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Abstract. The influence of spin-orbit interaction (SOI) on the distribution of spin and charge currents 
induced in a nonmagnetic conductor by an incident electromagnetic wave is investigated. The effect of 
SOI on conduction electron spin resonance (CESR) in metals is described. It is established that SOI 
can significantly alter the CESR line shape. It is shown that this circumstance can be used to determine 
the SOI magnitude in metal through precision measurements of CESR line asymmetry. The existence 
of CESR enhancement effect in metals with strong SOI is predicted. It is shown that SOI can lead to 
enhancement of selective spin transparency and that in a nonmagnetic metal, SOI-induced inversion of 
electromagnetic wave energy flow can occur – an effect consisting in the emergence of electromagnetic 
field energy flow directed towards the metal surface in the metal bulk.     
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1.  INTRODUCTION

An electromagnetic wave incident on a conductor 
induces a high-frequency electric current in it, which 
prevents its penetration deep into the conductor. The 
effect of electromagnetic wave amplitude reduction 
as they penetrate deep into the conductor is called 
the skin effect [1–3]. 

An important feature of non-magnetic metals with 
strong spin-orbit interaction (SOI) is the emergence 
of coupling between spin and charge currents in 
such metals [4–12]. Spin-orbit interaction leads to 
the fact that the flow of electric current in a non-
magnetic metal causes the appearance of a transverse 
pure spin current, which is not accompanied by the 
transfer of electric charge. This effect is called the 
spin Hall effect. In the inverse spin Hall effect, the 
flow of pure spin current in a non-magnetic metal 
leads to the emergence of a transverse electric charge 
current.    

It can be expected that in metals with strong spin-
orbit interaction, high-frequency electric currents 
induced by electromagnetic waves falling on the 
metal will generate alternating spin currents (the 
ac spin Hall effect), which will generate additional 
high-frequency electric currents (the ac inverse spin 
Hall effect). The emergence of additional high-
frequency electric currents in the conductor due to 
the presence of spin-orbit interaction will lead to 
changes in the surface impedance of the metal – a 
quantity reflecting the relationship between electric 
current in the conductor and the magnitude of the 
electric field on its surface.  

As is known, the surface impedance determines 
the power of radio-frequency energy absorbed by 
the metal per unit time per unit surface area. The 
derivative of the absorption power of the incident 
electromagnetic wave with respect to the magnetic 
field can be found through experiments studying the 
conduction electron spin resonance. 
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The conduction electron spin resonance (CESR) 
in metals with negligible spin-orbit interaction 
has been studied both theoretically [13–23] and 
experimentally [24–36]. In works [37–44], it was 
shown that the increase in the magnitude of spin-
orbit interaction between electrons and impurities 
leads to a decrease in the spin-lattice relaxation 
time, as some collisions with impurities change the 
electron spin direction. Consequently, the decrease 
in spin-lattice relaxation time leads to CESR line 
broadening. In work [45], a simplified theoretical 
analysis of the spin-orbit interaction effect on 
high-frequency electric current distribution in 
a conducting plate was performed. To simplify 
calculations, the authors assumed that conduction 
electrons in metal are affected only by alternating 
electric field, neglecting the effect of alternating 
magnetic field. Using this model, the authors found 
that spin-orbit interaction can influence the surface 
impedance of the sample.    

The purpose of this work is to develop a theory 
that allows consistently describing the influence of 
spin-orbit interaction on the distribution of high-
frequency electric and spin currents induced in metal 
by incident electromagnetic wave, and based on it, 
to provide a description of the spin-orbit interaction 
effect on conduction electron spin resonance in 
metals. 

2.  BASIC EQUATIONS

The equations describing electronic spin transport 
in conductive materials, taking into account the 
SOI of conduction electrons with scatterers, are 
formulated within the microscopic approach in 
works [46–48]. Here we present these equations 
for the case when conduction electrons in non-
magnetic conductors are affected by electric E and 
magnetic B fields, the magnitude and direction of 
which depend on coordinate r and time t. Without 
significant loss of generality, we will consider the 
conduction electron gas in metal to be degenerate. 
In these approximations, the equations [46–48] for 
the density of conduction electrons N, vector of 
electron spin moment density S, vector of electron 
flux density I and spin current density tensor J take 
the form 
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The quanti ty  appearing in  equations 
0=N N Nδ -  is the deviation of electron density 

N from its equilibrium value 0N , which we consider 
independent of coordinate r, = Lδ -S S S  deviation 
of spin density S from its locally equilibrium value 

= /L χ µ-S B , where χ is the Pauli magnetic 
susceptibility of the electron gas, = / 2Bgµ µ  is the 
electron magnetic moment with Lande factor equal 
to g , Bµ  is the Bohr magneton, = 2 /γ µ   is the 
gyromagnetic ratio; quantities =e e- , em  and Fv  
are charge, mass and Fermi velocity of conduction 
electrons respectively; Oτ  is momentum relaxation 
time during orbital motion of electrons, Sτ  is spin 
relaxation time, SOτ  is a time-dimensional quantity 
characterizing the skew spin scattering of electrons 
due to SOI. The symbol є  denotes an absolutely 
antisymmetric unit tensor of rank 3, signs ″Ä″, ″×″ and 
″× ×″ are used to denote mathematical operations of 
tensor, scalar and double scalar products of vectors 
and tensors respectively.

The electric E and magnetic B  fields appearing 
in equations (1)–(4) can be found from Maxwell's 
equations: 
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where magnetic field induction B and field strength 
H are related by  

	 = 4 m,π+B H 	 (7)

where = Sµ-m  is the magnetization of conduction 
electrons. 

From equations (5)–(7) the following equation 
for the field follows E: 
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On the right side of equation (8), there is a sum 
of three terms in parentheses. The second term, eI,  
is nothing but the electric current density, i.e., 
the density of electric charge flow carried by 
conduction electrons. Второе слагаемое, rotc m,  
can also be interpreted as the density of a certain 
current, which has received a special name in 
literature – "magnetization current". Finally, the 
third term, (1/4 ) / ,tπ- ¶ ¶E  represents the so-called 
"displacement current". The numerical value of 
the displacement current for our considered range 
of frequencies of electric field variation in time is 
negligibly small, and in further consideration, we 
will omit this small term in equation (8).

Let in the metal occupying half-space 0z £ , there 
act an electric field  

( )= ( ) i tz eω ω-E E

and magnetic field 

( )
0= ( ) ,i tz eω ω-+B B B

where 0B  is a constant uniform magnetic field, ω is 
the frequency of variation of the variable components 
of electric and magnetic fields. Below we will limit 
ourselves to considering the case when vectors ( )ωE  
and ( )ωB  lie in the plane = 0z , and   0 zeB  , where 

ze  is a unit vector along the axis z. In the considered 
geometry, the coordinate dependence of quantities 
δS, I and J reduces to their dependence only on the 
coordinate z.

We will limit ourselves to considering systems 
for which their deviation from the state of 
electroneutrality can be neglected and the deviation 
Nδ  can be considered negligibly small compared 

to 0N . For conductors with metallic conductivity, 
this condition is fulfilled with high accuracy. 

A significant simplification in describing spin 
electronic kinetics is possible under conditions when 
we can neglect temporal dispersion effects when 
solving equations (3) and (4), assuming 1 / Oω τ . 
We will also assume that the electron spin precession 
frequency in a constant magnetic field 0= BΩ γ  and 
cyclotron frequency 0=| | /C ee B m cΩ  are also 
small compared to the collision frequency 1 / Oτ .  
When writing equations (3) and (4), we omitted 
terms describing the action on the electron spin of 
forces caused by the inhomogeneity of field B. These 
effects, discussed in detail previously in work 
[47], do not play, due to their small magnitude, a 
fundamental role in the present description of SOI 
effects. As a result, the system of equations (1)–(4) 
takes the form 
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where 2
0 0= /O eN e mσ τ  is the specific conductivity 

of free electron gas, 2
0 = / 3F OD v τ  is the electron 

diffusion coefficient, = /O SOξ τ τ  is a parameter 
characterizing the relative intensity of the skew spin 
scattering rate of conduction electrons (relative to 
momentum relaxation rate). In literature devoted 
to describing the spin Hall effect (SHE), the term 
"spin Hall angle" is often used to characterize 
skew spin scattering, which is denoted as SHEΘ .  
Generally, for real metals 1SHEΘ   and then the 
parameter we introduced ξ and the spin Hall angle 

SHEΘ  can be simply identified as: SHEξ Θº .
Equation (11) clearly describes the "direct" spin 

Hall effect [4–12]: the conduction electron flow 
I, appearing in the last term of the right-hand side 
of equation (11), which defines the spin current J, 
induces due to SOI an addition to the spin current 
equal to ξ- × Iє . Accordingly, equation (10) describes 
the inverse spin Hall effect: the spin current J, 
appearing in the last term of the right-hand side of 
equation (10) for I, in the presence of SOI induces 
an addition to the electron flow equal to Jξ- ××є .

Equations (10), (11) can be considered as a system 
of equations for currents I and J at given E and  S. 
The solution to this system, described in the authors' 
work [48], can be presented as 
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where 2
0= /(1 2 )σ σ ξ+  and 2

0= / (1 2 )D D ξ+  are 
conductivity and diffusion coefficient renormalized 
by spin-orbital interaction, respectively. When 
obtaining (12), we neglected the weak anisotropy 
of the diffusion coefficient caused by SOI, which is 
insignificant for the purposes of this work.

In further consideration, we will assume that the 
condition 0 0/ 1B Nξχ µ  , is satisfied, and we will 
linearize all equations with respect to values ( )ωE , 
( )ωB  and δS, which allows us to write the expression 

for I based on (13) as 
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Using (14), the sum of conductivity current and 
magnetization current ( )rote c+I m  appearing in 
equation (8) can be presented as  

(1 / ) rot .eD c cσ ξ µ+ +E m

This means that accounting for SOI when writing 
the equation for field E  reduces to renormalizing 
the magnetization current density rotc m by factor 
(1 / )eD cξ µ+ . In other words, accounting for SOI 
reduces to replacing the electron magnetic moment 
value µ appearing in equation (8) with the value 

( )= 1 / .eD cµ µ ξ µ+

Substituting expression (12) for spin current J into 
equation (2) and representing spin density S as 

= / ,χ µ δ- +S B S

one can verify that accounting for SOI reduces 
to renormalizing the Pauli susceptibility value χ 
appearing in equation (2) by factor ( )1 / ceξσµ χ+
, i.e., to replacing χ with 

( )= 1 / .ceχ χ ξσµ χ+

Taking into account the explicit form of values D,  
σ and χ for metal with degenerate electron gas, it is 
easy to show that the renormalized values ,µ  χ an be 
written as  

( ) ( )= 1 , = 1 .µ µ ξ χ χ ξ- - 

 

The renormalization of both values µ and χ is 
determined by the same parameter ξ, which can be 
written as = /ξ ξ Ξ , where the newly introduced 
parameter Ξ is defined by expression 
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in which Fε  is the Fermi energy of conduction 
electrons. 

Substituting expressions (12) and (13) into 
equations (2) and (8), taking into account 

( )= ( ) ,i tzω ωδ δ -S S e

after linearization with respect to values ( )ωδS  
and ( )ωE  we obtain the following system of linear 
equations for them: 
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where =S SL Dτ  is the spin-diffusion length in 
metal accounting for SOI, = / 2cδ πωσ  is the 
skin depth under normal skin effect, determined by 
electrical conductivity σ.

The system of equations (16), (17) must be 
supplemented with two boundary conditions that 
determine the behavior of the field ( )( )zωE  and 
spin density ( )( )zωδS  at the boundary = 0z . We will 
assume that on the metal surface = 0z  the electric 
field value is set equal to ( )

0
ω

E . Then the first of the 
aforementioned boundary conditions can be written 
as 

	 ( ) ( )
0

=0
( ) = .

z
z

ωωE E 	 (18)
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We will assume that there are no scattering 
processes of conduction electrons with spin flip on 
the metal surface. This condition can be written as a 
condition of zero = 0z  spin current ( )zJ , flowing in 
the direction ze  at the surface:  

=0
( ) = 0.z z
z×e J

Taking into account (12) and (18), this boundary 
condition will be written as 

	 ( ) ( )
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To solve the system of equations (16), (17), let's 
transition to circular components of the electric field 

( ) ( )= x yE E iEω ω
± ±

and non-equilibrium magnetization of conduction 
electrons 

( ) ( )= .x ym S i Sω ωδ µ δ δ±
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Taking into account boundary conditions (18), 
(19), we obtain 
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Solutions for mδ ± and E± in the form were obtained 
by us for the case when the condition 1λ±   is 
satisfied. It is easy to see that to satisfy this condition, 
it is sufficient to require the inequality 1Ξ  ,  
where Ξ is a parameter, introduced by relation 
(15). The latter inequality imposes an upper limit 
on the frequency of electron collisions 1 / Oτ . 
Numerical estimates of the parameter Ξ, given in 
section 4, show that the inequality 1Ξ   is satisfied 
with sufficient accuracy for all metals under the 
conditions of interest to us.

3.  CONDUCTION ELECTRON SPIN 
RESONANCE IN METAL WITH STRONG 

SPIN-ORBIT INTERACTION

The circular components of the surface impedance 
ς± are related to the circular components of the 
electric field E± and circular components of the 
magnetic field ( ) ( )= x yH H iHω ω

± ±  by the relation 

	
( )
( )
0

= .
0

E
i

H
ς ±
±

±

 	 (22)

Taking into account the explicit form of solutions 
(20) and (21) for mδ ± and E± we can find the 
expression for the field ( )0H± , included in the 
impedance definition (22). As a result, for the 
surface impedance ς± of a non-magnetic metal 
taking into account SOI, we obtain 
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where ( )= Sα Ω ω τ-  is the parameter determining 
the dependence of surface impedance on external 
magnetic field, = / Sr Lδ  is the parameter 
characterizing the ratio of skin depth δ and spin 
diffusion length SL . The expression for ∆ς+ can be 
obtained from formula (25) by replacing Ω with Ω-  
in the expression for α.

The power of energy absorbed by metal per unit 
time per unit area of its surface can be found using 
the formula 

  ( ) ( )
2

0= 0 .Re4
cP ως η ∆ς η ∆ς
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Here η± are real numbers determined through the 
polarization vector of the alternating magnetic field 
at the boundary ( ) ( ) ( )0ω ω
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where h  — a unit vector codirectional with the 
vector of constant uniform magnetic field, the sign  
″*″ denotes complex conjugation operation. For 
linear field polarization ( )ωH  values = 1 / 2η± .

The experimentally observed quantity is usually 
the derivative of the power absorbed by the sample 
with respect to magnetic field 0= /P dP dB¢ , which 
has a singularity as a function of magnetic field near 

the resonant value rB , determined from the condition 
=rBγ ω. Near resonance, the contribution of the 

smoothly varying function ∆ς+ to P ¢ is small and the 
signal P ¢ as a function of magnetic field 0B , expressed 
in dimensionless variables ( )0= S rB Bα γτ - , is 
proportional to the derivative with respect to α of 
the real part of impedance ∆ς-: 

	 ( ) .Re
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d
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Let's analyze the influence of SOI on the signal 
shape ( )P α¢ , obtained by substituting expression 
(25) into (27).

Let the skin depth δ be small compared to the 
spin diffusion length SL . Then  1r   and in main 
approximation for the small parameter r  we obtain  

	 ( ) .Re
1

d iP
d i

α
α α

¢
+

 	 (28)

In this case, the spin-orbital interaction practically 
does not affect the signal shape ( )P α¢ . The shape of 
the CESR signal curve, defined by expression (28), 
was first described by Dyson [13] and therefore later 
became known as "Dyson lineshape". Fig. 1 shows 
the CESR signal line CESR ( )P α¢ , constructed 
using expression (28). 

The Dyson lineshape signal of CESR ( )P α¢  
in Fig.  1 represents a curve that is symmetric 
with respect to the ordinate axis = 0α  and 
asymmetric with respect to the abscissa axis 

Fig. 1. Derivative of the power absorbed by the sample with respect 
to magnetic field ( )P α¢  under CESR conditions in metal at SLδ 

Fig. 2. Derivative of the power absorbed by the sample with respect 
to magnetic field ( )P α¢  under CESR conditions in metal at SLδ   
and 2 /SLξ δ


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= 0P ¢ . The aforementioned asymmetry is 
characterized by /A B, where A  — the "height" of 
the curve maximum ( )P α¢ , and B  is the "depth" 
of the minimum lying in the region of magnetic 
field values greater than resonant ( > 0α ).  
The lengths A  and B  are highlighted in Fig. 1 in 
red and green colors respectively. For the Dyson 
lineshape of the CESR signal ( )P α¢  the signal 
asymmetry indicator / 18A B » .

Let the skin depth δ be large compared to the spin 
diffusion length SL , then the parameter 1r  .

In the case when 1r  , and the SOI intensity is 
extremely low, so that the condition 2 1 / 1rξ   , 
is met, from formula (25) we obtain that 
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1 .
1

dP
d

α
α α

+¢
+

 	 (29)

In this limiting case, the influence of SOI on the 
CESR line shape is also not significant. The line 
shape of the CESR signal described by formula (29) 
is called "Lorentzian lineshape". Fig. 2 shows the 
Lorentzian lineshape of the CESR signal ( )P α¢ ,  
given by expression (29). For the Lorentzian 
lineshape of the CESR signal ( )P α¢  the value of the 
resonance line asymmetry indicator / 2.5A B » .

In the case when 1r  , and the SOI intensity is 
sufficiently high, so that the condition 2 1 / rξ  , is 
met, from formula (25) we obtain 

	 2 .Re
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ξ
α α

¢
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In this case, SOI has the most significant 
influence on the line shape and amplitude of the 
CESR signal: the CESR signal shape in this case is 
close to Dyson lineshape and the signal magnitude 
P ¢ is directly proportional to the square of the spin 
Hall angle. Thus, if SLδ  , then in conductors with 
strong spin-orbit interaction, when the condition 

2 /SLξ δ

  is met, the CESR enhancement effect 
may be observed.

In the case of an arbitrary ratio of parameter 
values 2ξ  and 1 / r  from (25), it follows that 
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The CESR signal in this case, according to (31), is 
the sum of two signals: a Lorentzian lineshape signal 
(the first term in parentheses in expression (31)) 
and a Dyson lineshape signal (the second term in 
parentheses). The relative magnitude of these signals 
is determined by the ratio of parameters 2ξ  and 1 / .r  
Obviously, the line asymmetry parameter of the CESR 
line (31) will significantly change with variations in ξ, 
and the nature of this dependence will be determined 
by the value of the ratio = / Sr Lδ . The results of 
numerical calculation of the line asymmetry parameter 

/A B dependence on ξ are shown in Fig. 3. 
Fig.  3 clearly demonstrates the fact that 

measurements of the line asymmetry parameter 
/A B  of the CESR line can provide quantitative 

information about the magnitude of spin-orbit 
interaction in the conductor, which determines the 
value of the spin Hall angle ξ.

Comparing the CESR line shape in two limiting 
cases: SLδ   and SLδ  , we note an important 
pattern. If the spin-orbit interaction is sufficiently 
strong, so that under the condition SLδ   the 
inequality /SLξ Ξ δ , is satisfied, then the theory 
predicts that in each of the aforementioned limiting 
cases, the CESR line shape will be close to Dyson 
lineshape. Therefore, the experimental observation of 
a CESR signal in metal with a shape close to Dyson 
lineshape at any ratio of skin depth and spin diffusion 
length can be qualitatively interpreted as the presence 
of strong spin-orbit interaction in this metal.

Fig. 3. The influence of spin-orbit interaction on the line asymmetry 
parameter /A B at = 10r  (red curve) and = 100r  (blue curve) 
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4.  INFLUENCE OF SPIN-ORBIT 
INTERACTION ON SELECTIVE SPIN 

TRANSPARENCY OF METAL

Selective spin transparency is the phenomenon of 
electromagnetic field penetration into a conductor 
to a depth significantly exceeding the skin depth, 
due to the diffusive transport of non-equilibrium 
magnetization of conduction electrons deep into 
the metal [14–16, 49–51]. The phenomenon of 
selective spin transparency is observed under CESR 
conditions when the precession frequency of the 
electron spin Ω in the magnetic field is close to the 
alternating field frequency ω. Of the two circular 
components of the electric field we found, E+ and 
E- only the component E- demonstrates behavior 
characteristic of the selective spin transparency 
phenomenon. 

For the field component E- from expression (21) 
in the case when SLδ  , taking into account the 
condition 1λ-   we obtain 

( ) ( ){ /2( ) = 0 1 1
z

E z E e δξ Ξ- -
é ù- - +ê úë û





	 ( )
/2 ( )1 .

z Seξ Ξ - üïï+ - ýïïþ



	 (32)

It is evident that under the considered conditions, 
the electric field E- can be represented as the sum of 
two parts: a large rapidly decaying part (at distances 
of the order of δ), 

( ) /
0 ,

z
E e δ
-



and a small slowly decaying part (at distances of the 
order of SL ), 

( ) ( )
/2 ( )0 1 .

z SE eΞ ξ -
- - 



The small slowly decaying part arises due to the 
diffusive transport of non-equilibrium spin density 
of conduction electrons deep into the metal at 
distances significantly exceeding the skin depth. 

From result (32), it follows that SOI significantly 
affects the magnitude of the small slowly decaying 
part of the electric field. In conductors with negative 
spin Hall angle < 0ξ  or conductors where > 2ξ Ξ, 
the slowly decaying part will definitely be larger than 
in conductors where SOI is negligibly small. Thus, 

metals with negative spin Hall angle and metals 
where the spin Hall angle exceeds the value 2Ξ may 
demonstrate the effect of enhanced selective spin 
transparency. 

Let's consider how SOI affects the penetration 
of electromagnetic field energy flux into the metal 
under CESR conditions. For this purpose, we will 
calculate the dependence of the Poynting vector on 
coordinate z 

= .
4
c
π
é ù´ë ûU E H

The time-averaged z-component of the Poynting 
vector zU  under resonance conditions (at = 0α ) in 
the case when SLδ  , can be written as 

( ) 2 /2 / 4 2
( ) (0) 1 .

z Lz S S
z z

L
U z U e eδ ξ Ξ

δ

é ù
ê ú» - + -ê úê úë û

 	(33)

From (33) it follows that: 1) the time-averaged 
electromagnetic field energy flux near the metal 
surface at distances of the order of skin depth (| |z δ£ )  
is directed into the metal; 2) at distances significantly 
exceeding the skin depth but comparable to the 
spin diffusion length ( Sz Lδ £ ), the time-
averaged electromagnetic field energy flux can flow 
in different directions depending on the magnitude 
of the spin Hall angle ξ. If the spin Hall angle ξ is 
positive and small compared to the parameter value 
Ξ or negative, then the time-averaged energy flux at 

Sz Lδ £  is directed into the metal. However, 
if SOI is sufficiently large so that >ξ Ξ, then the 
aforementioned flux is directed towards the metal 
surface.

Thus, a sufficiently large SOI can cause the effect 
of energy flow direction inversion of electromagnetic 
waves deep in the metal under conditions of selective 
spin transparency. The physical cause of the energy 
flow direction inversion effect of electromagnetic 
waves is the fact that the spin current induced in the 
metal generates, due to the inverse spin Hall effect, 
an additional electric current that is opposite to 
the magnetization current arising under the action 
of an alternating electromagnetic field. In the case 
when >ξ Ξ, at depths Sz Lδ £  the additional 
electric current arising due to SOI exceeds the 
magnetization current in magnitude, which causes 
the electromagnetic field energy flow directed 
opposite to the electromagnetic field energy flow 
within the skin layer.
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Let us perform numerical estimates of the 
parameter Ξ and parameter = /ξ ξ Ξ  for some 
non-magnetic metals for which the spin Hall angle 
values have been experimentally determined. The 
table contains characteristics of metals Al, Cu, Nb, 
Ag, Pt and  Au, which we will use for numerical 
estimation of the parameters of interest.

The second column of the table shows data on 
the charge carrier concentration 0N  in the metal. 
The third column contains the values of the metal's 
specific electrical resistivity. The resistivity values 
for Al, Cu, Nb, Ag and Au are given for temperature 
273 K, and for Pt – for temperature 300 K. The 
fourth column contains data on the spin Hall angle 

SHEΘ  in the metal. Data on the values of 0N  and ρ 
for Al, Cu, Nb, Ag and Au are taken from [52], for 
Pt — from [53]. Data on the values of SHEΘ  for all 
metals are taken from review [11].

For order-of-magnitude estimates, we will 
consider the electron gas to be degenerate, the 
electron dispersion law to be isotropic and quadratic, 
set the effective electron mass equal to the free 
electron mass em , and the value of the g-factor. 
In this simplest model, the Fermi energy of free 
electron gas 

( )2/32 2
03

= .
2F

e

N

m

π
ε



From the Drude formula for electron gas 
conductivity, we obtain an estimate for the electron 

momentum relaxation time 2
0= /O em e Nτ ρ . The 

table presents values of parameter = 3 / 8 O FgΞ τ ε , 
calculated using data for 0N  and ρ, shown in the table. 
To find parameter ξ we use expression = /SHEξ Θ Ξ .

The table shows that for all considered metals, 
there is a strong inequality 1Ξ  , which we used in 
deriving analytical expressions for fields.

he table also shows that in metals such as Cu, Nb, 
Ag, Pt and Au, parameter ξ can reach a significant 
value and, consequently, in these metals, the 
influence of SOI on the CESR line shape can be 
detected experimentally. 

Estimates shown in the table indicate that in 
metals such as Nb, Pt and Au, the effect of enhanced 
selective spin transparency can be detected. 

5.  CONCLUSION

The developed theory allowed us to describe 
the influence of spin-orbit interaction on the 
distribution of high-frequency electric and spin 
currents induced in a non-magnetic metal by an 
incident electromagnetic wave. It is shown that: 1) 
SOI causes the emergence of additional spin density 
competing with the spin density arising in the 
metal under the action of an alternating magnetic 
field; 2) the alternating spin current induced by 
the wave in the metal under the influence of SOI, 
due to the inverse spin Hall effect, generates an 
additional electric current that is opposite to the 

Table. Data on characteristics of metals Al, Cu, Nb, Ag, Pt and Au equal to 2.

Metal 
0,N  cm 3-  ,ρ  μΩ×cm 

SHEΘ  Ξ ξ 

Al  2218.1 10×  2.4 0.0001 0.0003¸  35 10-×  0.02 0.06¸  

Cu  228.5 10×  1.6 0.003 33 10-×  1 

Nb  225.6 10×  15.2 0.0087-  322 10-×  0.39-  

Ag  225.9 10×  1.5 0.007 32 10-×  3.5

Pt  221.6 10×  16.8 0.004 0.1¸  316 10-×  0.25 6.25¸  

Au  225.9 10×  2 0.002 0.11¸  33 10-×  0.67 36.67¸  
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magnetization current arising under the action of 
the electromagnetic field.   

The surface impedance of metal has been 
calculated taking into account SOI, and the features 
of the conduction electron spin resonance line 
shape caused by SOI action are described. It is 
shown that spin-orbital interaction under CESR 
conditions can significantly influence the shape of 
the derivative of power absorbed by the sample with 
respect to magnetic field. The influence of SOI on 
line asymmetry parameter of the derivative of power 
absorbed by the sample with respect to magnetic 
field has been studied, demonstrating that precise 
measurements of the CESR line shape can provide 
information about the SOI magnitude in the metal 
under study.  

It is shown that SOI can lead to the effect of 
enhanced selective spin transparency, which 
consists in the increase of the amplitude of slowly 
decaying part of the electric field arising from 
diffusive transfer of non-equilibrium spin density 
of conduction electrons deep into the metal at 
distances significantly exceeding the skin depth.

The influence of SOI on the energy flux density 
of electromagnetic field penetrating into the metal 
has been studied. It is shown that in a semi-bounded 
non-magnetic metal, SOI-induced inversion of 
electromagnetic wave energy flow direction can 
occur – an effect consisting in the emergence of 
electromagnetic field energy flow directed towards 
the metal surface in the metal depth. The nature 
of this effect lies in the fact that the spin current 
induced in the metal by electromagnetic wave under 
SOI influence, under conditions of inverse spin Hall 
effect, generates additional electric current, whose 
density vector is directed against the magnetization 
current density vector, and whose vector magnitude 
exceeds that of the magnetization current. 
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