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Abstract. An approximate self-consistent approach is proposed that allows describing the quasi-classical 
translational dynamics of a non-relativistic particle in a dissipative medium with arbitrary dependence of the 
corresponding dissipative forces on velocity. It is shown that dissipation suppresses the quantum properties of the 
particle. This leads to the necessity of interpreting propagation in a dissipative medium as a continuous process 
of measuring the particle state. As examples, non-stationary coherent states of the particle are considered at 
three stages of its deceleration in the medium due to ionization losses. These stages correspond to high-energy 
losses, losses in the vicinity of the Bragg peak, and low-energy losses at the final stage of propagation.
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1. INTRODUCTION
The development of quantization methods 

in open systems is closely related to fundamental 
questions of measuring quantum object states [1, 2]. A 
particle can act as a quantum object, being measured 
by a dissipative medium acting as a classical device. 
In this case, continuous measurement of the particle 
state by the medium is accompanied by continuous 
collapse of the wave function [3].

Today, there are many methods for quantum-
mechanical description of particle motion in 
dissipative media [4–17]. It should be noted that 
different methods often lead to somewhat different 
physical results and conclusions. From a physical 
point of view, the approach based on the Markov 
approximation when solving density matrix 
equations [18–23] appears to be quite consistent and 
leads to reasonable results. On the other hand, the 
Hamiltonian approach proposed in works [4,  5] is 
attractive in its simplicity. However, difficulties arise 
here in the quantum consideration of particle motion 
in bulk media [24, 25].

The Hamiltonian quantization method can 
be used after classical analysis of the motion of a 
selected particle in a medium that acts on this particle 
through dissipative forces. Thus, in this case, we 
can speak about finding a quantum correspondence 
to the motion of a classical particle. Already at this 

stage of reasoning, the quasi-classical nature of such 
consideration becomes clear.

In works [4–7], a quantization method is 
developed for the case when a non-relativistic 
particle is affected by a dissipative force proportional 
to velocity v. In works [26, 27] a procedure for quasi-
classical quantization is proposed in the presence 
of dissipative forces proportional to velocity and 
square of particle velocity. It is important to note 
that these forces are introduced into the theory 
phenomenologically, without detailed analysis of 
their physical nature. A consistent microscopic 
examination of particle motion in various media 
shows that the energy losses accompanying this 
motion can be associated with forces that depend 
on velocity in a very complex way [28–30]. In 
this regard, there arises a task of developing an 
approach that will allow finding a quasi-classical 
correspondence to the motion of a non-relativistic 
classical particle under the action of dissipative 
forces arbitrarily dependent on velocity. This work is 
devoted to solving this problem.

2. CLASSICAL CONSIDERATION
Let the motion of a classical particle of mass m be 

described by the Lagrangian L, whose explicit time 
dependence is determined by the function q(t):
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We will assume below that there are no external 
conservative forces. From here, using the Lagrange 
equation
	 = 0d L

dt
¶
¶ v

	

we will come to the equation of motion 

	 = ,qm m
q

-v v


 	 (2)

where the dot above the variable denotes time 
derivative.

Let the dissipative force acting on the particle 
have the form

	 = ( ( )) ,d mf v t-F v 	 (3)

where ( ( ))f v t  is some positively defined function 
depending on time through velocity v of the 
particle.

Comparing (2) with the classical equation of 
motion and considering (3), we have

	 = ( ( )).q f v t
q


	 (4)

Integrating (2), we get

	 0= ,
q
v

v 	 (5)

where v0 — is the initial (at t = 0) velocity of the 
particle.

Integrating (5), we will find the classical 
trajectory of a particle described by the dependence 
of the radius vector rc of the particle on time:

	 rc = r0+v0τ	 (6)

where r0 is the initial radius vector of the particle, and 
the reduced time τ is determined by the expression

	
0

= .
( )

t
dt

q t
τ

¢
¢ò 	 (7)

The time count here begins from the moment the 
particle enters the dissipative medium.

Substituting (5) into (4), we will arrive at the 
differential equation for determining the function q:

	  0= ( / ).q qf v q 	 (8)

Let us supplement this equation with the obvious 
(see (5)) initial condition

	 (0) = 1.q 	 (9)

From this and from (4) it follows that q(t) is a 
monotonically increasing function of time. Due 
to dissipation, the particle eventually stops. Then, 
considering (5) and (9), we come to the conclusion that 
the values q(t) lie in the interval 1 ≤ q(t) ≤ ∞. From 
this and from (7) it can be seen that τ(t) also increases 
monotonically over time. If q(t) reaches an infinite 
value in finite time tmax, then the upper limit in the 
integral (7), t = tmax, corresponds to the maximum value 
of the reduced time τmax. Situations are possible when 
tmax → ∞ (see below). In the general case, the integral 
(7) at t = tmax can be either convergent or divergent.

Thus, by solving the problem (8), (9), we will find 
the function q(t). This will determine the Lagrangian 
(1), which self-consistently takes into account the 
action of the dissipative force (3) on the particle. 
In turn, using (5) we will determine the classical 
velocity of the particle as a function of time. Then, 
substituting q(t) into (7), we will find the reduced 
time τ. After this, expression (6) will allow us to 
determine the position of the classical particle in 
space at each moment of time.

From an applied point of view, it is of considerable 
interest to calculate the energy loss W of the particle 
depending on the distance traveled s. From (5) and 
(6) it can be seen that the motion of the classical 
particle is rectilinear, and its distance traveled s is 
determined by the expression

	 0 0=| |= .cs v τ-r r 	

Then, moving from vector to scalar form, we 
write

	 = .dvv v
ds

 	

As a result, equation (2) taking into account (4) 
will take the form

	 = ( ).dv f v
ds

- 	 (10)

Integrating this equation considering the 
boundary condition v(0) = v0, we will find the 
dependence v(s). From this we will obtain the 

dependence of energy 2= /2W mv  of the particle on 
the distance traveled. After this, we will determine 
the specific losses –dW/ds.

Obviously, the total path length of smax particle 
during deceleration in a dissipative medium is 
determined by the expression  smax =v0τmax.

Using (1), for the canonical momentum we find

	 = = .L m q¶
¶

p v
v

	 (11)
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Then for the Hamiltonian

	 =H L× -p v 	
we will have

	
2

= .
2 ( )

H
mq t
p 	 (12)

Expressions (2), (4)–(9) describe the classical 
trajectory of the particle corresponding to the 
extremum of the action functional

	
0

= .
t

S Ldt ¢ò 	

Therefore, the solution of equation (8) with the 
initial condition (9) contains the value of v0 initial 
particle velocity. As a result, substituting the found 
function q(t) at a given value v0 into expression (12) leads 
to an effective Hamiltonian, which self-consistently 
accounts for the action of dissipative forces on the 
classical particle that arbitrarily depend on the particle 
velocity. Since the nature of the explicit dependence 
q(t) is determined only by the classical trajectory of the 
particle, the subsequent quantization of motion based 
on expressions (3), (8), (9), and (12) contains features 
of the semiclassical approximation [31].

The effective Hamiltonian (12) depends on the 
initial velocity v0. Therefore, the considered self-
consistency condition imposes a priori restriction on 
the form of the particle wave function. Namely, this 
form must contain features of a classical particle with 
a given initial velocity.

3. SEMICLASSICAL DYNAMICS
To transition to quantum-mechanical 

description, we perform a standard replacement 
of the canonical momentum p with a Hermitian 
operator p  in the coordinate representation:

	 p  = –iħ∇	

Then the non-stationary semiclassical 
Schrödinger equation for the wave function ( , )trψ  
can be written as

	  ¶
- Ñ

¶




2
2= ,

2 ( )
i

t mq t
ψ ψ 	 (13)

where r is the radius vector belonging to one of the 
virtual particle trajectories.

It is easy to see that equation (13) leads to the 
continuity equation

	
¶

+Ñ×
¶

j = 0,
t
r

	

where
	 ρ 2= | | , 	

	 Ñ - Ñ
 * *= ( ).

2imq
j ψ ψ ψ ψ 	

From this, it is evident that the quantity 
( , )trρ , as in the conservative case, has the meaning 

of probability density of finding a particle at a point 
with radius vector r at time t.

Consequently, the normalization condition is 
also valid here
	 ò ( , ) = 1,t dr rr 	

where integration is carried out over the entire space 
in which the particle can be located. 

For the initial wave function ( ,0)rψ  equation (13) 
has the following solution:

	 -ò( , ) = ( ', ) ( ',0) ',t G t dr r r r rψ ψ 	 (14)

where the quasi-classical Green's function G(r – r′, t) 
is defined by the expression

	 π τ τ
æ ö æ ö÷ ÷ç ç- -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø 

3/2
2( ', ) = exp | ' | .

2 2
m mG t i

i
r r r r 	(15)

The dynamic parameter q(t) in the quasi-classical 
Schrödinger equation (13) depends on the value v0 
of the initial particle velocity (see (8)). Therefore, 
in accordance with the self-consistent approach, 
we choose the initial wave function in the form of a 
Gaussian wave packet centered at the initial point r0 
of the classical particle location and containing its 
initial velocity v0 [32, 33]:

	
2

0
03/4 3/2 2

| |1( ,0) = exp ,
4(2 )

mi
llπ

æ ö- ÷ç ÷ç- + × ÷ç ÷ç ÷çè ø

r r
r v r



Y 	

	
2

0
03/4 3/2 2

| |1( ,0) = exp ,
4(2 )

mi
llπ

æ ö- ÷ç ÷ç- + × ÷ç ÷ç ÷çè ø

r r
r v r



Y 	 (16)

where l is the initial spatial scale of probability density 
localization, which has the meaning of initial uncertainty 
in the particle's Cartesian coordinates [32, 33].

Substituting (15) and (16) into (14), we obtain

	
τπ

æ ö÷ç ÷ ´ç ÷ç ÷ç +è ø

3/2

3/4 2
1( , ) =

/2(2 )
lt

l i m
rψ 	

-
´ - + × -

+  



2 2
0

02
| |

 exp  [  ],
24( /2 )

mvmi i
l i m

r r
v r τ

τ
	 (17)

where rc  and τ are determined by expressions (6) and 
(7) respectively.
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In a conservative medium (in the absence of 
dissipation) q = 1 at all time moments t = 0. Then from 
(7) it follows that τ = t. In this case, the wave function 
(17) corresponds to the coherent state of a free particle 
[34]. For specific cases of dissipative media, when 
resistance forces proportional to velocity and velocity 
squared are present, similar states belong to the class of 
quasi-classical coherent states [26, 27, 35].

From (16) for probability density, we have the 
expression

	
π

æ ö- ÷ç ÷ç- ÷ç ÷ç ÷çè ø

2

3/2 3 2
| |1( , ) = exp

(2 ) 2
ct

l l

r r
rr

τ τ
,	 (18)

where the spatial scale lτ when the particle travels 
distance s at time moments t ≥ 0 is determined by 
the relation

	
æ öæ ö ÷÷ çç+ + ÷÷ çç ÷÷÷ç ÷çè ø è ø



22
2= = 1 ,

2 D

sl l l
ml lτ
τ 	 (19)

where 2= 2 /Dl l  is the diffraction length corresponding 
to the initial wave function (16),   = ħ/mv0 is the 
initial de Broglie wavelength of the particle.

From (19) it can be seen that the probability 
density wave packet, as it propagates in the 
dissipative medium, experiences broadening up to 
the maximum value maxlτ  of its size, determined by 
formula (19) taking into account the substitution 
s → smax = v0τmax . Thus, the stopping of the localized 
wave packet is accompanied by the "freezing" of its 
spatial size. At this stage in (18), the substitution 

® maxl lτ τ  should be made. In this case, the radius 
vector of the static wave packet center is determined 
by the expression +r r v0 0=c maxτ .

Under strong dissipation, max Ds l , the particle 
practically shows no wave properties. In this case, as 
follows from (19), »maxl lτ . Therefore, here the particle 
behaves in translational motion as a classical object.

Under weak dissipation, max Ds l , under the 
radical in formula (19), considering the substitution 

maxs s®  only the second term can be taken into 
account. Then we have

	 = .
2

max
maxl s

lτ 	 (20)

In this case, when describing the translational 
motion of the particle, it is necessary to consider its 
wave properties.

Using (17) and standard rules of quantum 
mechanics [32, 33], it is easy to show that the 
uncertainties jp∆  of the Cartesian components 

of canonical momentum, where = , , j x y z, do 
not change with time and are determined by the 
relations = /2jp l∆ 

. From this and from (11) for 
the uncertainties ( )ph

jp∆  of the Cartesian components 
of physical momentum ( )

0=ph
j jp mv  we have 

( ) = /2ph
jp ql∆ 

. Meanwhile, the uncertainties of 
Cartesian coordinates =jx l∆ t. Then the uncertainty 
relations of the "coordinate-canonical momentum" 
and "coordinate-physical momentum" types 
respectively take the form

	 = ,
2j j

l
x p

l
τ∆ ∆  	 (21)

 	 ( ) = .
2

ph
j j

l
x p

ql
τ∆ ∆  	 (22)

From this, as well as from (9) and (19), it is evident 
that at the initial moment of time, the uncertainty 
relations (21) and (22) are minimized:

	 ( )= = /2.ph
j j j jx p x p∆ ∆ ∆ ∆ 

	

This, as mentioned above, corresponds to the 
coherent state (16) of the particle at t = 0.

As noted above, τ = t in a conservative medium, 
and the wave function (17) with such substitution 
possesses the properties of a coherent state of a free 
particle [34]. In this case, the uncertainty relations 
(21) and (22) are identical, as there is no difference 
between canonical and physical momenta. Then, as 
seen from (19), the right-hand sides of the uncertainty 
relations (21) and (22) grow infinitely with time.

Based on what was said in the previous paragraph, 
let's call the state with wave function (17) a coherent 
state of a particle in a dissipative medium. In this 
case, the equality between canonical and physical 
momenta is violated. The right-hand side of the 
uncertainty relation (21) increases monotonically 
with time, reaching a maximum value

	 max
τ∆ ∆ = /2 .j jx p l l 	

The right-hand side of the uncertainty relation 
(22) behaves differently. Since over time the function 
q(t) increases, reaching infinity at the moment of 
particle stopping, the right-hand side at this moment 
turns to zero. This happens because at the moment 
of particle stopping, the uncertainties of all Cartesian 
components of physical momentum turn to zero. This 
situation corresponds to continuous collapse of the 
wave function in momentum space. For this reason, 
particle propagation in a dissipative medium should 
be considered as a continuous process of measuring 
its state. Random sequential collisions of the selected 
particle with a large number of medium particles, 
considered in the averaged Markov approximation, 
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lead to dissipative losses and simultaneously 
represent a continuous measurement process. The 
dissipative medium here plays the role of a recorder 
(a kind of extended photographic plate) of the 
particle state at each moment of time. At = maxs s  (or 

= maxt t ) there is registration of the stopped particle 
in a small spatial neighborhood of the final point of 
the classical trajectory. The characteristic radius maxlt  
of this neighborhood effectively limits the spread 
of space points where the particle can be registered 
during a specific measurement act.

Considering the averaged nature of describing 
particle deceleration dynamics through a velocity-
dependent dissipative force, speaking about particle 
stopping here is only conditional. At low particle 
velocities, irregular (Brownian) collisions with 
medium particles have an increasing influence on its 
motion. The corresponding investigation is beyond 
the scope of this work.

Since at t = 0 the canonical and physical 
momenta are equal to each other (see (11) and (9)), 
equation (20) can be rewritten as

	 0

0
= .

max
j j

max

x p

s p

∆ ∆
	 (23)

Here 0 0=p mv  is the initial momentum of the 
particle.

The condition for the applicability of the quasi-
classical approximation in our case has the form

	
∆

  1.
max max
j

max max

x l
s s

τ 	

Using (20) here, we obtain

	 / 1.max
jx∆  	

Thus, the initial de Broglie wavelength must be 
significantly smaller than the uncertainties in the 
particle coordinates. This statement exactly coincides 
with the conclusion presented in work [34]. From 
(20) and (23), it is evident that this conclusion is 
equivalent to the inequality

	 0 0 0 0/ = / 1,j jp p v v∆ ∆ 

	

where ∆  0 /jv ml  is the uncertainty of the j-th 
Cartesian component of the initial velocity.

From (20), it is clear that the ratio  /l plays 
the role of the diffraction divergence angle of the 
probability density wave packet. The small value of this 
angle quite obviously corresponds to the applicability 
condition of the quasi-classical approximation.

4. COHERENT STATES IN A MEDIUM  
WITH IONIZATION LOSSES

As specific examples, let us consider three stages 
of charged particle propagation accompanied by its 
ionization losses in some medium.

4.1. Ionization deceleration under high-energy  
loss conditions

Let a fast but non-relativistic charged particle 
enter a medium where it is decelerated due to 
energy losses through ionization of this medium. 
The velocity v of the entering particle satisfies the 
condition v > αc, where α 2= / 1/137e c »a , e is the 
electron charge, c is the speed of light in vacuum 
[36]. In this case, the non-relativistic version of the 
Bethe-Bloch formula for specific ionization losses of 
a charged particle during its passage through matter 
has the form [37, 38]

	
2= ,dW m

ds v
-

s 	 (24)

where

	
π 22 4 24= ln ,e

e

m vZ e
Zn

m m I
σ a 	

Zα and Z are the charge numbers of the considered 
particle and the nuclei of the matter with which 
the particle interacts during deceleration, n is the 
concentration of matter nuclei, I is the ionization 
energy of matter atoms, me is the electron mass.

Since

	
( )2 /2

= = = ,
d mvdv dWmv mv

ds ds ds
 	

the right-hand side in (24) has the meaning of the 
classical force acting on a particle from the medium. 
Moving to the vector form, we write for this force

	 3= / .d m v-F vs 	

The ratio under the logarithm in the 
expression for σ in order of magnitude equals 

2( / )v cα . Let the characteristic particle velocity be 
910 cm/c 0.1 v c cα~ > ~  [39]. At such velocities, 

the particle can still be considered non-relativistic. 
Then 2 22 / 10em v I  . Under these conditions, the 
logarithm in the expression for σ is a slow function of 
velocity. Therefore, with a good approximation, we 
can set σ = const. In this case

	 3 3 3
0 0( / ) = / = / .f q v v q vv v 	
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After integrating (8) taking into account (9), we have

	 ( ) 1/3= 1 / ,maxq t t -- 	 (25)

where

	
3
0= .

3max
v

t
v

	 (26)

From this, as well as from (7) and (6), we find

	
é ùæ öê ú÷ç- - ÷çê ú÷ç ÷è øê úë û

4/33= 1 1 ,
4 max

max

tt
t

τ 	 (27) 

	
4/3

0 0
3= 1 1 .
4c max

max

tt
t

é ùæ öê ú÷ç ÷ç+ - -ê ú÷ç ÷÷ê úçè øê úë û

r r v 	 (28)

Setting in (27) = maxt t , we get

	 =
3
03

= .
4 4
max

max
t v

s
τ 	

Then the total range length

	
4
0= .

4max
v

s
s

	 (29)

From (29) and (19), we find the maximum size 
of the localized wave packet at the moment of its 
stop when = maxt t .

Substituting into (10) 3( ) = /f v vs , after 
integration we get

	 2 2
0= 1 / .maxv v s s- 	

After substituting this expression into (24) for 
specific ionization losses, we find

	 0= ,
1 /max max

WdW
ds s s s

-
-

	 (30)

where 2
0 0= /2W mv  is the initial energy of the particle.

Thus, at the particle's stopping point, its specific 
losses increase indefinitely, and the size of the probability 
density wave packet reaches its maximum value.

The unlimited growth of specific losses is due to 
the fact that at 0v ®  formula (22), where σ = const, 
ceases to be valid. Moreover, in this case, many 
assumptions under which the Bethe-Bloch formula 
was obtained are no longer valid [29, 39].

Under real conditions, the rapid growth of 
specific ionization losses in the intermediate part 
of the particle's range is limited by the well-known 
Bragg peak, after which the specific losses rapidly 
decrease to zero values [29, 39]. In the vicinity of the 

Bragg peak, the particle velocity v ~ αс. This vicinity 
corresponds to the second (intermediate) stage of 
ionization deceleration, which we will consider below.

4.2. Ionization losses in the vicinity of the Bragg peak.  
"Dry friction"

In the vicinity of the maximum specific ionization 
losses, the value dW/ds can be approximately 
considered constant. As a result, for this stage, we write

	 –dW/ds = 2ma,	 (31)

where a is some positive constant.
Since the dissipative force is always directed 

against the velocity vector, we have

	 = ,d m-F a 	
where
	 0 0= / = / .a v a va v v 	

Thus, under condition (31), the dissipative force 
does not depend on velocity, which in classical 
mechanics corresponds to "dry friction". In this case

	 0( ) = / = / .f v a v aq v 	

Then, integrating (8) with respect to (9), we find

	 ( )-- 1
0= 1 / .q at v 	 (32)

Substituting this expression into (7), we obtain

	 - 2

0
= .

2
at t
v

τ 	 (33)

From this and from (6) we have a well-known 
expression for the radius vector of the classical 
trajectory during uniformly decelerated motion:

	 2
0 0= /2.c t t+ -r r v a 	 (34)

Thus, in the vicinity of the Bragg peak, the probability 
density wave packet performs uniformly decelerated 
motion with acceleration a (see (18) and (34)).

From (5) it follows that the particle, and with it the 
probability density wave packet (see (17)), stops its motion 
at q ® ¥. Then from (32) we arrive at the expression 
for the particle motion time =max 0 /t v a. From this and 
from (33) we find =max 0 /2v aτ . Thus, after traveling 
for time 0= = /maxt t v a  and until complete stop the 
distance 2

0= /2maxs v a, the probability density wave 
packet acquires the maximum static size, determined 
by formula (19) when replacing maxs s® .
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The considered stage of "dry friction" is the 
shortest of the three stages of ionization deceleration, 
as it corresponds to a small vicinity near the maximum 
value of specific losses.

Under real conditions, before stopping, the 
particle transitions to the third (low-energy) stage of 
ionization deceleration, where v c a  [36]. Below 
we will analyze the quasi-classical dynamics of the 
particle at this stage.

4.3. Ionization deceleration under conditions of low-
energy losses. "Viscous friction"

In this case, for specific losses we have the 
expression [36, 40–42]

	 - / = 2 ,dW ds m vγ 	 (35)

where γ is a positive constant.
From (35), we conclude that in this case, 

the corresponding classical dissipative force (the 
"viscous friction" force) is proportional to velocity: 

-=d mF vγ . From this and from (3) we have 
( ) =f v γ . Then from (8) and (9) we find = tq eγ . 

Note that this dependence q(t) exactly coincides with 
the similar dependence found in works [4, 5] without 
using the quasi-classical approximation. Substituting 
this expression into (7), we find

	
--1= .

te γ
τ γ

	 (36)

From this and from (6) we obtain

	
--

+0 0
1= .

t

c
er r v

γ

γ 	 (37)

Substituting (36) into (19), we arrive at the 
expression for the spatial scale of the wave packet 
of probability density (uncertainty of particle 
coordinates) at any time. The maximum value ¿lt  
of this scale is determined by formula (19) taking into 
account the substitution

	 ® 0 0= = /max maxs s v vτ γ 	

and is achieved at ® ¥t , when the particle 
completes a full path in the medium. At this point, 
the probability density wave packet stops, having the 
form of a three-dimensional localized static domain.

After substituting ( ) =f v γ  into (10), subsequent 
integration and simple transformations, we will have 
for the specific losses

	 ( )- -0/ = 2 1 / .maxdW ds m v s sγ 	 (38)

Thus, the specific losses decrease with increasing 
traveled distance and disappear at = maxs s .

All three considered stages of particle propagation 
in a medium with ionization losses correspond to 
classical resistance forces, the general expression for 
which has the form (3). At the initial, high-energy 
stage of particle deceleration, the resistance force is 
inversely proportional to the square of velocity. In 
the vicinity of the Bragg peak, the resistance force 
is practically independent of the velocity magnitude, 
therefore, by analogy with classical mechanics, 
we called it the "dry friction" force here. The final, 
low-energy stage of deceleration is described by a 
dissipative force proportional to the particle velocity, 
which corresponds to the "viscous friction" force in 
classical mechanics. It is clear that in all cases, we 
are not talking about friction forces in the physical 
sense, as this concept itself relates to the physics of 
macroscopic objects. It would be more correct here 
to speak about the corresponding mathematical 
approximation.

For a complete quasi-classical description of 
particle deceleration over the entire propagation 
distance, apparently, all three stages should be 
properly "stitched" together, which was not the goal 
of this work.

Let's provide some numerical estimates for the 
main stage of high-energy ionization losses. The 
range maxs  of an alpha particle in air under normal 
conditions and initial energy 0 10W   MeV is about 
10 cm [39]. As noted above, the given energy value 
corresponds to the initial velocity v0 ~ 109 cm/c. 
Then the initial de Broglie wavelength for the 
alpha particle is  ~ 10–13 cm. Let the initial 
uncertainty in the alpha particle coordinate be of 
the order of atomic size, i.e., l ~ 10–8 cm. Then the 
diffraction length 2 32 / 10 cmD maxl l s-=   

. 
Consequently, in this case, the wave properties of 
the particle are clearly manifested. Substituting 
the parameter values given in this paragraph into 
formula (20), we will have for the uncertainty in 
the alpha particle coordinate after its stopping 
∆  

410max max
jx lτ  cm. Thus, after traveling 

through air under ionization braking conditions, 
the uncertainty in the alpha particle coordinate 
can increase by four orders of magnitude. For 
the time during which the travel occurs, we find 

8
0/ 10max maxt s v -

   s. It is also useful to estimate 
the parameter value σ. From formula (29) we have 

4 35 3 4
0 / 10 cm /c¿v s s . It is curious to note that 

approximately the same order of magnitude value 
follows from the formula written here immediately 
after (24). The parameter value σ can allow calculating 
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coordinate uncertainties, range, and travel time for 
all other initial energies of the alpha particle.

In aluminum, the range of an alpha particle 
with initial energy of about 10 MeV is about 10–3 cm 
[39]. It is easy to see that in this case, the diffraction 
length D maxl s . Therefore, here dissipation more 
effectively suppresses the wave properties of the alpha 
particle than in air.

For the uncertainty 0jv∆  of the initial velocity 
components in both examples considered above 
pax we have 4

0 / 10jv ml∆   
 cm/s. Thus,  the 

applicability condition for the quasi-classical 
approximation 0 0jv v∆  is fulfilled here with a 
good margin.

5. CONCLUSIONS
The approximate self-consistent approach 

proposed in this paper allows describing the 
translational dynamics of a quantum non-relativistic 
particle under the action of a dissipative force that 
depends arbitrarily on the velocity magnitude. In 
this sense, this approach can be considered as a 
generalization of the canonical method proposed by 
Caldirola and Kanai [4, 5], where a dissipative force 
proportional to the particle velocity is considered. On 
the other hand, the self-consistent approximation 
using the concept of classical trajectory leads to 
a quasi- classical rather than a purely quantum 
consideration.

In the proposed approach, the Hamiltonian 
(12) depends on the dynamic parameter q(t). 
The nature of explicit time dependence of this 
parameter is determined by the classical particle 
trajectory, which is determined, among other 
things, by its initial velocity. Therefore, the 
subsequent quantization of motion acquires 
features of quasi-classical approximation. As a 
result, the Hamiltonian (12) acquires dependence 
on the initial velocity of the particle. This 
dependence is then transferred to the Schrödinger 
equation (13). In turn, this circumstance imposes 
restrictions on the range of possible initial wave 
functions, which must correspond to classical 
initial conditions. This is the drawback of the 
approach proposed here. On the other hand, a 
successful choice of the initial wave function 
of the particle can lead to physically reasonable 
results. Here, the well-known function of the form 
(16), corresponding to the coherent state of the 
particle, is chosen as such function. At subsequent 
moments of time, the wave function takes the 
form (17), which corresponds to a non-stationary 
quasi-classical coherent state.

In addition to the criteria mentioned above, 
the applicability condition of the quasi-classical 
approximation can be visually expressed in the form 
of inequality 0D jl x∆ . Thus, the wave properties 
of the particle become noticeable at propagation 
distances significantly exceeding the initial coordinate 
uncertainties.

An important result is the statement that 
dissipation suppresses the quantum properties of 
the particle. Therefore, the dissipative medium can 
be considered as a classical device continuously 
measuring the state of a particle propagating in this 
medium.

Of further interest is a non-trivial generalization 
of the approach proposed here to the case when, in 
addition to internal dissipative forces, external forces 
of a non-dissipative nature act on the particle. This will 
expand the scope of consideration of dissipative media 
as particle detectors in their quasi-classical states.
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