) sin 2α1 −

−1

2
cos 2α1 cosα2(sinα2 sinα3 + cosα3),

〈1̄|(Sy
l )

2|0〉 = 1

2
sinα1 cosα2(sinα3 − sinα2 cosα3) +

+
1

2
cosα1

(
sinα2 cos 2α3 −

1

2
cos2 α2 sin(2α3)

)
,

〈1|(Sy
l )

2|0〉 = 1

2
cosα1 cosα2(sinα2 cosα3 − sinα3) +

+
1

2
sinα1

(
sinα2 cos 2α3 −

1

2
cos2 α2 sin(2α3)

)
,

〈1|(Sy
l )

2|1̄〉 = 〈1̄|(Sy
l )

2|1〉, 〈0|(Sy
l )

2|1̄〉 = 〈1̄|(Sy
l )

2|0〉,
〈0|(Sy

l )
2|1〉 = 〈1|(Sy

l )
2|0〉.

ПРИЛОЖЕНИЕ C.
БОЗОНИЗАЦИЯ СПИНОВЫХ ОПЕРАТОРОВ

ДЛЯ S = 1

Используя представление (28) в формулах (27) и
оставляя только слагаемые не выше второго поряд-
ка по бозе-операторам, получаем следующее пред-
ставление спиновых операторов через бозевские:
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Sx
l =

1√
2
[(sx0,1(c

+
l + cl) + sx1̄,1(d

+
l + dl)+

+sx1̄,0(d
+
l cl + c+l dl) + sx1,1 + (sx0,0 − sx1,1)c

+
l cl+

+(sx1̄,1̄ − sx1,1)d
+
l dl],

Sy
l =

i√
2
[sy0,1(c

+
l − cl) + sy

1̄,1
(d+l − dl)+

+sy
1̄,0

(d+l cl − c+l dl)],

Sz
l = sz0,1(c

+
l + cl) + sz1̄,1(d

+
l + dl)+

+sz1̄,0(d
+
l cl + c+l dl) + sz1,1 + (sz0,0 − sz1,1)c

+
l cl+

+(sz1̄,1̄ − sz1,1)d
+
l dl,

(Sy
l )

2 =
1

2
[((sy

1̄,0
)2 − (sy

1̄,1
)2)c+l cl+

+((sy
1̄,0

)2 − (sy0,1)
2)d+l dl−

−sy
1̄,0

sy0,1(d
+
l + dl) + sy

1̄,0
sy
1̄,1

(c+l + cl)+

+((sy0,1)
2 + (sy

1̄,1
)2) + sy0,1s

y
1̄,1

(d+l cl + c+l dl)].

Приведенные выражения после усреднения и
применения спектральной теоремы для вычисления
средних от бозе-операторов использовались для по-
лучения формул, на основе которых рассчитыва-
лись параметры порядка RL, M и Q0

2.
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Исследована роль внутрищелевых состояний в процессах переноса заряда вдоль сверхпроводящей цепи

Китаева конечной длины. При рассмотрении этой задачи мы используем формализм нестационарных

функций Грина, которые содержат полную информацию о неравновесных и нестационарных свойствах

системы. Мы обсудим туннельный ток и нестационарный перенос заряда в конечной цепи Китаева во

внутрищелевом режиме. В предположении, что конечная цепь Китаева соединена на каждом крае со

своим собственным внешним контактом (нормальным резервуаром), получим зависящее от времени по-

ведение туннельного тока после внезапного изменения напряжения смещения на одном из контактов.

Полученные результаты покажут, насколько быстро «майорановская мода» на одном краю цепи ре-

агирует после того, как внешнее возмущение действует на «майорановскую моду» на другом краю.

Представлены полностью аналитические прямые вычисления тока, в отличие от многих других методов.

DOI: 10.31857/S0044451025010109

1. ВВЕДЕНИЕ

В последние десятилетия большое внимание уде-
ляется системам, в которых появляются состояния
с «топологически необычными» свойствами. Одна-
ко для практического использования мы должны
уметь оценивать конкретные физические характе-
ристики рассматриваемой системы в дополнение к
математической интерпретации свойств основного
состояния системы. Одной из простейших моделей,
демонстрирующих свойства, которые допускают то-
пологическую интерпретацию, является атомная це-
почка с p-волновой сверхпроводимостью бесспино-
вых частиц, предложенная А. Китаевым [1]. Ос-
новной интерес к модели в последующие годы был
вызван нетривиальной топологической интерпрета-
цией свойств ее основного состояния. Было пока-
зано, что в силу «топологических причин» внутри
сверхпроводящей щели возникают квантовые состо-
яния, локализованные на краях цепочки. Эти со-

* E-mail: ars@lpi.ru

стояния, часто называемые «майорановскими мо-
дами», обычно связывают с существованием ква-
зичастиц [2], имеющих родство с майорановскими
фермионами [3].

Возможные экспериментальные реализации
этой модели обычно основаны на эффекте бли-
зости в полупроводниковых проводах с сильным
спин-орбитальным взаимодействием, размещенных
на сверхпроводниковой подложке [4–6]. Послед-
ние достижения в эксперименте и обсуждение
возникающих трудностей можно найти в обзоре [7].

Принято считать, что дальнейшее развитие в
этой области может быть связано с рассмотрени-
ем моделей с эффективным действием Джозефсо-
на, учитывающим эффекты типа кулоновской бло-
кады [8–13]. Есть надежда, что дальнодействующее
кулоновское взаимодействие может помочь переда-
вать сигнал в системе конечных цепочек Китаева с
использованием «состояний Майораны». Но эффек-
ты перезарядки неизбежно включают процессы пе-
реноса заряда, поэтому мы должны быть уверены,
что правильно описываем туннельный транспорт и
эффекты переноса заряда сначала в самой простой
туннельной схеме. Теоретические результаты мож-
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но сравнить с экспериментами по туннелированию
в различных условиях [14, 15].

Некоторые теоретические исследования предпо-
лагают, что «майорановские состояния» могут быть
использованы в качестве защищенного от ошибок
способа хранения и передачи информации в кван-
товой технологии [16,17]. Однако если состояние за-
щищено от произвольных изменений из-за внешнего
шума, та же защита может сделать столь же слож-
ным и целенаправленное изменение состояния систе-
мы, что, в свою очередь, может сделать невозмож-
ным использование системы для каких-либо практи-
ческих приложений. Один из возможных способов
изучить, насколько хорошо система реагирует на
сигнал, — это исследовать ее нестационарные транс-
портные свойства.

В работе [18] нестационарные эффекты, связан-
ные с модуляцией прозрачности туннельных барье-
ров, рассматривались в квазиклассическом подходе.
В этой работе рассматривалась трехтерминальная
система, в которой один из контактов фактически
использовался для фиксации химического потенци-
ала сверхпроводника.Мы будем рассматривать двух
терминальную геометрию, в которой сверхпровод-
ник связан только с двумя внешними контактами
и для исследования роли локализованных состоя-
ний в нестационарных транспортных свойствах вос-
пользуемся формализмом нестационарных функций
Грина для электронов.

Ниже будет показано, что этот подход позволяет
нам получать аналитически явные выражения для
туннельного тока и нестационарного переноса заря-
да в отличие от более сложных методов, основан-
ных на уравнении для матрицы плотности, обсуж-
даемых, например, в [19]. Также мы получаем воз-
можность сравнить результаты квазиклассических
расчетов с микроскопическими и найти связь пара-
метров, использующихся в этих разных подходов.

Точные электронные функции Грина для беско-
нечной цепи Китаева в равновесии могут быть най-
дены аналитически [20]. Их можно использовать для
нахождения нестационарных функций Грина конеч-
ной цепи, которые позволяют нам увидеть, как си-
стема развивается во времени, если мы применим к
ней некоторое возмущение. Идея нашего рассмотре-
ния состоит в том, чтобы рассматривать конечную
цепь Китаева как разрезанную бесконечную цепь
или цепь с сильными дефектами (для цепи с од-
ним разрезом см., например, [21]). Этот трюк поз-
воляет нам использовать функции Грина бесконеч-
ной цепочки для исследования всех одночастичных
состояний в системе. Наши вычисления не требу-

ют какой-либо интерпретации особенностей в одно-
частичной функции Грина как некоторых особых
«состояний». Заметим здесь, что полюса одноча-
стичных функций Грина, которые появляются в ще-
ли сверхпроводника в этой модели, вряд ли можно
интерпретировать как одночастичные возбуждения.
Настоящие майорановские частицы, обсуждаемые
в пионерских работах [3], являются хорошо опре-
деленными частицами (квазичастицами) с обычной
алгеброй операторов рождения и уничтожения. В
любой физической задаче такие реальные частицы
вносят вклад в одночастичную функцию Грина с
вычетом, равным единице. Известно, что связанные
состояния, локализованные вокруг дефектов, таких
как парамагнитные [22] или резонансные [23] приме-
си с энергиями, лежащими внутри щели, часто воз-
никают в обычных сверхпроводниках. Такие состо-
яния являются истинными одночастичными состо-
яниями. В рассматриваемой задаче мы видим, что
появление полюсов в электронной функции Грина
в щели с вычетами, равными 1/2, является скорее
артефактом модели, имеющей вырожденное (в вы-
сокосимметричном случае) основное состояние, чем
появлением новых квазичастиц.

В настоящей работе мы применяем подход, ос-
нованный на неравновесных электронных функци-
ях Грина конечной цепочки Китаева. Мы начина-
ем с гамильтониана, выраженного через электрон-
ные операторы, который полностью описывает си-
стему. Используя определение электронного тока,
мы делаем точные вычисления без каких-либо при-
ближений. В рамках этого подхода нет необходимо-
сти во введении операторов Майораны и усложне-
нии диаграммных правил. Полученные выражения
для функций Грина цепочки конечной длины ис-
пользуются для вычисления стационарного и зави-
сящего от времени туннельного тока. Из этих вы-
ражений видно, что туннельный ток через «майора-
новские состояния» внутри щели всегда экспоненци-
ально мал для длинных цепочек.

2. СВОЙСТВА ИЗОЛИРОВАННОЙ
ЦЕПОЧКИ КИТАЕВА

В этом разделе мы кратко воспроизведем некото-
рые результаты, касающиеся спектральных свойств
конечной цепи, используя формализм функций Гри-
на, который мы будем использовать в дальнейших
разделах.

Начнем со свободной идеальной цепочки Кита-
ева, полностью изолированной от любых внешних
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систем. Можно записать модельный гамильтониан
такой системы как

ˆ̃H = −μ
N∑

n=1

ψ†
nψn − t

N−1∑
n=1

(
ψ†
nψn+1 + ψ†

n+1ψn

)
+

+

N−1∑
n=1

(
Δψ†

nψ
†
n+1 +Δ∗ψn+1ψn

)
. (1)

Здесь ψ†
n и ψn — операторы рождения и уничтоже-

ния частиц на узле n; μ — химический потенциал;
t — параметр перескока между двумя соседними уз-
лами; Δ — параметр порядка сверхпроводимости,
который в данной задаче мы считаем заданным па-
раметром; N — общее число узлов в решетке.

Для нахождения точных решений функций Гри-
на для гамильтониана (1) удобно использовать
функции Грина бесконечной цепочки Китаева. Дей-
ствительно, можно смоделировать поведение конеч-
ной цепочки, используя бесконечную цепочку с бес-
конечно сильными точечными дефектами U → +∞,
добавленными в узлах 0 и N + 1 (см. рис. 1). В ре-
зультате частицы, находящиеся между этими двумя
узлами, будут полностью изолированы от внешних

частей цепочки, а функции Грина будут идентичны
функциям Грина конечной цепочки длины N , по-
ка аргументы — номера узлов — лежат между 0 и
N + 1. Таким образом, поведение системы описы-
вается следующим гамильтонианом, соответствую-
щим системе на рисунке:

Ĥ = Ĥ0 + V̂ , (2)

где

Ĥ0 =− μ
∑
n

ψ†
nψn − t

∑
n

(
ψ†
nψn+1 + ψ†

n+1ψn

)
+

+
∑
n

(
Δψ†

nψ
†
n+1 +Δ∗ψn+1ψn

)
,

V̂ = U
(
ψ†
0ψ0 + ψ†

N+1ψN+1

)
.

Этот гамильтониан идентичен гамильтониану (1)
при U → ∞. Чтобы найти физические свойства
цепочки, мы воспользуемся формализмом нормаль-
ных и аномальных функций Грина, обозначенных
как Gnm(t, t′), Fnm(t, t′) соответственно. В этой ра-
боте мы будем использовать следующие определе-
ния функций Грина:

ΓR
nm(t, t′) =

(
GR

nm(t, t′) FR
nm(t, t′)

FR†
nm(t, t′) GR†

nm(t, t′)

)
= −i

〈({
ψn(t), ψ

†
m(t′)

}
{ψn(t), ψm(t′)}{

ψ†
n(t), ψ

†
m(t′)

} {
ψ†
n(t), ψm(t′)

})〉 θ(t− t′), (3)

ΓA
nm(t, t′) =

(
GA

nm(t, t′) FA
nm(t, t′)

FA†
nm(t, t′) GA†

nm(t, t′)

)
= i

〈({
ψn(t), ψ

†
m(t′)

}
{ψn(t), ψm(t′)}{

ψ†
n(t), ψ

†
m(t′)

} {
ψ†
n(t), ψm(t′)

})〉 θ(t′ − t), (4)

Γ<
nm(t, t′) =

(
G<

nm(t, t′) F<
nm(t, t′)

F<†
nm(t, t′) G<†

nm(t, t′)

)
= −i

〈(
ψ†
m(t′)ψn(t) ψm(t′)ψn(t)

ψ†
m(t′)ψ†

n(t) ψm(t′)ψ†
n(t)

)〉
, (5)

Здесь
{
â, b̂
}
= âb̂+ b̂â, 〈â〉 = Tr(ρ̂â). Индексы R и A

обозначают запаздывающие и опережающие функ-
ции Грина.

Используя уравнение Дайсона для гамильтониа-
на (2), мы можем выразить запаздывающие функ-
ции Грина ΓR

nm(t, t′) конечной цепочки в терминах
функций Грина Γ0R

nm(t, t′) бесконечной цепочки. В
Приложении показано,что функции ΓR

nm(ω) имеют
полюсы в точках ω = ±ω0, где

ω0 =
|Δ| (4t2 − μ2)

it

√
4(t2 − |Δ|2)− μ2

(
χN+1
+ − χN+1

−
)
. (6)

Здесь

χ± =
−μ± i

√
4t2 − (μ2 + 4|Δ|2)
2(t+ |Δ|) . (7)

Поскольку |χ±| < 1 (см. 52), выражение (6) записано
для случая |χ±|N 
 1. Для достаточно больших N

ω0 мало по сравнению с другими параметрами си-
стемы и убывает экспоненциально при увеличении
длины цепочки N .

Для случаев |Δ| << t и |Δ| < t, |Δ| → t «экспо-
ненциальная малость» выражения (6) по N может
быть показана явно:

ω0 =

⎧⎨⎩4 |Δ| e−N(|Δ|/t), |Δ| << t,

2te
−N ln

(√
2t/(t−|Δ|)

)
, (t− |Δ|)
 t.

(8)

Экспоненциальное убывание ω0 при увеличении
длины цепочки объясняется экспоненциально сла-
бым перекрытием двух связанных состояний на про-
тивоположных краях цепочки. Используя (8), мы
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можем оценить длину локализации связанных со-
стояний как

lloc �

⎧⎨⎩a(t/ |Δ|), |Δ| << t,

a/ ln
(√

2t/(t− |Δ|)
)
, (t− |Δ|)
 t,

(9)

где a — постоянная решетки.
Такая экспоненциальная зависимость наблю-

далась в эксперименте по туннелированию с
использованием методов кулоновской блокады,
описанном в [15].

В пределе N → ∞ состояния вокруг каждого
края цепи начинают вести себя так, как будто цепь
полубесконечна. При этом эти два полюса с вычета-
ми, равными 1/2, вместе соответствуют одному воз-
буждению Ферми, которое разделено между двумя
краями цепи. Таким образом, вычет в терминах со-
ответствующих возбуждений Боголюбова равен 1,
как и должно быть. Но глядя только на один конец
цепи, мы «видим» только половину этого возбуж-
дения. Это возбуждение Ферми очень специфич-
но, потому что это возбуждение, которое связывает
два основных состояния с разной четностью (числом
электронов), но с вырожденными энергиями.

Это утверждение можно легко проиллюстриро-
вать на простом примере двухузельной цепи. Га-
мильтониан (1) для двух сайтов можно легко диаго-
нализировать с помощью преобразования Боголю-
бова. В терминах операторов Боголюбова гамильто-
ниан принимает вид

Ĥ2 = E0 + ε1c
†
1c1 + ε2c

†
2c2, (10)

где

c1,2 = u
(ψ1 + ψ2)√

2
± v

(ψ†
1 − ψ†

2)√
2

,

v2, u2 =
1

2

(
1± μ

t

)
,

ε1,2 = t

(
1∓ Δ√

t2 − μ2

)
.

Для Δ =
√
t2 − μ2 (что в случае μ = 0 дает

Δ = t) мы получаем ε1 = 0 (решение (53) для слу-
чая N = 2, ω = 0). Тогда |Φ0〉 = 1√

2
(ψ†

1 − ψ†
2) |0〉

соответствует основному состоянию и удовлетво-
ряет c1,2 |Φ0〉 = 0. В то же время, состояние
|Φ1〉 = c†1 |Φ0〉 = (v + uψ†

1ψ
†
2) |0〉 тоже имеет нулевую

энергию, что означает, что основное состояние вы-
рождено. Для матричных элементов между этими
основными состояний мы имеем

〈Φ0|ψ1 |Φ1〉 = u/
√
2, 〈Φ1|ψ1 |Φ0〉 = v/

√
2.

Рис. 1. Бесконечная цепочка Китаева с двумя дефектами

Это означает, что в одночастичной функции G11 при
ω = 0 появляется полюс с вычетом, равным 1/2.

3. ТУННЕЛЬНЫЙ ТОК

Сначала рассмотрим стационарные туннельные
свойства цепи Китаева. Для этого мы предположим,
что в узлах 1 иN цепь присоединена к двум внешни-
ми резервуарам с большим числом степеней свобо-
ды, обозначенными индексами l и r соответственно.
Тогда полный гамильтониан можно записать как

ˆ̃H = Ĥ +
∑
p

τ lp

(
hl†
p ψ1 + ψ†

1h
l
p

)
+

+
∑
p

τrp

(
hr†
p ψN + ψ†

Nhr
p

)
+

+
∑
p

El
ph

l†
p h

l
p +
∑
p

Er
ph

r†
p hr

p. (11)

Ток, текущий в цепь через узел 1, определяется
обычным способом ( [24]) как

Il(t) = i
∑
p

τ lp

〈
hl†
p ψ1 − ψ†

1h
l
p

〉
. (12)

Используя формализм нестационарной диаграмм-
ной техники, это выражение можно переписать как

Il(t) = −
∑
p

τ lp

(
G̃<

lp,1(t, t)− G̃<
1,lp(t, t)

)
, (13)

где

G̃<
lp,1(t, t) =

∫
dt1g

<
lp(t, t1)τ

l
pG̃

A
1,1(t1, t)+

+

∫
dt1g

R
lp(t, t1)τ

l
pG̃

<
1,1(t1, t),

G̃<
1,lp(t, t) =

∫
dt1G̃

<
1,1(t, t1)τ

l
pg

A
lp(t1, t)+

+

∫
dt1G̃

R
1,1(t, t1)τ

l
pg

<
lp(t1, t).

Параметр p соответствует состояниям внутри обоих
резервуаров; gαp(ω) — функция Грина в резервуаре
α, когда он отсоединен от цепочки, где α принимает
значения l и r; G̃R

n,m(t, t1) — точные функции Грина
цепи, учитывающие переходы в резервуары.

Существенно, что туннельный гамильтониан
(11) и туннельный ток (12) выражены в терминах
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настоящих электронных операторов, и заведомо
дают ответ для реального электрического тока в
системе.

Отметим, что попытки использовать эффектив-
ные гамильтонианы в терминах операторов майора-
новских квазичастиц часто приводят, на наш взгляд,
к сомнительным ответам, так как обращение с майо-
рановскими операторами требует большой осторож-
ности и внимания. Из-за клиффордовских переста-
новочных соотношений непосредственно для майо-
рановских операторов нет теоремы Вика и парные
корреляторы не имеют смысла функций Грина, со-
ставляющих основу обычной диаграммной техники.
В расчетах, представленных в статье, мы не стал-
киваемся с какими-либо сложностями, с которыми
мы столкнулись бы, если бы работали с оператора-
ми Майораны. Для задачи о конечной цепочке Ки-
таева произвольной длины, вставленной между дву-
мя проводами и описываемой гамильтонианом (11),
мы вычислили точно электронный ток (12). Неуди-
вительно, что могут появляться некоторые расхож-
дения между нашими результатами и результатами
[25–27] и других авторов, поскольку последние бы-
ли получены с использованием ряда приближений в
представлении операторов Майораны.

В дальнейшем мы, как обычно, предполагаем,
что из-за большого числа частиц и степеней свободы
в каждом резервуаре функция распределения час-
тиц существенно не меняется на протяжении всего
эксперимента и, следовательно, каждый резервуар
остается практически в равновесном состоянии. Од-
нако система в целом не находится в равновесии,
хотя в этом разделе мы считаем ее стационарной, а
величина тока не меняется со временем. Таким об-
разом, выражение (13) можно переписать с исполь-
зованием частотно-зависимых функций Грина сле-
дующим образом:

Il = −
∑
p

τ lp

∫
dω

2π

(
G̃<

lp,1(ω)− G̃<
1,lp(ω)

)
. (14)

Здесь

G̃<
lp,1(ω) = g<lp(ω)τ

l
pG̃

A
1,1(ω) + gRlp(ω)τ

l
pG̃

<
1,1(ω),

G̃<
1,lp(t, t) = G̃<

1,1(ω)τ
l
pg

A
lp(ω) + G̃R

1,1(ω)τ
l
pg

<
lp(ω).

(15)

Иы можем упростить это выражение, если вве-
дем неприводимую часть

ΣR(A,<)
α (ω) =

∑
p

(
ταp
)2

gR(A,<)
αp (ω). (16)

Тогда мы можем использовать, что

Σ<
α (ω) = nα(ω)

(
ΣA

α (ω)− ΣR
α (ω)

)
,

где nα(ω) — функции распределения Ферми –Дира-
ка для резервуаров l и r. Тогда уравнение (14) может
быть переписано как

Îl = −
∫

dω

2π

(
ΣA

l (ω)− ΣR
l (ω)

)
×

×
(
nl(ω)

(
Γ̃A
1,1(ω)− Γ̃R

1,1(ω)
)
− Γ̃<

1,1(ω)
)
. (17)

Здесь ток Il задается верхним левым элементом мат-
рицы Îl (Î11l ). Выражение этого типа в терминах
неравновесных функций Грина было впервые выве-
дено в [24] и позже применено в [28]. Это выра-
жение кажется асимметричным относительно лево-
го и правого контакта. Но для стационарного случая
правильно рассчитанный ток (17) всегда можно за-
писать в явно симметричной форме.

В нашем случае уравнение (17) упрощается даль-
ше с помощью соотношений

Γ̃<
1,1(ω) = Γ̃R

1,1(ω)Σ
<
l (ω)Γ̃

A
1,1(ω)+

+ Γ̃R
1,N (ω)Σ<

r (ω)Γ̃
A
N,1(ω), (18)

Γ̃δ
1,1(ω) = Γ̃R

1,1(ω)Σ
δ
l (ω)Γ̃

A
1,1(ω)+

+ Γ̃R
1,N (ω)Σδ

r(ω)Γ̃
A
N,1(ω). (19)

Здесь
Γ̃δ
1,1(ω) = Γ̃A

1,1(ω)− Γ̃R
1,1(ω),

Σδ
α(ω) = ΣA

α (ω)− ΣR
α (ω).

Используя широзонное приближение для резер-
вуаров, будем считать, что для рассматривае-
мых значений ω выполняется ΣA

l(r)(ω) ≈ iγl(r),

ΣR
l(r)(ω) ≈ −iγl(r), где γl(r) = πνl(r)(τ

l(r)
p )2 и νl(r) —

плотность состояний в резервуаре l(r).
Прямая подстановка дает

Îl = 4γlγr

∫
dω

2π
Γ̃R
1,N(ω)Γ̃A

N,1(ω)(nl(ω)− nr(ω)). (20)

Формула такого типа была выведена в [24]. Сле-
дует отметить, что полученное уравнение для то-
ка через систему симметрично относительно двух
ее краев. Это, естественно, означает, что в стацио-
нарном случае ток, втекающий в систему, равен то-
ку, вытекающему из нее. Сохранение полного тока
не может быть нарушено ни в одной системе и не
требует дополнительных условий, таких как равные
скорости туннелирования или симметрично прило-
женное напряжение на разных краях. Таким обра-
зом, появление асимметричных выражений для ста-
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ционарного туннельного тока, полученных в некото-
рых работах, касающихся систем типа цепочки Ки-
таева (например, [29]), является сигналом к провер-
ке применяемого приближения. Это утверждение не
меняется для систем со взаимодействием, но вы-
вод явно симметричного выражения в этом случае
более сложен. Примеры такого расчета для систем
с электрон-фононным взаимодействием приведены,
например, в [30,31]. Подчеркнем, что уравнение (20)
является точным и явно симметричным для левого
и правого контактов.

Поскольку мы стремимся исследовать свойства
низкоэнергетического связанного состояния, соот-
ветствующего «майорановской моде», мы рассмот-
рим случай, когда приложенное напряжение мень-
ше величины сверхпроводящей щели. В этом слу-
чае мы исключаем влияние квазичастичных со-
стояний непрерывного спектра. Чтобы выразить
Γ̃R
1,N (ω) через функции Грина изолированной цепоч-

ки ΓR
n,m(ω), мы используем уравнение Дайсона

Γ̃R
n,m(ω) = ΓR

n,m(ω) + ΓR
n,1(ω)Σ

R
l (ω)Γ̃

R
1,m(ω)+

+ ΓR
n,N(ω)ΣR

r (ω)Γ̃
R
N,m(ω). (21)

Простые алгебраические преобразования дают

Γ̃R
1,N (ω) =

[̂
I+ γlγr

(
Î+ iγlΓ

R
1,1(ω)

)
ΓR
1,N (ω)×

×
(
Î+ iγrΓ

R
N,N(ω)

)
ΓR
N,1(ω)

]−1

×

×
(
Î+ iγlΓ

R
1,1(ω)

)
ΓR
1,N(ω)

(
Î+ iγrΓ

R
N,N(ω)

)
.

где Î — единичная матрица. Явная форма функ-
ций Грина ΓR

n,m(ω) для |ω| 
 |Δ| , t выводится в
Приложении. Простую форму можно получить, ес-
ли Δ2/(tγ)� 1. Сохраняя ведущие члены в (55) по
этому параметру, получаем

Γ̃R
1,N (ω) =

Cω0

ω2 − ω2
0 + 2i(γl + γr)Cω − 4γlγrC2

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)
, (22)

C ≡− |Δ| (4t2 − μ2)

2t(4(t2 − |Δ|2)− μ2)
(χ+ − χ−)

2 =
|Δ| (4t2 − μ2)

2t(t+ |Δ|)2 . (23)

Подставляя этот ответ в (20), мы получаем

Il =

∫
dω

2π

8γlγrC
2ω2

0

|ω2 − ω2
0 + 2i(γl + γr)Cω − 4γlγrC2|2

(nl(ω)− nr(ω)). (24)

Эти и дальнейшие вычисления производятся для
следующей иерархии параметров: t > Δ > γl,r. В
случае γl,r > Δ мы не можем исключить влия-
ние непрерывной части спектра на проводимость,
а информация о низкоэнергетических резонансах
теряется, поэтому этот случай мы рассматривать
не будем.

Мы видим, что величина тока (25) прямо пропор-
циональна ω2

0 , поэтому ток экспоненциально умень-
шается с увеличением длины цепи. Более того, ес-
ли ω0 = 0, что обычно ассоциируется с частицами
Майораны, ток через систему вообще не течет. Об-
ратим внимание, что уравнение (25) симметрично
по параметрам контактов l и r, как и должно быть.
Аналогичное выражение для нормальной компонен-
ты тока было получено в квазиклассическом подхо-
де в работе [18], где также было отмечено, что пик
при нулевом напряжении в туннельной проводимо-
сти вряд ли может быть замечен при реальном со-

отношении между ω0 и γl,r.

Пик в туннельной проводимости, связанный с
майорановскими состояниями, также исследовался
в работе [32]. В данной работе рассматривался один
NS-контакт, в котором предполагалось, что химиче-
ский потенциал сверхпроводника каким-то образом
фиксирован. Задача решалась методом эффектив-
ного коэффициента прохождения для квазичастиц,
что при наличии связанного состояния всегда при-
водит к формулам типа (25). Однако амплитуду пи-
ка для двух разных систем: одиночный NS-контакт
и сверхпроводник между двумя нормальными кон-
тактами, напрямую сравнивать нельзя из-за пробле-
мы фиксации химического потенциала сверхпровод-
ника. Заметим, что результаты, аналогичные работе
[32], для тока в NS-контакте при учете майоранов-
ских состояний, могут быть получены также мето-
дами работы [33].
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Если в формуле (25) приложенное напряже-
ние больше ширины локализованных состояний, но
меньше значения сверхпроводящей щели, что дает
nl(ω) − nr(ω) = 1 для |ω| � γl, γr, то мы получаем
простое окончательное выражение для туннельного
тока, связанного с майорановскими модами:

Il =
2γlγrCω2

0

γl + γr

1

4γlγrC2 + ω2
0

. (25)

Таким образом, величина тока всегда определяет-
ся наименьшей из тех скоростей переноса, кото-
рые есть в системе (слабым звеном системы); в на-
шем случае эти скорости определяются параметра-
ми ω2

0/(γl + γr), γl, γr. Если ω2
0 ≥ C2γlγr, то об-

щее уравнение (25) приводит к значению тока, про-
порциональному γlγr/(γl + γr), что является обыч-
ным выражением для туннелирования через проме-
жуточное состояние. Для рассматриваемой систе-
мы физически обоснованным выглядит соотноше-
ние ω0 
 γl, γr. Используя его, получаем

Il =
ω2
0

2C(γl + γr)
. (26)

Если мы используем уравнения (8) и (23), то эта
формула дает

I =

⎧⎪⎪⎨⎪⎪⎩
2Δt

(γl + γr)
e−2N(Δ/t), Δ
 t,

2t2

(γl + γr)
e−N ln(2t/(t−Δ)), (t−Δ)
 t.

(27)

Для произвольных параметров μ < Δ < t ток
всегда мал в длинных цепочках. В случае ω0 = 0,
который считается наиболее благоприятным слу-
чаем для наблюдения необычных топологических
свойств, мы вообще не сможем увидеть пик туннель-
ной проводимости при нулевом напряжении. Это
наблюдение справедливо для модели, рассмотрен-
ной в статье, с двумя контактами на краях це-
почки. Для измерения стационарного тока в лю-
бом эксперименте необходимо иметь по крайней ме-
ре два внешних провода, подключенных, скажем,
к «левому» и «правому» краям системы. Конеч-
но, существуют и более сложные многоконтакт-
ные схемы, но их рассмотрение выходит за рам-
ки данной статьи. Реальные гибридные структуры
полупроводник-сверхпроводник, имитирующие це-
почку Китаева, требуют рассмотрения модельного
гамильтониана, описывающего полупроводниковую
проволоку с сильным спин-орбитальным взаимо-
действием, связанную эффектами близости с ниж-
ним слоем из сверхпроводника. В этом случае мож-
но рассматривать сверхпроводник как резервуар с

фиксированным химическим потенциалом, а «вто-
рой контакт» как контакт между полупроводником
и сверхпроводником. В качестве альтернативы со-
единению на краях мы могли бы также рассмотреть
модель цепи Китаева, лежащей на подложке, где все
атомы цепи слабо связаны с соответствующими ато-
мами подложки. В этом случае «второй контакт»
с резервуаром становится распределенным в про-
странстве. Эта проблема может быть решена, но она
отличается от проблемы, рассмотренной в нашей
статье. Тем не менее, если перекрытие локализован-
ного состояния с состояниями резервуара мало, пик
тока вблизи нулевого смещения также должен быть
малым. Его значение в случае распределенного в
пространстве «второго контакта» не будет экспонен-
циально зависеть от длины цепи, но все равно будет
намного меньше, чем ожидается из наивных фор-
мул. Это может быть возможной причиной того, что
пик нулевого смещения часто плохо наблюдается в
обычных туннельных экспериментах [14].

Мы хотели бы подчеркнуть, что наивно исполь-
зуемые общие формулы для туннельного тока меж-
ду двумя контактами часто вводят в заблуждение,
когда их используют для низкоразмерных систем и
таких объектов, как цепочка Китаева [21], из-за воз-
можного появления локализованных состояний в об-
ласти контакта.

Ответ низшего порядка (второго порядка по тун-
нельной связи) квантово-механической теории воз-
мущений описывает ток только в начальный момент
времени после «включения» связи, но стационарное
значение туннельного тока можно вычислить толь-
ко с помощью полной системы кинетических урав-
нений или, что то же самое по сути, полной систе-
мы уравнений для нестационарных функций Кел-
дыша –Грина. Только в простых системах с непре-
рывным спектром и неявно предполагаемой быст-
рой релаксацией электронов к равновесному распре-
делению эта формула, апеллирующая к равновесной
локальной плотности состояний выводов, заведомо
справедлива.

Поясним эту идею на примере туннельного кон-
такта с локализованным состоянием на краю одно-
го из контактов. Это локализованное состояние да-
ет резкий пик в локальной плотности состояний, и
вносит вклад в простейшую формулу для туннель-
ного тока. Предположим, что это состояние пусто
в первый момент (лежит выше уровня Ферми). За-
тем сразу после того, как мы «включили» положи-
тельное напряжение смещения на другой провод,
ток начинает течь в это пустое локализованное со-
стояние. Но после некоторого времени релаксации,
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определяемого скоростью туннелирования, это со-
стояние становится заполненным, и после этого ни
один электрон не может туннелировать в это состо-
яние. Стационарный туннельный ток обращается в
ноль, хотя самая простая формула все еще дает вам
что-то вроде «нулевого пика» в туннельной прово-
димости. Чтобы это локализованное состояние по-
влияло на стационарный ток, нужно включить неко-
торые неупругие процессы, ответственные за удале-
ние (или добавление) электронов из этого локализо-
ванного состояния. Для системы конечного размера
также возможно, что это локализованное на одном
краю системы состояние имеет некоторое перекры-
тие со вторым контактом. (И это наш случай и слу-
чай с распределенным «заземленным контактом» в
реальной системе.)

В обычной формуле для туннельного тока, кото-
рая использует локальную плотность состояний кон-
тактов, неявно предполагается, что в любой момент
мы фиксируем химические потенциалы для всех со-
стояний контактов. Для поддержания постоянного
химического потенциала система должна быть со-
единена с некоторым резервуаром через контакт,
обеспечивающий обмен частицами. Таким образом,
если мы говорим, что мы фиксируем химический
потенциал локализованных состояний, то мы име-
ем в виду, что неявным образом учитываем некото-
рые неупругие релаксационные процессы или пря-
мую связь с резервуаром для этих состояний.

4. НЕСТАЦИОНАРНЫЙ ТОК

Теперь попытаемся ответить на вопрос о том, ка-
ковы типичные временные масштабы для тока или
переноса заряда с одного края цепи на другой. Мы
поставим вопрос по другому, чем это было сделано
в статье [18], где исследовалось влияние периодиче-
ского изменения туннельной прозрачности барьеров
на туннельную проводимость при нулевом напряже-
нии на системе. Для такой постановки задачи инте-
ресным результатом стало обнаружение и исследо-
вание резонанса между частотой внешнего воздей-

ствия и расщеплением ω0 майорановских состояний.
Нас же будут интересовать характерные скорости
переходных процессов. Для этого предположим, что
система в целом находится в равновесии при t < 0,
а затем при t = 0 к одному из выводов прикла-
дывается напряжение. Это дополнительное напря-
жение вызывает нестационарный ток, который при
t→ +∞ достигает стационарного значения (25).

Приложенное напряжение смещает уровни энер-
гии в резервуарах на Vα, где индекс α обозначает
резервуар. Таким образом, гамильтониан резервуа-
ров теперь можно записать как

Ĥα(t) =
∑
p

ταp

(
hα†
p ψ1 + ψ†

1h
α
p

)
+

+
∑
p

(
Eα

p + Vαθ(t)
)
hα†
p hα

p . (28)

Ток, текущий из левого резервуара в систему, опре-
деляется как (для «правого» контакта r все форму-
лы можно записать так же)

Il(t) = −
∫

dt′
(
Σ<

l (t, t
′)G̃A

1,1(t
′, t)+

+ΣR
l (t, t1)G̃

<
1,1(t

′, t)−
−G̃<

1,1(t, t
′)ΣA

l (t
′, t)−

−G̃R
1,1(t, t

′)Σ<
l (t

′, t)
)
. (29)

Здесь неприводимая часть имеет вид

ΣR
α (t, t

′) = −i
∑
p

(ταp )
2θ(t− t′)×

× exp

(
−iEα

p (t− t′)− iVα

∫ t

t′
dt1θ(t1)

)
, (30)

Σ<
α (t, t

′) = i
∑
p

(ταp )
2nα

p×

× exp

(
−iEα

p (t− t′)− iVα

∫ t

t′
dt1θ(t1)

)
. (31)

В частотном представлении эти выражения соответ-
ствуют формулам

ΣR
α (ω, ω

′) = −i(τα)2
∫

dενα(ε)

[
− 1

ω − ε− Vα + 2iδ

(
− 1

ω′ − ω − 2iδ
+

1

ω′ − ω + Vα

)
+

+
1

ω′ − ε+ 2iδ

(
− 1

ω − ω′ − Vα
+

1

ω − ω′ − 2iδ

)]
, (32)

Σ<
α (ω, ω

′) = i(τα)2
∫
dενα(ε)nα(ε)

(
1

ω − ε− Vα + iδ
− 1

ω − ε− iδ

)(
1

ω′ − ε− Vα − iδ
− 1

ω′ − ε+ iδ

)
. (33)
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Здесь να(ε) — плотность состояний в резервуаре α,
δ → +0. Для простоты предположим, что τα не за-
висит от p. Для широкозонного приближения, когда
мы предполагаем, что ν(ε) существенно не меняется
для ε ∼ ω, ω′, Vl,r, эти выражения упрощаются до

ΣR
l (ω, ω

′) =− iγl2πδ(ω
′ − ω),

Σ<
l (ω, ω

′) =
iγl
π

∫
dεnl(ε)×

×
(

1

ω − ε− Vl + iδ
− 1

ω − ε− iδ

)
×

×
(

1

ω′ − ε− Vl − iδ
− 1

ω′ − ε+ iδ

)
.

В результате в частотном представлении (29)
упрощается до

Îl(ω) = −
∫

dΩ

2π

(
Σ<

l (Ω,Ω− ω)Γ̃δ
1,1(Ω− ω)−

−2iγlΓ̃<
1,1(Ω,Ω− ω)

)
. (34)

Здесь

Γ̃<
1,1(Ω,Ω− ω) = Γ̃R

1,1(Ω)Σ
<
l (Ω,Ω− ω)Γ̃A

1,1(Ω− ω)+

+ Γ̃R
1,N (Ω)Σ<

r (Ω,Ω− ω)Γ̃A
N,1(Ω− ω),

Γ̃δ
1,1(Ω− ω) =Γ̃A

1,1(Ω− ω)− Γ̃R
1,1(Ω).

Используя уравнения Дайсона для запаздывающих
и опережающих функций Грина, мы можем пока-
зать, что

Γ̃δ
1,1(Ω− ω) =ω

N∑
n=1

ΓR
1,n(Ω)Γ

A
n,1(Ω− ω)+

+ Γ̃R
1,1(Ω)2iγlΓ̃

A
1,1(Ω− ω)+

+ Γ̃R
1,N(Ω)2iγrΓ̃

A
N,1(Ω− ω).

Подставляя два последних выражения в (34),
получим

Îl(ω) = −
∫

dΩ

2π

(
ω

N∑
n=1

Γ̃R
1,n(Ω)Γ̃

A
n,1(Ω− ω)×

× Σ<
l (Ω,Ω− ω)+

+ 2i
(
γrΣ

<
l (Ω,Ω− ω)− γlΣ

<
r (Ω,Ω− ω)×

)
× Γ̃R

1,N (Ω)Γ̃A
N,1(Ω− ω)

)
. (35)

Здесь

Σ<
r (ω, ω

′) =
iγr
π

∫
dεnl(ε)×

×
(

1

ω − ε− Vr + iδ
− 1

ω − ε− iδ

)
×

×
(

1

ω′ − ε− Vr − iδ
− 1

ω′ − ε+ iδ

)
. (36)

Мы видим, что первый член в (35) существует
только если Vl 	= 0 и не зависит напрямую от свойств
резервуара r. Это означает, что этот член соответ-
ствует заполнению состояний на левом краю цепи
из-за изменения ее химического потенциала. Следо-
вательно, второй член представляет собой ток, кото-
рый течет из одного резервуара в другой через всю
цепочку. Если рассмотреть только второй член, то
получим

Îl(t) =
2γlγr
π

∫
dεdV M̂1,N(t, ε, V )

(
M̂1,N (t, ε, V )

)†
×

×
[
nl(ε)δ(V − Vl)− nr(ε)δ(V − Vr)

]
,

M̂1,N (t, ε, V ) =

∫
dΩ

2π
e−iΩtΓ̃R

1,N(Ω)×

×
(

1

Ω− ε− V + iδ
− 1

Ω− ε− iδ

)
.

Поскольку нашей задачей является изучить перенос
возмущения через цепочку, будем считать, что в
момент времени t = 0 напряжение меняется только
на правом контакте, и будем смотреть на зависящий
от времени ток в левый контакт при условии Vl = 0.
Тогда прямыми вычислениями можем получить, что

M̂1,N (t, ε, V ) = −iθ(−t) e−iεtCω0

(ε+ iC(γl + γr))2 − ω2

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)
− iθ(t)

e−i(ε+Vr)tCω0

(ε+ V + iC(γl + γr))2 − ω2

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)
−

− iCω0θ(t)

2ω
e−C(γl+γr)t−iωt

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)(
− 1

ε+ V + iC(γl + γr)− ω
+

1

ε+ iC(γl + γr)− ω

)
−

− iCω0θ(t)

−2ω e−C(γl+γr)t+iωt

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)(
− 1

ε+ V + iC(γl + γr) + ω
+

1

ε+ iC(γl + γr) + ω

)
.
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Il(t) =
4γlγrC

2ω2
0

π
θ(t)

∫
dεnl(ε)

∣∣∣∣ 1

(ε+ iC(γl + γr))2 − ω2

∣∣∣∣2−
− 4γlγrC

2ω2
0

π
θ(t)

∫
dεnr(ε− Vr)×

×
∣∣∣∣− e−iεt

(ε+ iC(γl + γr))2 − ω2 −
1

2ω
e−C(γl+γr)t−iωt

(
− 1

ε+ iC(γl + γr)− ω
+

1

ε− Vr + iC(γl + γr)− ω

)
+

+
1

2ω
e−C(γl+γr)t+iωt

(
− 1

ε+ iC(γl + γr) + ω
+

1

ε− Vr + iC(γl + γr) + ω

)∣∣∣∣2 .

Здесь

ω =
√

ω2
0 − C2(γl − γr)2. (37)

Как и ожидалось, если t→∞, то ток приближается
к своему стационарному значению (25):

Il(t→∞) =
4γlγrC

2ω2
0

π
θ(t)×

×
∫

dε(nl(ε)− nr(ε− Vr))×

×
∣∣∣∣ 1

(ε+ iC(γl + γr))2 − ω2

∣∣∣∣2 .
Если t → +0, ток на противоположном краю цепи
не наблюдается, что иллюстрирует непрерывность
изменения тока при проходе через t = 0:

Il(t→ +0) =
4γlγrC

2ω2
0

π
θ(t)×

×
∫

dε(nl(ε)− nr(ε))×

×
∣∣∣∣ 1

(ε+ iC(γl + γr))2 − ω2

∣∣∣∣2 = 0.

Если теперь, как и в предыдущем разделе, нас
интересует роль «майорановских состояний», то мы
прикладываем к правому контакту дополнительное
напряжение, которое больше ширины локализован-
ных состояний, но меньше значения сверхпроводя-
щей щели. Это означает, что для ε � γl, γr выпол-
няются условия

nl(ε) = nr(ε) = 0, nr(ε− Vr) = 1.

Ток определяется как

Il(t) = −
2γlγrCω2

0

γl + γr

1

ω2
0 + 4C2γlγr

θ(t)+

+
2γlγrCω2

0

(γl + γr)ω
2 e

−2C(γl+γr)tθ(t)−

− iγlγr
C2ω2

0

ω2

e−2C(γl+γr)t+2iωtθ(t)

ω + iC(γl + γr)
+

+ iγlγr
C2ω2

0

ω2

e−2C(γl+γr)t−2iωtθ(t)

ω − iC(γl + γr)
. (38)

Мы рассматриваем случай γr, γl � ω0 в предполо-
жении что ω0 всегда мало. Но для очень симмет-
ричной туннельной связи с выводами мы могли бы
иметь ω2

0 � (γr − γl)
2. Этот случай выглядит нереа-

листичным, тем не менее, он демонстрирует осцил-
лирующий токовый сигнал на левом краю:

Il(t) = −
ω2
0

2C(γl + γr)
×

×
[
1− e−2C(γl+γr)t

]
−

−
[
ω0

2
sin(2ω0t)−

C(γl + γr)

2
(1− cos(2ω0t))

]
× e−2C(γl+γr)t. (39)

Если ω0 
 |γr − γl| и t > 0, уравнение (38) упро-
щается

Il(t) = −
ω2
0

2C(γl + γr)
×

2mm]×
[
1 +

4γlγr
(γl − γr)2

e−2C(γl+γr)t

− (γl + γr)

(γl − γr)2
(
γle

−4Cγrt + γre
−4Cγlt

)]
. (40)
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(Заметим, что знак минуса означает, что ток течет
из r в l.) Для существенно различных скоростей тун-
нелирования, например, γr � γl, временная эволю-
ция ведущего вклада в ток определяется самой мед-
ленной скоростью:

Il(t) = −
ω2
0

2Cγr

[
1− e−4Cγlt

]
. (41)

Последняя формула показывает, что если γl → 0,
то токовый сигнал на другом конце цепочки нарас-
тает очень медленно.

5. ЗАКЛЮЧЕНИЕ

В статье показано, что транспортные свойства
цепочки Китаева конечной длины можно полностью
исследовать с помощью обычной техники электрон-
ных функций Грина. Для любой нестационарной за-
дачи этот язык, по-видимому, гораздо удобнее язы-
ка майорановских фермионов и других методов и
позволяет получать точные аналитические резуль-
таты. Наши вычисления позволяют связать феноме-
нологические параметры для квазичастиц при ква-
зиклассических расчетах с микроскопическим опи-
санием квазиодномерных сверхпроводников.

Было показано, что стационарный туннельный
ток через конечную цепочку всегда определяется
наименьшей из скоростей переноса среди парамет-
ров ω2

0/(γl + γr), γl, γr, если приложенное напря-
жение меньше сверхпроводящей щели. Для произ-
вольных параметров μ < |Δ| < t стационарный
ток всегда экспоненциально мал для длинных це-
почек. Следует отметить, что для конечной цепоч-
ки Китаева, помещенной между двумя внешними
контактами-термостатами, не может быть заметного
пика при ω0 в туннельной проводимости. А в случае
ω0 = 0 стационарный ток полностью исчезает.

Также получено поведение туннельного тока, за-
висящее от времени, после внезапного изменения на-
пряжения смещения в одном из выводов. Было по-
казано, что типичные временные масштабы эволю-
ции туннельного тока определяются в основном ско-
ростями туннелирования γl, γr из левого и правого
краевых участков цепи в соответствующие выводы.
Хотя мы представили здесь результаты для идеаль-
ной системы, мы можем быть уверены на основе вы-
водов статей [34, 35], что слабый беспорядок не ме-
няет заметно свойства идеальной цепи Китаева. По-
этому только сильный беспорядок может полностью
изменить наши результаты.

В заключение заметим, что при рассмотрении
систем из набора китаевских цепочек часто строит-
ся эффективное описание на основе эффектов куло-
новской блокады. Однако такое эффективное опи-
сание чувствительно к скоростям переноса заряда,
это может быть важно для современных предложе-
ний по передаче сигнала или квантовому обмену ин-
формацией и ее хранению с использованием цепей
Китаева.

Финансирование. Работа выполнена при фи-
нансовой поддержке Российского научного фонда,
грант № 23-22-00289.

ПРИЛОЖЕНИЕ.
АНАЛИТИЧЕСКОЕ ОПИСАНИЕ

ИЗОЛИРОВАННОЙ ЦЕПОЧКИ КИТАЕВА

В этом разделе мы приводим формулы для
функций Грина изолированной цепочки Китаева.

Как показано в [20], точное решение для функ-
ций Грина бесконечной цепи можно найти как

Γ0R
nm(ω) = − 1

4(|Δ|2 − t2)(A+ −A−)
×

×
[
χ
|n−m|
+ M̂1 − χ

|n−m|
− M̂2

]
. (42)

Здесь

M̂1 =

⎛⎝ ω−μ−2tA+√
A2

+
−1

2Δsign (n−m)

−2Δ∗sign (n−m) ω+μ+2tA+√
A2

+
−1

⎞⎠ ,

M̂2 =

⎛⎝ ω−μ−2tA−√
A2

−−1
2Δsign (n−m)

−2Δ∗sign (n−m) ω+μ+2tA−√
A2

−−1

⎞⎠ .

Комплексное значение квадратного корня
√

A2
± − 1

определяется таким образом, что оно имеет разрез
на отрезке A± ∈ (−1, 1) и имеет положительные зна-
чения при A± > 1,

A± =

tμ± |Δ|
√

μ2 + 4(|Δ|2 − t2)
(
1− (ω+iδ)2

4|Δ|2
)

2(|Δ|2 − t2)
,

(43)

χ± = A± −
√
A2

± − 1. (44)
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Подразумеваем δ → +0. Функцию Грина гамиль-
тониана (2) можно записать через функцию Грина
бесконечной цепи, используя уравнение Дайсона с
возмущением V̂ ,

ΓR
nm(ω) = Γ0R

nm(ω) + Γ0R
n0 (ω)UσzΓ

R
0m(ω)+

+ Γ0R
n,N+1(ω)UσzΓ

R
N+1,m(ω). (45)

Если мы решим уравнение (45) для ΓR
nm(ω) и учтем

предел U →∞, то мы можем найти точное решение
для функций Грина ΓR

nm(ω):

ΓR
nm(ω) = Γ0R

nm(ω)− Γ0R
n0×

× (ω)
(
Γ0R
0,0(ω)− Γ0R

0,N+1(ω)(Γ
0R
N+1,N+1(ω))

−1Γ0R
N+1,0(ω)

)−1×

×
(
Γ0R
0,m(ω)− Γ0R

0,N+1(ω)(Γ
0R
N+1,N+1(ω))

−1Γ0R
N+1,m(ω)

)
−

− Γ0R
n,N+1(ω)

(
Γ0R
N+1,N+1(ω)− Γ0R

N+1,0(ω)(Γ
0R
00 (ω))

−1Γ0R
0,N+1(ω)

)−1×

×
(
Γ0R
N+1,m(ω)− Γ0R

N+1,0(ω)(Γ
0R
00 (ω))

−1Γ0R
0m(ω)

)
. (46)

Элементы матрицы ΓR
nm(ω) описывают функции

Грина конечной цепи, если аргументы удовлетворя-
ют соотношению 0 < n,m < N+1. Можно непосред-
ственно проверить, что ΓR

nm(ω) = 0, если один из ар-
гументов n и m положительный, а другой отрица-
тельный, что дает нам прямое доказательство того,
что наша процедура эффективно удаляет узел n = 0

из системы. То же самое верно для узла n = N + 1.

Можно видеть, что функция ΓR
nm(ω) может

иметь набор полюсов при значениях ω, заданных
уравнением

det
(
Γ0R
00 (ω)− Γ0R

N+1,0(ω)(Γ
0R
00 (ω))

−1Γ0R
0,N+1(ω)

)
= 0.

(47)
Поскольку Γ0R

nm(ω) не имеет полюсов внутри ще-
ли, можно предположить, что решения этого урав-
нения соответствуют энергиям состояний, локали-
зованных на краях цепочки. Прямая подстановка
функций Грина (42) позволяет найти решение для
ω при произвольных значениях параметров.

Для полубесконечной цепи, если N →∞, ситуа-
ция значительно упрощается. Уравнение (47) упро-
щается до

det
(
Γ0R
0,0(ω)

)
= 0, (48)

и он имеет только одно решение в щели ω = 0. это
решение не возникает, если |μ| > 2t. Этот полюс при
ω = 0 существует в функции ΓR

nm(ω) только если оба
n и m положительны или оба отрицательны, для

любого набора параметров t, μ,Δ, удовлетворяюще-
го соотношению

t2 > (μ/2)2 +Δ2,

условию, которое разделяет топологически нетриви-
альную и тривиальную фазы. Это означает, что си-
стема, описываемая гамильтонианом (2), имеет два
состояния с энергией ω = 0, одно слева, а другое
справа от дефекта, разрезающего цепочку на две
подсистемы.

Если теперь рассмотреть длинную конечную це-
почку длины N , то мы можем записать уравнение
для локализованных состояний как

det
[
Γ
(X)R
N+1,N+1(ω)

]
= 0, (49)

где Γ(X)R
N+1,N+1(ω) — это функция Грина для полубес-

конечной цепочки,

Γ(X)R
nm (ω) ≡

≡ Γ0R
nm(ω)− Γ0R

n0 (ω)
(
Γ0R
0,0(ω)

)−1
Γ0R
0,m(ω). (50)

Поскольку в дальнейшем нас будут интересовать
связанные состояния в щели с энергиями, близкими
к нулю, вычисления можно упростить за счет следу-
ющего факта. При ω → 0 значения χ удовлетворяют
условию |χ±| < 1. Действительно, при ω = 0 урав-
нение (44) дает
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χ± =
−μ± i

√
4t2 − (μ2 + 4|Δ|2)
2(t+ |Δ|) . (51)

Как следствие,

|χ|2 =

(
t− |Δ|
t+ |Δ|

)
. (52)

Это означает, что |χ| < 1 для t2 > ((μ/2)2 + Δ2)

и ω 
 |Δ|. Таким образом, величины типа |χ|N ,
появляющиеся в функциях Γ0N , являются малыми
параметрами для больших N , и в дальнейшем мы
будем называть такие величины «экспоненциально
малыми», имея в виду экспоненциальное убывание
с длиной цепи (или числом узлов).

Расписывая (49) через ω и χN
± , которые мы счи-

таем малыми, как объяснено выше, получаем

0 = det

[
−Îω t

|Δ| (4t2 − μ2)
−

−
(

1 Δ
|Δ|

Δ∗

|Δ| 1

)
1

ω

|Δ| (4t2 − μ2)

2t(4(t2 − |Δ|2)− μ2)
×

×
(
χN+1
+ − χN+1

−
)2]

, (53)

где Î — единичная матрица. Решение ω = 0 принад-
лежит полюсу функции Грина, который существу-
ет только на полубесконечных участках цепи. Дру-
гая пара решений имеет конечные, но малые энергии
ω = ±ω0, где

ω0 =
|Δ| (4t2 − μ2)

it

√
4(t2 − |Δ|2)− μ2

×

×
(
χN+1
+ − χN+1

−
)
. (54)

Здесь мы видим, что это решение удовлетво-
ряет приближениям, которые мы сделали, если∣∣χN+1

±
∣∣ 
 1. Принимая во внимание (51), условие

t2 = ((μ/2)2 + Δ2) разделяет две области с ос-
циллирующим и не осциллирующим ω0. Если ω0

пересекает ноль при изменении μ, это означает
изменение фермионной четности, как обсуждалось
в статье [36].

Главный член разложения функции Грина
ΓR
nm(ω) при ω → ±ω0, который в квантовой
механике описывал бы пространственную струк-
туру волновых функций двух локализованных
состояний, принимает следующий вид:

ΓR
nm(ω) =− ω

(ω + iδ)2 − (ω0)2
|Δ| (4t2 − μ2)

2t(4(t2 − |Δ|2)− μ2)
×

×
(
(χn

+ − χn
−)(χ

m
+ − χm

− )

(
1 Δ

|Δ|
Δ∗

|Δ| 1

)
+ (χN+1−n

+ − χN+1−n
− )(χN+1−m

+ − χN+1−m
− )

(
1 − Δ

|Δ|
−Δ∗

|Δ| 1

))
−

− ω0

(ω + iδ)2 − (ω0)2
|Δ| (4t2 − μ2)

2t(4(t2 − |Δ|2)− μ2)
×

×
(
(χn

+ − χn
−)(χ

N+1−m
+ − χN+1−m

− )

(
1 − Δ

|Δ|
Δ∗

|Δ| −1

)
+ (χN+1−n

+ − χN+1−n
− )(χm

+ − χm
− )

(
1 Δ

|Δ|
−Δ∗

|Δ| −1

))
.

(55)

Диагональные элементы Γnn показывают про-
странственное распределение плотности в локали-
зованных состояниях. В пределе Δ = t только Γ11 и
ΓNN не равны нулю, поскольку (52)

χn
+ ∝ χn

− ∝ |t− |Δ||
n/2

.

В высокосимметричном случае μ = 0 и |Δ| → t

энергетические уровни равны

ω0 =
4 |Δ| t
t+ |Δ|

(
t− |Δ|
t+ |Δ|

)N
2

×

× sin

(
π(N + 1)

2

)
→ 0. (56)

Как было замечено ранее (см., например, [37]), при
нечетном числе узлов ω0 равняется нулю при про-
извольных значениях t и Δ.
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This study examines electron transport in astrophysical plasmas mediated by Coulomb collisions and collision-

less wave-particle interactions, using a kinetic transport model that incorporates spectral evolutions through

these interactions. It investigates the transport of suprathermal electrons via whistler turbulence and the effects

of plasma magnetization. Key findings indicate that in strongly magnetized plasmas, diffusion timescales in

pitch angle space become saturated at large pitch angles, independent of increasing magnetic field strength.

Conversely, in weakly magnetized plasmas, these timescales decrease with decreasing magnetic field strength,

enhancing electron transport in velocity space. The study also identifies minimum conditions for resonant scat-

tering, dominated by wave-particle interactions over Coulomb collisions, which depend on Coulomb collision

effects and the power-law slope of the whistler turbulence spectrum. These findings have applications in weakly

magnetized astrophysical plasmas, from the relatively strong magnetic fields of the interplanetary medium to

the very weak magnetic fields of the intracluster medium.

DOI: 10.31857/S0044451025010110

1. INTRODUCTION

Plasma physics is essential for understanding var-
ious astrophysical and laboratory phenomena, where
electron transport significantly influences the behavior
and evolution of plasma systems. In the field of fusion
plasma, plasma heating and current drive have been
primarily examined to maintain the conditions neces-
sary for the magnetic confinement of plasmas [1]. It has
been demonstrated that the propagation and damping
of radiofrequency waves, including ion cyclotron, elec-
tron cyclotron, and lower-hybrid waves, produce ener-
getic ions and electrons through Landau and cyclotron
damping, which leads to current drive generation in the
plasma system. Along with such collisionless damp-
ing, the collisional relaxation of energetic particles is
involved in the evolution of particle distribution in the
plasma system. Likewise, collisionless wave-particle in-
teractions and collisional relaxation also play a crucial
role in particle transport in astrophysical plasmas. In-

* E-mail: hjhspace223@gmail.com

deed, turbulence and the associated plasma instabili-
ties are ubiquitous in astrophysical plasmas, and un-
derstanding energy transport through such turbulence
is a long-standing problem [2–5].

Plasma phenomena and their dynamical evolution
in space and astrophysical plasmas depend on the mag-
netization, defined as follows:

ωpe

Ωe
=

√
4πn0e2/me

eB0/mec
∝
√
n0

B0
, (1)

where

ωpe =
√
4πn0e2/me, Ωe = eB0/mec

stand for the plasma frequency and electron gyrofre-
quency, respectively, and these quantities depend on
the plasma density n0 and magnetic field B0. Thus, the
phenomena associated with plasma physics have been
examined across a wide range of magnetization fac-
tors [6–11]. For instance, the characteristics of plasma
instabilities in space plasma depend on the properties
of the medium, such as strongly magnetized plasma in
the solar atmosphere near the Sun (ωpe/Ωe < 1) and
weakly magnetized plasmas in the solar wind propa-
gating toward Earth (ωpe/Ωe > 1) [6, 7]. Additionally,
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a wide range of ωpe/Ωe can be adopted to model the
pulsar wind propagation from the strongly magnetized
magnetosphere of a pulsar to the weakly magnetized
pulsar wind nebulae propagating toward the interstel-
lar medium [8, 9]. Furthermore, rigorous theories have
been proposed for kinetic turbulence and their roles in
particle heating through energy transfer in ambient as-
trophysical environments, including weakly magnetized
media such as interplanetary, interstellar, and intra-
cluster media (ωpe/Ωe � 1) [10, 11].

Understanding turbulence and dynamical evolution
in various astrophysical media is crucial for compre-
hending particle transport across strongly magnetized
to weakly magnetized plasmas, which is essential to
examine the nature of plasma distribution in various
space and astrophysical plasmas. The mechanisms be-
hind particle transport in space weather have been par-
ticularly examined so far. Indeed, suprathermal elec-
trons have been observed by the Parker Solar Probe
in the interplanetary medium; these electrons are ex-
pected to originate in the solar corona and escape into
the interplanetary medium along open magnetic field
lines [12, 13]. While particle transport in plasmas
has primarily been attributed to Coulomb collisions,
observational evidence of suprathermal electrons high-
lights the importance of collisionless wave-particle in-
teractions. In this regard, recent theoretical studies
have proposed a kinetic model based on the Fokker-
Planck equation, including wave-particle interactions
mediated by plasma turbulence [14–23]. For instance,
Kim et al. [14] highlighted that the persistence of a
non-Maxwellian distribution in the solar wind could
be exhibited through wave-particle interactions due to
Langmuir turbulence in the absence of Coulomb col-
lisions (see also [15]). Tang et al. [16] incorporated
Coulomb collisional effects along with wave-particle
interaction terms into the kinetic model and showed
that Coulomb collisions predominantly transport core
electrons following a Maxwellian distribution, whereas
suprathermal electrons are preferentially accelerated
through whistler turbulence. Simulation studies using
the particle-in-cell (PIC) method have also shown the
formation of suprathermal electrons through whistler
turbulence [24, 25]. These findings are consistent with
observational evidence of suprathermal electrons in in-
terplanetary space [12, 13].

Despite the considerable progress mentioned above,
several gaps persist in our understanding, particularly
regarding how these mechanisms operate under dif-
ferent plasma magnetization conditions. Notably, the
plasma parameters, including magnetization, differ be-
tween interplanetary space and other astrophysical me-

dia such as interstellar and intracluster media. Conse-
quently, plasma phenomena related to particle trans-
port could also differ. While simulation studies using
kinetic plasma simulations have demonstrated possible
acceleration mechanisms through collisionless shocks
and turbulence in various astrophysical media [26–31],
it is essential to understand the transport of such ac-
celerated particles in these media to demonstrate the
persistence of non-Maxwellian distributions.

In this context, this work aims to improve our un-
derstanding of particle transport theory based on the
kinetic transport equation and whistler turbulence un-
der different plasma magnetization conditions relevant
to various astrophysical media. To achieve this, we
adopt a kinetic transport model that incorporates the
spectral evolution influenced by both Coulomb colli-
sions and wave-particle interactions, as proposed in pre-
vious works [16–19]. By examining how suprathermal
electrons are transported through whistler turbulence
under varying degrees of plasma magnetization, we ex-
tend the applicability of the kinetic transport model to
various astrophysical environments. This work reveals
distinct behaviors in diffusion timescales for weakly and
strongly magnetized plasmas, with significant implica-
tions for electron transport dynamics. Additionally,
we identify minimum conditions for resonant scattering
dominated by wave-particle interactions over Coulomb
collisions, highlighting dependencies on Coulomb col-
lision effects and the power-law slope of the whistler
turbulence spectrum. This comprehensive approach al-
lows us to explore diffusion timescales in both veloc-
ity and pitch angle space, providing new insights into
the underlying processes governing electron transport
in plasmas.

2. DESCRIPTION OF THE KINETIC MODEL

The evolution of the electron velocity distribution
function in astrophysical environments has been exam-
ined using the kinetic transport equation [16–19]. The
electromagnetic interaction in a typical astrophysical
environment includes the electric force and the Lorentz
force, which are described as follows:

a = − eE

me
− e

me
(v ×B) = ar(r) + aL. (2)

Here, e and me are the electric charge and the mass of
electrons, and E and B denote the electric and mag-
netic fields, respectively. ar(r) is the radial component
of the acceleration due to the electric force, whereas aL
is the non-radial component due to the Lorentz force.
Using the acceleration a due to the external forces along
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with the terms responsible for Coulomb collisions and
wave-particle interactions of kinetic turbulence, the ki-
netic transport equation can be described as follows:

∂f(r,v, t)

∂t
+ (v · ∇r)f(r,v, t) + (a · ∇v)f(r,v, t) =

=

(
δf

δt

)
cc

+

(
δf

δt

)
wp

. (3)

Here, the electron velocity distribution function is ex-
pressed in the position (r), velocity (v) and time (t)
domains, and (δf/δt)cc and (δf/δt)wp include the ef-
fects of Coulomb collisions and kinetic turbulence, re-
spectively. In the coordinates of the radial distance r,
the velocity v, and the parameter including the pitch
angle θ between the velocity and magnetic field vectors
(μ ≡ cos θ), Equation (3) becomes

∂f

∂t
+ vμ

∂f

∂r
+ ar(r)

(
μ
∂f

∂v
+

(1− μ2)

v

∂f

∂μ

)
+

+
v

r
(1 − μ2)

∂f

∂μ
=

(
δf

δt

)
cc

+

(
δf

δt

)
wp

. (4)

The Coulomb collisions with Maxwellian back-
grounds of electrons and protons have been employed
in the solar wind environments [16]. The term associ-
ated with the Coulomb collisions [32] can be expressed
as:(

δf

δt

)
cc

= cv,e

{[
erf
(

v

vth,e

)
−G

(
v

vth,e

)]
×

× 1

2v3
∂

∂μ

[
(1− μ2)

∂f

∂μ

]
+

+
1

v2
∂

∂v

[
G

(
v

vth,e

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,e
G

(
v

vth,e

)
f

]}
+

+ cv,p

{[
erf
(

v

vth,p

)
−G

(
v

vth,p

)]
×

× 1

2v3
∂

∂μ

[
(1− μ2)

∂f

∂μ

]
+

+
1

v2
∂

∂v

[
G

(
v

vth,p

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,p

me

mp
G

(
v

vth,e

)
f

]}
, (5)

where mp/me is the proton-to-electron mass ratio and
vth,e and vth,p are the thermal velocities of the back-
ground Maxwellian electrons and protons. erf(x) and
G(x) are the error function and the Chandrasekhar

function, respectively. The collision frequencies cor-
responding to the collisions with the Maxwellian back-
ground electrons (cv,e) and protons (cv,p) are given by:

cv,e =
4πn0e

4 ln Λ

m2
e

, (6)

cv,p =
4πn0e

4 ln Λ

m2
p

, (7)

where n0 and ln Λ are the plasma density and the
Coulomb logarithm.

To model the terms for wave-particle interaction,
we consider the resonant scattering of electrons by
right-handed polarized whistler waves as a main wave-
particle interaction mechanism in the turbulent plasma
system. Considering the cyclotron resonance of elec-
trons with waves propagating parallel to the guiding
magnetic field B0, the resonant particles satisfy the
following condition:

ωr(k) = vμk‖ + nΩe, (8)

where ωr and k are the oscillatory wave frequency and
the wavenumber, respectively, and Ωe = |e|B0/mec is
the electron gyrofrequency. The integer n 	= 0 must
be finite for cyclotron resonance through the parallel
waves. In the whistler regime (ωr < Ωe), the magnetic
power spectrum [18, 22] can be described as follows:

PB(k) = A
c

Ωe

∣∣∣∣ kcΩe

∣∣∣∣−s

, (9)

where A is the normalization constant, and the spectral
index s is expected not to exceed 2 [22]. The evolu-
tion of the electron distribution function due to wave-
particle interaction through whistler turbulence [16–19]
can be expressed as(

δf

δt

)
wp

=
∂

∂μ

(
Dμμ

∂f

∂μ
+

1

me
Dμv

∂f

∂v

)
+

+
1

v2
∂

∂v

(
v2
(

1

me
Dμv

∂f

∂μ
+

1

m2
e

Dvv
∂f

∂v

))
. (10)

The diffusion tensor for nonrelativistic electrons is ex-
pressed as:

D̄vv ≡
Dvv

Ωe(mec)2
=

π

3

A

a

(
β|μ|
a

) s−1

3

(1 − μ2), (11)

D̄μv ≡
Dμv

Ωe(mec)
=

Dvμ

Ωe(mec)
=

= −π

3

A

a

[
μ

|μ|

(
β|μ|
a

) s−2

3

+
μ

β

(
β|μ|
a

) s−1

3

]
(1−μ2),

(12)
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D̄μμ ≡
Dμμ

Ωe
=

π

3

A

a
×

×
[(

β|μ|
a

) s−3

3

+ 2
μ

|μ|
μ

β

(
β|μ|
a

) s−2

3

+

+

(
μ

β

)2(
β|μ|
a

) s−1

3

]
(1− μ2). (13)

Here, we used dimensionless parameters, β = v/c

and a = ω2
pe/Ω

2
e with the plasma frequency

ωpe =
√

4πn0e2/me. To consider both weakly
magnetized plasmas such as interplanetary, interstel-
lar, and intracluster media (a � 1) and strongly
magnetized plasmas near the stellar magnetosphere
(a < 1), we examine the properties of wave-particle
interactions mediated by whistler turbulence over a
wide range of parameter a.

In the kinetic model described by Equation (4), the
detailed evolution mediated by Coulomb collisions and
wave-particle interactions depends on the initial elec-
tron distribution. The electron distribution of thermal
plasma is typically modeled as Maxwellian, given by:

fth,e(v) =
n0

π3/2v3th,e
exp

[
−
(

v

vth,e

)2
]
. (14)

While the Maxwellian distribution is suitable for de-
scribing the medium in the absence of nonlinear
processes such as plasma and magnetohydrodynamic
(MHD) waves, shocks, and turbulence, it has been
demonstrated that plasma processes associated with
such phenomena can accelerate particles. This particle
energization results in a distribution that deviates from
Maxwellian, known as the kappa distribution [33–35].
The electron kappa distribution is defined as:

fκ,e(v) =
n0

π3/2v3th,e

Γ(κ+ 1)

(κ− 3/2)3/2Γ(κ− 1/2)
×

×
[
1 +

1

(κ− 3/2)

(
v

vth,e

)2
]−(κ+1)

, (15)

where Γ(x) is the Gamma function and the parameter
κ determines the slope of the suprathermal distribu-
tion. For v � vth,e, the kappa distribution follows a
power-law form,

fκ,e(v) ∝ v−2(κ+1).

A smaller value of κ results in a flatter particle distri-
bution, whereas a larger value of κ makes the kappa
distribution closer to Maxwellian. In the subsequent
section, we explore how the initial slope of the elec-
tron distribution function influences electron transport

through whistler turbulence, taking into account the
dependence on magnetization.

It is noteworthy that the nature of plasma turbu-
lence and wave-particle interaction mediated by such
turbulence could be substantially different from the in-
terpretation obtained through linear theory [36, 37].
Specifically, the effects of nonlinear processes on en-
ergy dissipation by whistler waves have been examined
through PIC simulations [38, 39]. According to the re-
sults of these numerical simulations, the significance of
nonlinear damping of whistler waves depends on the
fluctuation energy of the turbulence and the magneti-
zation of the plasma system [38]. In weakly magne-
tized plasma, linear damping dominates over nonlinear
damping, indicating that the theory developed in the
linear regime could be applicable for examining wave-
particle interaction through whistler turbulence. In
strongly magnetized plasma, when the turbulent fluc-
tuation (δB) is sufficiently weak (i.e., δB ≤ B0), linear
theory could be applicable. In this regard, the kinetic
model in this work could be suitable for weak turbu-
lence systems in space and astrophysical environments.
For systems with strong turbulence (δB ≥ B0), non-
linear processes should be taken into account in the
model, which is beyond the scope of this paper.

3. ELECTRON TRANSPORT THROUGH
WAVE-PARTICLE INTERACTION AND ITS
DEPENDENCE ON THE MAGNETIZATION OF

THE PLASMA SYSTEM

Firstly, we examine the acceleration timescales
through whistler turbulence and their dependence on
the magnetic field strength using the three diffusion co-
efficients. The acceleration timescales can be derived
as follows:

τvv

Ω−1
e

≡ γ2
em

2
ev

2

Ω−1
e Dvv

=
3a

Aπ
β2

(
β|μ|
a

) 1−s
3

(1 − μ2)−1,

(16)

τμv

Ω−1
e

≡
∣∣∣∣ γemev

Ω−1
e Dμv

∣∣∣∣ =
=

3a

Aπ
β

∣∣∣∣∣ μ|μ|
(
β|μ|
a

) s−2

3

+
μ

β

(
β|μ|
a

) s−1

3

∣∣∣∣∣
−1

×

× (1 − μ2)−1, (17)
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Fig. 1. Comparison of τμv/τvv (upper panels) and τμμ/τvv (lower panels) across parameter space. The plots depict variations

with respect to electron velocity β ranging from 10−3 to 10−1, and magnetization parameter a spanning from 10−4 to 104.

Larger values of a indicate weakly magnetized plasmas, whereas smaller values denote strongly magnetized plasma

τμμ

Ω−1
e

≡
∣∣∣∣ 1

Ω−1
e Dμμ

∣∣∣∣ =
=

3a

Aπ

∣∣∣∣∣
(
β|μ|
a

) s−3

3

+
2μ

|μ|
μ

β

(
β|μ|
a

) s−2

3

+

+

(
μ

β

)2(
β|μ|
a

) s−1

3

∣∣∣∣∣
−1

(1 − μ2)−1, (18)

where γe is the Lorentz factor, which is approximately
1 for nonrelativistic particles. To assess the relative im-
portance of pitch angle scattering, the following ratios
were calculated:

τμv
τvv

=

∣∣∣∣∣βμ|μ|
(
β|μ|
a

)− 1
3

+ μ

∣∣∣∣∣
−1

, (19)

τμμ
τvv

=

∣∣∣∣∣β2

(
β|μ|
a

)− 2
3

+
2βμ2

|μ|

(
β|μ|
a

)− 1
3

+ μ2

∣∣∣∣∣
−1

.

(20)
In a strongly magnetized plasma (a → 0), the ratios
simplify to:

τμv
τvv

→ |μ|−1
,
τμμ
τvv

→ |μ|−2
, (21)

indicating that the relative importance of diffusion in
pitch angle space is independent of the particle velocity

β and magnetic field strength parametrized by a once
the particles satisfy the resonant condition. Given that
the pitch angle parameter satisfies |μ| < 1, the follow-
ing relations hold true in strongly magnetized plasmas:

τvv < τμv < τμμ. (22)

In weakly magnetized plasmas (a � 1), however, the
ratios of these characteristic timescales may vary de-
pending on the particle velocity β and magnetic field
strength a.

Fig. 1 shows τμv/τvv and τμμ/τvv as functions of
electron velocity β and magnetization a. A few points
were noted: (1) In weakly magnetized plasmas (a� 1),
diffusion processes in the pitch angle space become
prominent, whereas a saturated behavior is observed
for particle acceleration in sufficiently strong magnetic
fields (a 
 1). (2) The dependence on magnetic field
strength is more pronounced for accelerating electrons
with higher β. Particularly, panels (a) and (d) show
that τμv/τvv and τμμ/τvv exhibit similar asymptotic
behaviors for small β and large pitch angles |μ| > 0.5,
irrespective of a. Conversely, panels (b), (c), (e), and
(f) illustrate that the effects of magnetic field strength
on pitch angle scattering are more significant for elec-
trons with larger β. (3) In strongly magnetized plasmas
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(a < 1), τμv and τμμ increase as the pitch angle |μ| de-
creases, whereas the opposite behavior is observed in
weakly magnetized plasmas (a > 1). This indicates
that wave-particle interactions are influenced by the
magnetic field strength of the background medium.

Next, we examine the conditions under which
the acceleration timescales are dominated by wave-
particle interactions over Coulomb collisions. Assum-
ing fixed background temperatures (constant vth,e and
vth,p), these regimes depend on the magnetic field
strength and the initial distribution of suprathermal
electrons. Considering the diagonal terms in (δf/δt)cc
and (δf/δt)wp for velocity space diffusion, we have the
following expressions:(

δf

δt

)
cc

≈ cv,e

{
1

v2
∂

∂v

[
G

(
v

vth,e

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,e
G

(
v

vth,e

)
f

]}
+

+ cv,p

{
1

v2
∂

∂v

[
G

(
v

vth,p

)
v
∂f

∂v

]
+

+
1

v2
∂

∂v

[
2v2

v2th,p

me

mp
G

(
v

vth,e

)
f

]}
, (23)

(
δf

δt

)
wp

≈ 1

v2
∂

∂v

[
v2
(

1

m2
e

Dvv
∂f

∂v

)]
=

=
1

v2

[
2v

m2
e

Dvv
∂f

∂v
+

∂Dvv

∂v

v2

m2
e

∂f

∂v
+

+
v2

m2
e

Dvv
∂2f

∂v2

]
. (24)

For v � vth,e, the Chandrasekhar function can be
approximated as G(v/vth,e) ≈ (v/vth,e)

−2/2 and Equa-
tion (23) simplifies to:

(
δf

δt

)
cc

≈ cv,e

{
1

v2
∂f

∂v
+

+
1

2

(vth,e

v

)2 [
− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

]}
+

+ cv,p

{
1

v2
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∂f

∂v
+

+
1

2

(vth,p

v

)2 [
− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

]}
. (25)

Assuming the suprathermal electrons follow a kappa
distribution function, the distribution of high-energy

Fig. 2. a — Maximum acceleration timescale, τvv,max, plotted

against β for four different q values. b — τvv,max shown for

three different β values across various q values. The electron

thermal velocity is set as vth,e/c = 10−3. Gray lines indicate

τvv,max/c
−1
v,e = 1

electrons with v � vth,e approximates to a power-law
tail, f ∝ v−q. The derivatives of f are expressed as
follows:

∂f

∂v
= −qv−1f, (26)

∂2f

∂v2
= q(q + 1)v−2f. (27)

Using Equations (26) and (27), Equations (24) and
(25) can be rewritten as(

δf

δt

)
cc

≈ cv,e

{
−qf

v3
+

1

2

(vth,e

v

)2 [q(q + 2)f

v3

]}
+

+ cv,p

{
−me

mp

qf

v3
+

1

2

(vth,p

v

)2 [q(q + 2)f

v3

]}
, (28)

(
δf

δt

)
wp

≈ 1

v2

[
q(q − 1)Dvv

m2
e

f−

− qvDvv(s− 1)β(s−4)/3

3m2
ec

f

]
. (29)
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Fig. 3. τμv,max and τμμ,max for weakly (left panels) and strongly (right panels) magnetized plasmas. Here, the electron thermal

velocity is assumed as vth,e/c = 10−3, and the gray lines display the value τmax/c
−1
v,e = 1

Electrons gain energy when

(δf/δt)cc + (δf/δt)wp ≥ 0.

In this case, we obtain the following inequality for Dvv:

Dvv ≥
[
q(q − 1)

m2
ev

2
− q(s− 1)β(s−4)/3

3m2
evc

]−1

×

×
{
cv,e

[
q

v3
− 1

2

(vth,e

v

)2(q(q + 2)

v3

)]
+

+ cv,p

[
me

mp

q

v3
− 1

2

(vth,p

v

)2(q(q + 2)

v3

)]}
. (30)

Using the inequality (30), we examine how the slope of
the initial distribution of suprathermal electrons could
influence the relative importance between Coulomb col-
lisions and wave-particle interactions. For nonrelativis-
tic electrons where vth,e/c 
 β 
 1 (or the Lorentz
factor γe ≈ 1), the acceleration timescale (τvv) satisfies

τvv ≡
γ2
em

2
eβ

2

Dvv
≤

≤ c−1
v,eβ

3(q − 1)

∣∣∣∣1− 1

2

(vth,e

v

)2
(q + 2)

∣∣∣∣−1

+

+ c−1
v,pβ

3(q − 1)

∣∣∣∣me

mp
− 1

2

(vth,p

v

)2
(q + 2)

∣∣∣∣−1

. (31)

To explore the dependence on the slope of the
suprathermal electron distribution, we estimate the
maximum acceleration timescales for the two different
regimes as follows:

τvv,max ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4β3(c−1

v,e +
me

mp
c−1
v,p), for q = 5,

2β3

[
c−1
v,e

(
v

vth,e

)2
+ c−1

v,p

(
v

vth,p

)2]
,

for q →∞.

(32)

Because electron velocities satisfy v/vth,e � 1 and
v/vth,p � 1, the maximum acceleration timescale is
much larger when q → ∞. This indicates the evolu-
tion of the electron distribution function with a larger
q more effectively depends on Coulomb collisions, and
such a distribution is likely to resemble a Maxwellian.
It is understandable that wave-particle interactions
with sufficiently large q are inefficient due to the ab-
sence of a sufficient number of resonant particles. In-
deed, acceleration timescales become longer regardless
of electron velocity for larger q (panel a of Fig. 2),
and these effects are more pronounced for suprather-
mal electrons with higher β.

While the analysis in this section has focused on
the diagonal terms of the diffusion tensor, it has been
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demonstrated that the off-diagonal terms, particularly
those involving diffusion in pitch angle scattering, are
significant in weakly magnetized plasmas. Using equa-
tions (19) and (20), we can roughly estimate the max-
imum values of τμv and τμμ for wave-particle interac-
tions. Applying the inequality (31) to Equations (19)
and (20), we obtain
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, (33)
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+
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+
2βμ2

|μ|

(
β |μ|
a

)−1/3

+ μ2

∣∣∣∣∣
−1

.

(34)

Figure 3 shows the behavior of the two characteristic
timescales τμv and τμμ across a wide range of slope
parameters q and electron velocities β. In weakly mag-
netized plasmas (a = 104), shown in the left panels
of Fig. 3, wave-particle interactions can effectively
transport electrons with softer distribution slopes due
to enhanced diffusion in pitch angle space. This en-
hancement occurs even in scenarios where τvv > c−1

v,e,
as τμμ < τμv 
 c−1

v,e can be satisfied. Conversely, in
strongly magnetized plasmas (a = 10−4), shown in
the right panels of Fig. 3, diffusion in pitch angle
space does not significantly enhance efficient transport
through wave-particle interactions when collisional ef-
fects dominate (τvv > c−1

v,e), as τvv < τμv < τμμ.

4. CYCLOTRON RESONANCE OF
SUPRATHERMAL ELECTRONS AND NATURE

OF WHISTLER WAVES

In this section, we derive the conditions for the
minimum velocity of resonant electrons and the char-
acteristics of whistler waves corresponding to wave-
particle interaction. The criteria described in this
section encompass the characteristics of the turbu-
lent power spectrum, such as its power-law slope, and

Fig. 4. a — Schematic diagrams illustrating whistler turbu-

lence spectra with two different power-law slopes (s1, s2).

Assuming constant energy transport through whistler turbu-

lence, the maximum wavenumber for a steeper (s2) spec-

trum may be smaller than that for a flatter spectrum (s1)

(km2 < km1). b — Schematic diagrams demonstrating the

influence of Coulomb collisions on turbulent energy transport.

Coulomb collisions hinder energy transfer to smaller scales,

potentially resulting in a smaller maximum wavenumber (kcc)

compared to scenarios without Coulomb collisions (kwp)

the effects of Coulomb collisions, as depicted in the
schematic figure (see Fig. 4). Assuming that the en-
ergy transferred through whistler turbulence remains
constant across spectra with arbitrary slopes, the max-
imum wavenumber of a flatter spectrum could be
larger than that of a steeper spectrum. Additionally,
Coulomb collision effects may suppress energy trans-
port to smaller scales, thereby allowing for a larger
maximum wavenumber with stronger Coulomb colli-
sional effects. Such wave characteristics could influ-
ence particle transport through turbulence by deter-
mining the minimum momentum of electrons required
for wave-particle interactions.

Considering only the electron collision term, the
minimum velocity criterion can be derived using the
inequality (31) as follows:

β ≥
(

3

πA
(1− μ2)−1 |μ|(1−s)/3

(vth,e

c

)3
×

× (q − 1)

(
Ω−1

e

ω−1
pe

)(2s+1)/3
(

c−1
v,e

v−3
th,eω

−1
pe

)−1)3/(s+2)

.

(35)
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Fig. 5. a — Minimum electron velocity, b — minimum collisional mean free path, c — maximum wavenumber, and d —

minimum wavelength as functions of pitch angle μ. Solid lines correspond to c−1
v,e/Ω

−1
e = 106, while dashed lines correspond to

c−1
v,e/Ω

−1
e = 107. The results are shown for q = 5 as an example

Here, for simplicity, we consider only electron-electron
collisions since the collisional timescales satisfy
c−1
v,e 
 c−1

v,p. Clearly, more electrons with lower
velocities can be energized through wave-particle inter-
actions when collisional timescales are longer. While
the minimum velocity increases as the magnetic field
strength decreases (or, Ω−1

e increases), we interpret
that these effects could be minor when considering
regimes dominated by wave-particle interactions
(Ω−1

e 
 c−1
v,e). Additionally, a steeper initial slope

of the suprathermal electron distribution q leads to
a larger minimum velocity, indicating that transport
of suprathermal electrons is less likely when q is
sufficiently large.

For low-frequency whistler waves (ωr 
 Ωe), the
wavenumber k‖ and wavelength λ‖ for scattering par-
ticles are derived as follows:

k‖ ≈
nΩe

vμ
, λ‖ ≡

2π

k‖
≈ 2πvμ

nΩe
. (36)

From the inequality (35), we obtain the maximum
wavenumber k‖,max and the minimum wavelength
λ‖,min for wave-particle interactions:

ck‖,max

Ωe
≈ n

μ

[
3

πA
(1 − μ2)−1 |μ|(1−s)/3

(vth,e

c

)3
×

× (q − 1)

(
Ω−1

e

ω−1
pe

)(2s+1)/3
(

c−1
v,e

v−3
th,eω

−1
pe

)−1]−3/(s+2)

,

(37)

λ‖,min ≈
2π

k‖,max
. (38)
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We also consider the minimum collisional length de-
fined as

Ωeλmfp, min

c
≈ βmin

c−1
v,e

Ω−1
e

. (39)

In the criterion (37), the maximum wavenumber de-
creases as the initial slope of the electron distribu-
tion function (q) increases. This indicates that the
wavenumber range of wave-particle interactions could
be reduced when there are fewer suprathermal electrons
(i.e., the spectrum is steeper with larger q).

According to the conditions for resonant scatter-
ing and efficient wave-particle interactions, we explore
the minimum electron velocity and wave properties
relevant to wave-particle interactions across varying
power-law slopes of turbulent spectra. The maximum
wavenumber k‖,max and minimum wavelength λ‖,min,
derived using the inequality (31) that includes Coulomb
collisions and wave-particle interactions, align with the
physical insights demonstrated in Fig. 4. Specifically,
k‖,max decreases and λ‖,min increases as the power-law
slope of the turbulent spectra increases. This suggests
that turbulence with a flatter spectrum is more effi-
cient at transporting particles. Additionally, as shown
by the solid lines in Fig. 5, relatively strong Coulomb
collisions can suppress particle transport by reducing
k‖,max. In contrast, weakly collisional plasmas (rep-
resented by dashed lines in Fig. 5) exhibit greater
k‖,max values. It is important to note that this analysis
generally applies to weakly collisional plasmas where
λ‖,min 
 λmfp, min.

5. SUMMARY AND DISCUSSION

In this work, we demonstrate how wave-particle
interactions through whistler turbulence differ be-
tween weakly and strongly magnetized plasmas.
In strongly magnetized plasmas (characterized by
a = ω2

pe/Ω
2
e 
 1), the diffusion timescales at large

pitch angles (|μ| > 0.5) exhibit saturation for suf-
ficiently small values of a, indicating that strong
magnetic fields effectively regulate particle diffusion
in pitch angle space. In weakly magnetized plas-
mas (where a � 1), on the other hand, large-angle
scattering can be enhanced due to the increased
magnetization factor a. This enhancement suggests
that electron transport via wave-particle interactions
may dominate over Coulomb collisions, facilitated by
enhanced diffusion in pitch angle space. Additionally,
incorporating Coulomb collision effects, we provide
conditions for electron transport through whistler
turbulence, including the minimum electron velocity

and wavelength required for resonant scattering. These
findings are broadly applicable to weakly collisional
astrophysical plasmas, offering insights into the range
of resonant velocities and maximum wavenumbers
for wave-particle interactions across a wide range of
magnetic field strengths parametrized by a. In such
environments, weakly magnetized mediums benefit
from efficient transport via wave-particle interactions,
particularly when suprathermal particles are present.

We further comment on the significance of inves-
tigating particle transport through plasma turbulence
in space and astrophysical media. The generation of
suprathermal particles is feasible through collisionless
shocks or plasma turbulence in various astrophysical
environments, with multi-wavelength emissions serv-
ing as observational evidence of particle acceleration.
While studies on electron transport via whistler turbu-
lence have predominantly focused on non-Maxwellian
electron distributions in solar wind environments, sim-
ilar investigations in diverse astrophysical contexts are
warranted. For example, research has shown that ve-
locity anisotropy in interstellar and intracluster media
can induce whistler waves [27, 40, 41], potentially main-
taining non-Maxwellian electron distributions within
localized regions experiencing whistler turbulence. Ad-
ditionally, it has been shown that suprathermal elec-
trons can be generated by various plasma instabili-
ties in astrophysical media, including whistler, firehose,
mirror, and cyclotron instabilities. In particular, cur-
rent drive exhibited in localized areas, such as the up-
stream and downstream regions of collisionless shocks,
could trigger plasma instabilities that significantly am-
plify the magnetic field and generate suprathermal par-
ticles through waves satisfying cyclotron resonance con-
ditions [26–28, 40–43]. The characteristics of these
plasma instabilities and their acceleration efficiency
depend on the properties of collisionless shocks, in-
cluding the shock Mach number, plasma magnetiza-
tion, and the geometry of the background magnetic
field [27, 40]. Moreover, Lower-Hybrid waves could
be induced by diamagnetic currents in inhomogeneous
plasma systems, which typically propagate in space and
astrophysical plasmas, including those with compress-
ible turbulence. The roles of particle acceleration or
heating through Lower-Hybrid waves have also been
proposed [44, 45]. In this context, it is necessary to
conduct further investigations, including the theory of
particle transport through various plasma instabilities
triggered in astrophysical media, corresponding numer-
ical simulations to support the theory, and complemen-
tary observations representing particle acceleration and
heating.
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В планарно-ориентированном слое нематического жидкого кристалла (ЖК) с люминесцентным красите-

лем исследованы спектры люминесценции, возникающей при лазерном возбуждении молекул красителя

и распространяющейся в волноводном режиме. Показано, что наличие ITO-электродов, ограничивающих

слой ЖК, приводит к существенным резонансным потерям энергии излучения. Эти потери объясняют-

ся фазовым синхронизмом между волноводными модами в слое ЖК и ITO-электродах. Спектральное

положение максимумов потерь зависит от состояния поляризации света, а их интенсивность растет с

уменьшением толщины слоя ЖК. Показано, что использование ориентирующих ЖК-слоев на основе

фторированных полимеров с низким показателем преломления, нанесенных на ITO-электроды, позволя-

ет существенно подавить резонансные потери излучения.

DOI: 10.31857/S0044451025010122

1. ВВЕДЕНИЕ

Наряду с широким применением жидких кри-
сталлов (ЖК) в информационных дисплейных тех-
нологиях, в последнее время огромный интерес вы-
зывает использование ЖК в различных фотонных
устройствах. В частности, допированные лазерны-
ми красителями ЖК могут быть использованы как
для изучения фотонных свойств ЖК [1, 2], так и
в качестве активной среды для микролазерных си-
стем [3–7]. Особое место среди последних занима-
ют микролазеры, работающие в волноводном режи-
ме генерации света [8–12]. Однако, вместе с множе-
ством преимуществ волноводного режима лазерной
генерации, для этого режима характерны и недо-
статки. Например, для управления слоем ЖК, с це-
лью создания пространственно-периодической мо-
дуляции показателя преломления и соответственно
распределенной обратной связи, необходимы управ-
ляющие электроды, ограничивающие слой ЖК. В
ЖК-устройствах широко применяются прозрачные

* E-mail: serguei.palto@gmail.com

электроды на основе сплава окиси олова и индия
(ITO). В последнем случае с неизбежностью воз-
никает проблема, связанная с минимизацией потерь
световой энергии в электродах при распространении
излучения в волноводном режиме.

В работе [13] методом численного FDTD-
моделирования было показано, что распространение
излучения в волноводном режиме в ориентирован-
ных слоях ЖК, ограниченных прозрачными
ITO-электродами, характеризуется сильными ре-
зонансными потерями. Эти потери возникают в
определенных спектральных диапазонах волн из-за
фазосинхронной перекачки энергии излучения из
жидкокристаллического слоя в тонкие электродные
слои. В настоящей работе предпринята попытка
экспериментального наблюдения предсказанных
в [13] резонансных потерь, методом возбуждения
люминесценции в слое ЖК и регистрации спектра
этой люминесценции на выходе жидкокристалличе-
ского волновода, образованного самим ЖК-слоем
и ограничивающими его слоями, включая ITO.
Также изучается возможность уменьшения по-
терь введением между ITO-электродами и слоем
ЖК ориентирующих слоев с низким показателем
преломления, как это было рекомендовано в [13].
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Рис. 1. Схематическое изображение слоистой структуры

ЖК-ячейки. 1, 2 — стеклянные подложки; 3, 4 — слои

ITO-электродов; 5, 6 — полимерные ориентирующие слои,

натертые в направлении z; 7 — слойЖК (E7) с красителем

DCM (оси цилиндров указывают направление директора

ЖК)

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ

Схема экспериментальной ЖК-ячейки с ITO-
электродами показана на рис. 1. Ячейка состоит
из двух стеклянных подложек 1, 2, на внутрен-
ние стороны которых нанесены прозрачные ITO-
электроды 3, 4. Нами использованы промышленные
стекла для дисплейных технологий с измеренной на-
ми толщиной ITO-электродов 150± 10 нм. Для пла-
нарной ориентации нематического ЖК (E7, Merck)
на поверхность ITO наносились тонкие полимерные
пленки 5, 6, которые механически натирались мяг-
кой тканью вдоль оси z, определяющей направле-
ние легкой оси и соответственно направление опти-
ческой оси в слое ЖК. Для тонких ориентирующих
пленок мы использовали два типа полимеров: а) по-
лиимид (PI) с показателем преломления 1.65 (лак
АД9103, НПО Пластик); б) фторированный поли-
мер с показателем преломления 1.42 (сополимер тет-
рафторэтилена и винилиденфторида Ф42-В). Тол-
щина жидкокристаллического слоя, тип ориентиру-
ющей пленки и наличие ITO-электродов варьирова-
лись в зависимости от номера образца (см. таблицу).

Как видно из таблицы, образец №1 не содер-
жит ITO-электродов. Эта ЖК-ячейка использова-

Рис. 2. Схема возбуждения люминесценции в слое ЖК,

1 — лазерный пучок (λ = 532.8 нм, τ = 10 нс);

2 — цилиндрическая линза (фокусное расстояние 100 мм,

характерные размеры области фокусировки δz = 0.1 мм;

δx = 3 мм); 3 — жидкокристаллическая ячейка; 4 — на-

бор оптических фильтров и поляризатор; 5 — излучение,

регистрируемое оптоволоконным спектрометром

лась нами в качестве референсного образца для ви-
зуализации в оптических спектрах излучения изме-
нений, связанных с наличием ITO-электродов.

Выбор жидкого кристалла E7 обусловлен вы-
сокой степенью изученности данного материала
и известностью многочисленных физических па-
раметров. Например, спектральные зависимости
показателя преломления, которые очень важны
для наших исследований, известны в широком
спектральном диапазоне [14], что позволило нам
построить реалистичную модель резонансных
потерь в слое E7 между ITO-электродами в
работе [13]. Для придания слою ЖК люминесциру-
ющих свойств использовался известный лазерный
краситель DCM (4-(Dicyanomethylene)-2-methyl-
6-(4-dimethylaminostyryl)-4H-pyran, Sigma Aldrich,
0.6 вес.%). Данный краситель характеризуется ин-
тенсивной люминесценцией в диапазоне длин волн
570–650 нм и широко используется для получения
лазерного эффекта в том числе и в различных
ЖК-системах.

Схема возбуждения и регистрации люминесцен-
ции показана на рис. 2. Возбуждение люминесцен-
ции в слое ЖК осуществлялось с использованием
излучения 1 от неодимового лазера, работающего в
режиме модулированной добротности на длине вол-
ны λ = 532.8 нм при длительности импульса 10 нс.
Энергия импульса составляла примерно 80 мкДж.
Лазерное излучение было линейно поляризованным
в направлении z (вдоль директора ЖК), что обеспе-
чивает максимальную эффективность люминесцен-
ции [11]. Лазерный пучок фокусировался на слой
ЖК в ячейке 3 цилиндрической линзой 2 в уз-
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Таблица. Исследованные образцы и их параметры

№ Толщина слоя Тип Толщина Наличие

образца ЖК, мкм образца ориентирующей ITO

пленки, нм

1 6.7± 0.2 PI 20± 10 Нет

2 6.8± 0.2 PI 20± 10 Да

3 2.4± 0.2 PI 20± 10 Да

4 12± 0.2 PI 20± 10 Да

5 6.3± 0.2 Ф42-В 350± 20 Да

кую полоску шириной δz = 0.1 мм и протяженно-
стью δx = 3 мм в направлении x волноводного рас-
пространения люминесценции 5. Положение x0 цен-
тра сфокусированной области, измеряемое от торца
ЖК-ячейки, варьировалось от 1.5 до 2.5 мм.

Люминесценция с торца ЖК-слоя регистри-
ровалась оптоволоконным спектрометром Avantes
Avaspec 2048. Для исключения регистрации излу-
чения, вытекающего в подложки, торцы последних
покрывались слоем светонепроницаемого (черного)
красителя и использовалась маска со щелью. Для
регистрации поляризационных спектров перед
линзой оптоволоконного кабеля спектрометра
устанавливался поляризатор 4, что позволяло реги-
стрировать спектры TE- (направление колебаний
электрического вектора вдоль оси z и директора
ЖК (рис. 1) и TM-поляризованного излучения
(направление колебаний электрического вектора
в плоскости xy). Кроме того, для ослабления как
рассеянного лазерного излучения, так и люминес-
ценции, в случае необходимости использовались
стеклянные оптические фильтры, которые, как
и поляризатор, устанавливались перед входной
линзой оптоволоконного кабеля спектрометра.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 3 показаны спектры неполяризован-
ной люминесценции для референсного образца №1
(см. таблицу) без ITO-электродов (кривая 1 ) и об-
разца №2 (кривая 2 ), полученные при одинако-
вых энергиях (около 80 мкДж) импульса лазер-
ного возбуждения. Обращаем внимание, что здесь
и ниже интенсивность люминесценции показана в
логарифмическом масштабе. Как видно, интенсив-
ность люминесценции в случае образца №2 с ITO-
электродами существенно ниже интенсивности лю-
минесценции, зарегистрированной для референсно-
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Рис. 3. Спектры люминесценции на выходе торца ЖК-

ячейки (см. рис. 2) после распространения излучения в

слое ЖК в волноводном режиме. Протяженность области

накачки, определяющей длину, на которой распространя-

ется излучение, δx = 3 мм, расстояние от центра накач-

ки до края ЖК-ячейки x0 = 1.5 мм. Кривая 1 — спектр

образца №1 (ITO-электроды отсутствуют); кривая 2 —

спектр образца №2 (имеются ITO-электроды толщиной

150 нм). На вставке показано отношение спектра образца

№2 к спектру образца №1

го образца №1. В спектре (кривая 2 ) можно также
видеть характерный провал на длине волны 588 нм,
который отсутствует в образце без ITO. Если взять
отношение спектра 2 к спектру 1, то получим спек-
тральную зависимость относительных потерь I2/I1
в образце №2 по отношению к образцу №1 (вставка
на рис. 3).
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Рис. 4. Поляризационные спектры люминесценции, изме-

ренные для образца №1, где 1 — TE-поляризация; 2 —

ТМ-поляризация. Расстояние от центра накачки до края

ЖК-ячейки x0 = 1.5 мм

Видно, что относительные потери, связанные с
наличием ITO-электродов, характеризуются спек-
тральной полосой с максимумом поглощения на
длине волны 592 нм. Интенсивность люминесценции
на данной длине волны для образца №2 примерно
в 8 раз меньше, чем для образца №1. Наблюдается
также рост потерь на длинах волн более 625 нм. К
сожалению, эту более длинноволновую полосу труд-
но зарегистрировать во всем диапазоне с хорошей
точностью из-за очень низкой интенсивности люми-
несценции на длинах волн более 650 нм.

Согласно численным расчетам в работе [13] для
планарно-ориентированного жидкокристаллическо-
го слоя E7, ограниченного ITO-электродами толщи-
ной 170 нм, в спектральном диапазоне 550–900 нм
существует две резонансные полосы с максималь-
ными потерями на длинах волн λ1 = 570 нм
и λ2 = 705 нм соответственно для ТЕ- и ТМ-
поляризованного света. Спектральное положение
этих потерь не зависит от толщины слоя ЖК. Од-
нако, согласно [13], изменение толщины слоя ITO,
а также наличие полиимидной пленки могут сдви-
гать спектральное положение резонансных полос.
Принимая во внимание экспериментальную ошиб-
ку, связанную с измерением толщины слоя ITO, а
также наличие в экспериментальном образце №2
тонкой ориентирующей полиимидной пленки, мы

отождествляем наблюдаемый максимум потерь на
длине 592 нм с рассчитанной в [13] резонансной
полосой на длине волны λ1 = 570 нм для TE-
поляризованной моды. Аналогично, увеличивающи-
еся потери с увеличением длины волны более 625 нм
(вставка на рис. 3) объясняются рассчитанной ре-
зонансной полосой на длине волны λ2 = 705 нм
для ТМ-поляризованного света. Спектральные дан-
ные на рис. 4, где показаны поляризационные спек-
тры люминесценции, подтверждают сделанный вы-
вод. Провал в интенсивности люминесценции на
длине волны 588 нм характерен лишь для ТЕ-
поляризованной моды (кривая 1 на рис. 4). С рос-
том длины волны выше 625 нм интенсивность ТМ-
поляризованной люминесценции, показанная кри-
вой 2, убывает быстрее, чем интенсивность ТЕ-моды
(кривая 1 ). Таким образом, наблюдаемые длинно-
волновые потери также согласуются с численной мо-
делью в [13].

Согласно аналитической модели тонкого ITO-
слоя с показателем преломления n1 между стеклян-
ной подложкой (показатель преломления n0) и жид-
кокристаллическим слоем n2, длины волн для мак-
симумов резонансных потерь определяются следую-
щими соотношениями [13]:

λm,TE,TM =
2dITOn2

m− δφTE,TM

2π

×

×

√(
n1

n2,TE,TM

)2

− 1, (1)

где индексы TE, TM относятся к TE- и ТМ-
поляризованному свету соответственно; m — нату-
ральное число. Для поляризованного света допол-
нительные набеги фаз δφ в (1), связанные с двой-
ным отражением волн в ITO-слое от границы кон-
такта ITO со стеклянной подложкой и ЖК-слоем,
определяются для ТЕ- и ТМ-поляризованного света
следующими соотношениями:

δφTE = −2

⎡⎣arctg
⎛⎝
√

sin2(θ1,TE)−
(
n0

n1

)2
cos(θ1,TE)

⎞⎠+

+arctg

⎛⎝
√
sin2(θ1,TE)−

(n2,TE

n1

)2
cos(θ1,TE)

⎞⎠⎤⎦ ,
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δφTM = 2π − 2

⎡⎣arctg
⎛⎝
√

sin2(θ1,TM )−
(
n0

n1

)2(
n0

n1

)2
cos(θ1,TM )

⎞⎠+

+arctg

⎛⎝
√
sin2(θ1,TM )−

(n2,TM

n1

)2(n2,TM

n1

)2
cos(θ1,TM )

⎞⎠⎤⎦ .
Здесь также важно учитывать спектральную
дисперсию показателей преломления: n0 ≡ n0(λ) —
показатель преломления стеклянной подложки,
n1 ≡ n1(λ) — показатель преломления ITO,
n2,TE,TM ≡ n2,TE,TM (λ) — зависящий от состо-
яния поляризации показатель преломления ЖК
(для планарно ориентированного ЖК n2,TE = n‖,
n2,TM = n⊥), θ1 — угол между нормалью к слоям
и волновым вектором волны в ITO-слое (если речь
идет о перекачке планарно распространяющейся
моды из ЖК-слоя в ITO, то sin θ1 = n1/n2,TE,TM ).

Как следует из (1), реальные решения существу-
ют лишь при условии n1 ≥ n2. Для ITO имеет
место сильная спектральная дисперсия показателя
преломления [13], поэтому соответствующие реше-
ния существуют лишь в определенных спектраль-
ных диапазонах, которые различаются для ТЕ- и
TM-поляризованного света из-за оптической анизо-
тропии ЖК и, соответственно, требований

n1 ≥ n2,TE , n1 ≥ n2,TM .

Как показано в [13], в случае планарной ориента-
ции ЖК, для ТМ-поляризованного света существу-
ют лишь два решения: λm

∼= 720 нм для m = 1 и
λm

∼= 440 нм дляm = 2. Поскольку спектр люминес-
ценции ограничен диапазоном примерно 550–700 нм,
мы можем наблюдать лишь коротковолновый край
поглощения для ТМ-моды сm = 1, который, как мы
полагаем, хорошо виден на длинах волн более 625 нм
(вставка на рис. 3). Для TE-поляризации соответ-
ствующий пик потерь оказывается на длине волны
570 нм, который, с учетом погрешностей и некото-
рых различий между нашим экспериментом и моде-
лью, очень близок к наблюдаемому на длине волны
592 нм (см. вставку на рис. 3). В эксперименте, как
и в модели, этот пик потерь наблюдается исключи-
тельно для ТЕ-поляризованного света (рис. 4).

Модель в [13] предсказывает сильный рост по-
терь с уменьшением толщины ЖК-слоя. Это под-
твердилось и в эксперименте (рис. 5). В данном слу-
чае кривая 1 получена для образца №3 (см. табли-
цу), где толщина ЖК-слоя d = 2.4 мкм, а кривая
2 — для толщины d = 12 мкм. Обе кривые полу-
чены для неполяризованного света, поэтому можно
видеть как потери с максимумом на длине волны

� �

�

Рис. 5. Спектры неполяризованной люминесценции для

образца №3 (кривая 1, d = 2.4 мкм) и для образца №4

(кривая 2, d = 12 мкм). Расстояние от центра накачки до

края ЖК-ячейки x0 = 2.5 мм

592 нм, так и начало резкого уменьшения люминес-
ценции на длинах волн выше 625 нм, что связыва-
ется нами с существованием более длинноволновой
полосы потерь с максимумом на длине волны бо-
лее 700 нм. Из сравнения интенсивностей люминес-
ценции на длине волны 590 нм легко видеть, что
при уменьшении толщины от 12 до 2.4 мкм поте-
ри увеличились примерно в 40 раз. Наличие интен-
сивных полос потерь для образца №3 в окрестно-
сти λm

∼= 590 нм и в более длинноволновой обла-
сти (λm > 700 нм) приводит к тому, что спектраль-
ная область люминесценции сильно сужается (кри-
вая 1, рис. 5), а максимум люминесценции смещает-
ся в длинноволновую область спектра к λ = 625 нм,
где потери минимальны. В образце №4 (кривая 2 )
полосы потерь выражены лишь в виде плеч в спек-
тре люминесценции, а спектрального сдвига мак-
симума люминесценции практически не наблюда-
ется (λ = 611 нм). Отметим, что при фиксиро-
ванной накачке примерно 80 мкДж в образце №4
интенсивность люминесценции в максимуме оказа-
лась настолько высокой, что нам пришлось сдви-
нуть центр накачки от края ЖК-ячейки до значе-
ния x0 = 2.5 мм, чтобы оставаться в пределах дина-
мического диапазона спектрометра.
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Рис. 6. Спектры неполяризованной люминесценции для

образца №2 (кривая 1, d = 6.8 мкм) и для образца №5

(кривая 2, d = 6.3 мкм). Расстояние от центра накачки до

края ЖК-ячейки x0 = 1.5 мм

Таким образом, спектральные измерения пол-
ностью подтвердили наличие резонансных потерь,
обусловленных ITO-электродами. Согласно уже
упомянутому численному моделированию, резо-
нансные потери могут быть существенно подавлены
введением между слоем ЖК и ITO-электродами
тонких пленок с низким показателем преломления.
Именно этому условию удовлетворяет образец №5,
где в качестве ориентирующих ЖК-пленок исполь-
зуются сравнительно толстые (350 нм) пленки из
фторированного полимера Ф42-В с показателем
преломления 1.42. Результаты измерения спектров
люминесценции оказались весьма впечатляющими
(рис. 6). При фиксированной энергии импульса
накачки 80 мкДж интенсивность люминесценции в
максимуме выросла примерно в 50 раз по сравне-
нию с образцом №2. Также исчезли характерная
полоса с максимумом потерь на 590 нм и потери
в длинноволновой части спектра, характерные
для образца №2. На длинах волн более 650 нм
люминесценция существенно выросла так, что
даже на 750 нм измеряемый сигнал люминесценции
существенно превышает уровень шума.

Отметим, что интенсивность люминесценции в
образце №5 существенно превышает не только та-

ковую в образце №2, но и в образце №1, где ITO-
электроды отсутствуют. Таким образом, высокая
интенсивность люминесценции в образце №5 свя-
зана не только с устранением резонансных потерь.
Мы предполагаем, что в случае образца №5 суще-
ственным фактором, способствующим увеличению
интенсивности люминесценции, является и то, что
показатель преломления фторполимера (n = 1.42)
существенно ниже показателя преломления стек-
лянных подложек (n0 = 1.51). Благодаря этому
в ЖК-слое образца №5 может распространять-
ся существенно большее количество волноводных
ТМ- и ТЕ-поляризованных мод излучения, чем
в образцах №1, 2. Действительно, в случае об-
разцов №1, 2 наименьший показатель преломле-
ния ЖК n⊥ = 1.52, с которым взаимодействуют
ТМ-поляризованные моды, оказывается очень близ-
ким к показателю преломления дисплейного стек-
ла (1.51). Поэтому критический угол по отноше-
нию к плоскости подложек, ниже которого суще-
ствуют волноводные моды, очень мал и значитель-
ное количество ТМ-поляризованного излучения лю-
минесценции, распространяющегося под углом вы-
ше критического, вытекает в стеклянные подлож-
ки. Ситуация усугубляется и тем, что в реаль-
ности директор ЖК не строго совпадает с на-
правлением ТЕ-поляризации из-за наличия неболь-
шого (2–4◦) угла преднаклона директора по от-
ношению к плоскости подложек. Таким образом,
даже ТЕ-поляризованное излучение, для которого
условие волноводного режима выполнено для ши-
рокого диапазона углов распространения, частич-
но преобразуется по мере распространения в ТМ-
поляризованные моды, вытекающие в подложку. Ре-
зонансные потери, в свою очередь, характеризуют-
ся достаточно широкими спектрами, что приводит
к значительному уменьшению интенсивности люми-
несценции даже на длинах волн вдали от резонанс-
ных максимумов. Это не только видно на вставке
к рис. 3, но, например, особенно ярко выражено на
рис. 5 для образца №3 (кривая 1 ), где, как уже от-
мечалось, из-за существенных потерь на «хвостах»
резонансных полос наблюдается сужение спектра и
сдвиг максимума люминесценции. Таким образом,
резонансные потери приводят к уменьшению люми-
несценции во всем спектральном диапазоне. Отме-
тим также, что моделирование в [13], где резонанс-
ные полосы являются сравнительно узкими, было
выполнено для одномодового режима, когда «ин-
жектированный» в волновод свет характеризовался
волновым вектором, строго параллельным плоско-
сти ЖК-слоя.
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4. ЗАКЛЮЧЕНИЕ

Экспериментально подтверждено наличие ре-
зонансных потерь при распространении излуче-
ния в волноводном режиме в жидкокристалли-
ческом слое, ограниченном ITO-электродами. На-
блюдаемые спектральные полосы потерь являют-
ся поляризационно-чувствительными. Спектраль-
ное положение этих полос не зависит от толщины
слояЖК, а их интенсивность увеличивается по мере
уменьшения толщины слоя. Также продемонстри-
ровано, что использование ориентирующих пленок
из фторированного полимера, обладающего низким
показателем преломления, позволяет подавить ре-
зонансные потери. Полученные результаты являют-
ся важными для использования волноводного ре-
жима в управляемых электрическим полем жидко-
кристаллических устройствах, использующих вол-
новодный режим распространения света, и, в част-
ности, жидкокристаллических микролазерах.

Финансирование. Работа выполнена в рам-
ках государственного задания НИЦ «Курчатовский
институт».
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