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Abstract. It is shown that the Kontorovich criterion for neutral stability of relativistic shock waves (the 
relativistic analog of the Dyakov-Kontorovich criterion in classical hydrodynamics), after eliminating the 
derivative along the Taub-Hugoniot shock adiabat using relations at the relativistic shock-wave discontinuity, 
reduces to a constraint on the isenthalpic derivative of internal energy with respect to specific volume in the 
rest frame: ( ) 0p v p

ω
ε>- ¶ ¶ > . The obtained formulation is also valid in classical hydrodynamics. The 

implications of this formulation for shock waves with single-phase and two-phase final states in a medium 
with first-order phase transition are derived. The influence of the Riedel parameter and isochoric heat capacity 
on the realizability of neutrally stable shock waves is shown. In a model problem formulation, the effect of 
local thermodynamic non-equilibrium on the damping of perturbations of a neutrally stable shock wave is 
investigated.
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1. INTRODUCTION

The linear stability theory of shock waves in media 
with arbitrary thermodynamic properties identifies a 
range of shock wave parameters in which, within the 
framework of analyzing the linearized problem for 
equations describing the evolution of perturbations, 
the latter neither grow nor decay. The energy flux 
of the acoustic component of secondary waves in 
this case is directed from the shock wave toward the 
shock-compressed matter, i.e., the shock wave is a 
source of forced sound radiation if nonlinear stability 
occurs, or spontaneous otherwise. To designate this 
range, the literature uses terms such as: Dyakov-
Kontorovich instability, spontaneous sound emission 
by shock wave, neutral (within linear theory) stability 
of shock wave. Complex behavior of shock waves is 
associated with the fulfillment of neutral stability 
conditions, consisting in anomalously slow damping 
of perturbations and related inhomogeneity of 
parameters behind its front.

For the first time, the analysis of the stability 
of a non-relativistic shock wave to small two- 
dimensional perturbations in a medium with 

arbitrary thermodynamic properties was performed 
by S. P. Dyakov [1] using the normal mode method 
and later refined by V. M. Kontorovich [2]. Within 
the framework of the study, shock wave instability 
criteria were obtained, linking the dimensionless 
derivative along the shock adiabat 2= ( / )HL j V p¶ ¶ , 

=j vρ  is mass flux density through the shock wave 
surface, the Mach number of the flow behind the 
shock wave front (M) and the compression ratio of 
matter in the shock wave:
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Subsequently, these conditions were re-derived 
based on a more general mathematical approach 
[3]. In Kontorovich’s work [4], the analysis was 
generalized to the case of relativistic hydrodynamics, 
and a relativistic formulation of stability criteria 
was obtained, which in the non-relativistic limit 
transitions to (1), (2). In [5], a relativistic analog of 
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the parameter L was introduced and a formulation 
of shock wave stability criteria obtained in [4] 
was proposed through this parameter. Until now, 
the fulfillment of (2) has been observed for shock 
waves in metals [6–8], under conditions of non-
equilibrium ionization in gases [9, 10], in real gas 
[11–13]. The fulfillment of this condition has 
been established in hot plasma of carbon, silicon, 
aluminum, niobium [14], under non-adiabatic 
conditions during reactions [15, 16]. In most cases, 
the realization of the condition was discovered as a 
result of direct verification of the fulfillment of (2) 
on the shock adiabat.

For the first time, the fact that the neutral 
stability condition of a shock wave, after excluding 
the parameter L using relations at the shock-wave 
discontinuity, significantly simplifies, was pointed 
out in [17] for the case of a non-relativistic shock 
wave. Later, the stability of relativistic shock waves 
in the linear approximation was re-examined in [18, 
19] based on a method similar to [3]. The study of the 
well-posedness of the mixed problem for equations 
describing the evolution of perturbations using the 
Lopatinskii condition led to the formulation of 
the neutral stability criterion for shock waves in 
the form of restrictions on the derivatives of the 
equation of state. Based on the obtained results, 
the stability of shock waves for certain equations of 
state was considered [11, 20]. The thermodynamic 
formulation in the form of restrictions on 
thermodynamic derivatives has the advantage of 
a direct connection between the thermodynamic 
properties of the medium and shock wave stability, 
without constructing shock adiabats for a specific 
equation of state, and serves as a convenient tool for 
analyzing the realizability of neutrally stable shock 
waves in relativistic and classical hydrodynamics.

This work is devoted to studying this connection 
for media with phase transitions. In Section 2, 
based on Kontorovich’s result [4], an equivalent 
thermodynamic formulation of the neutral stability 
criterion for relativistic shock waves is obtained in 
the form of restrictions on the isenthalpic derivative 
of internal energy with respect to specific volume. 
Section 3 provides examples of applying this 
thermodynamic criterion to assess the realizability 
of neutral stability of shock waves in media with 
various equations of state. Section 4 shows that in 
the thermodynamic formulation, the neutral stability 
criterion for shock waves is written identically in 

both relativistic and non-relativistic cases. Section 5 
derives the implications of this formulation for shock 
waves with single-phase and two-phase final states 
in a medium with a first-order phase transition. The 
influence of the Riedel parameter and isochoric heat 
capacity on the realizability of neutrally stable shock 
waves is shown. Section 6, within the framework of 
a model problem based on the results of previous 
sections, shows the influence of non-equilibrium 
internal degrees of freedom of molecules on the 
attenuation of perturbations in a neutrally stable 
shock wave.

2. THERMODYNAMIC CRITERION 
OF  NEUTRAL STABILITY  

OF SHOCK WAVES

The criterion of neutral stability of a relativistic 
shock wave within the special theory of relativity 
was first obtained by Kontorovich based on stability 
analysis using the normal modes method. The result 
is presented in the reference frame associated with 
the shock wave discontinuity, using a system of units 
where the speed of light equals 1. The criterion is 
formulated as the following chain of inequalities [4]:

2
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Here

2= 1 / 1 ,vγ -

= [ ] / [ ] 2,h pα -

where [•] denotes the jump of the corresponding 
quantity at the shock wave discontinuity; =yu vγ  is 
a component of the 4-velocity vector normal to the 
shock wave surface; v is corresponding component of 
hydrodynamic velocity, = /M v c is Mach number 
of the flow behind the shock wave front, c is sound 
velocity:

2 = ( / ) ;Sc p e¶ ¶

e is internal energy density; p is pressure; =h e p+  
is enthalpy density; derivative ( / )Hh p¶ ¶  is taken 
along the Taub-Hugoniot shock adiabat [21]:

	 2 2 2 2 2 2
0 0 0 0 0( )( ) = 0,h V h V p p h V hV- + - + 	 (4)
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where index “0” refers to the state before the 
shock wave; V is specific volume in the bound 
reference frame. Depending on the system under 
consideration, specific quantities are per particle, per 
unit of baryon number, or per unit mass.

The left inequality in (3) for determining the 
boundary of neutral stability of a shock wave is not 
essential, since the instability region
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corresponding to exponential growth of perturbations 
on the shock adiabat always overlaps with the region 
of structural instability or metastable behavior of 
the shock wave. The right inequality is of interest 
since it defines the boundary between the region of 
stable shock waves and the region of neutral stability. 
Let us consider the conditions that the equation of 
state must satisfy for shock waves meeting (3) to be 
possible. For this, we transform the right inequality 
(3), excluding the derivative along the shock adiabat 
and velocity, using relations at the relativistic shock 
wave discontinuity. Let us write this inequality in an 
equivalent form

	
2

2 2 2

1 1< ,
2(1 ) 1 ( 1)

y

y y

u q

u M u α-

+

+ + -
	 (6)

where by definition

= ,
H

hq
p

æ ö¶ ÷ç ÷ç ÷ç ÷ç¶è ø

and transform separately the left and right parts 
of (6). According to (4), the increments of energy 
density, pressure, and specific volume along the 
Taub-Hugoniot shock adiabat are related by

	 0 [ ] = ,
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where 2X hVº . Using the relation at the shock 
wave discontinuity
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we obtain an expression for the left side of (6):
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From the relations at the relativistic shock wave 
discontinuity follows the expression for parameter α:
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Taking into account (11), the right side of (6) 
reduces to
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After substituting the transformed expressions (10) 
and (12) into (6), we have
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From the relation for the square of sound speed

2 = (1 ) / > 0,e pc V V- +

the constraint on parameter g, which follows from 
the relations at the shock wave discontinuity:

1 < < 1 / 2,g- -

the causality principle < 1c  and the shock wave 
discontinuity evolution condition <v c it follows 
that the denominator of the right side of (13) is 
positive, and the sign of the denominator of the left 
side of the inequality is opposite to the sign of pV . 
After reducing to a common denominator, dividing 
by g , pV  and  2 2v c- , we arrive at an inequality 
equivalent to (13),

	 ( ) 2[ ] 1 / > .e pp V V hc- 	 (14)

Taking into account the identity
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= Veε  is internal energy, =w pVε +  is enthalpy, 
(14) takes the form

	
2 [ ] < 0.

V
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Condition (15) is equivalent to Kontorovich’s 
criterion of neutral stability of a shock wave. The 
thermodynamic identity

2( ) = ,VV w
w p hcε ε +

proof of which is given in the Appendix, can be 
written as:

	 2( [ ]) = ,
V

w G p hcε + 	 (16)

where

0= .V w
G pε +

Expressing the derivative 
V

wε  from (16), after 
substitution into (15) we obtain an equivalent form 
of the shock wave neutral stability condition:

	 2 < 0,
[ ]

G hc
G p+

	 (17)

from which it follows that the neutral stability 
condition is satisfied if and only if the parameter G  
is within the range [ ] < < 0p G- , which is equivalent 
to the constraint on the internal energy derivative:

	 0> > .V w
p pε- 	 (18)

The left inequality in (18) is equivalent to the 
condition > 0

V
wε , another form of which is > 1Γ - , 

where

= /T TV V
V pΓ ε

is the Gruneisen parameter. Violation of this 
condition seems exotic, although it does not 
contradict the laws of thermodynamics. Under these 
conditions, the right inequality acquires the force of 
a criterion

	 0> ,V w
pε- 	 (19)

which is most often not satisfied, and its fulfillment 
in a limited region of the phase diagram means the 
realizability of neutral stability of shock waves. This 
condition is satisfied with a negative derivative in the 
left part of (19), primarily for high-intensity shock 
waves. Let us provide several examples.

3. EXAMPLES OF APPLYING 
THE  THERMODYNAMIC CRITERION

The relativistic equation of state for a gas of non-
interacting particles [22],

	 3

2
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where 2K  and 3K  are modified Bessel functions 
of the second kind of second and third order, 
does not allow the fulfillment of (19) since the 
left side of the inequality equals zero. Similarly, 
the equations of state for ultra-relativistic gas, 
radiation, non-relativistic ideal gas, as well as any 
caloric equation of state connecting enthalpy and 
internal energy through a functional dependence 
of the form ( , ) = 0f w ε , or in parametric notation 

= ( ), = ( )pV f T Tε ε , allow for the existence of only 
stable shock waves within the framework of linear 
theory [1–4]. One of the applications of relativistic 
hydrodynamics is modeling shock compression of 
nuclear matter during the collision of relativistic 
nuclei in colliders, leading to the formation of 
quark-gluon plasma and its subsequent expansion 
and hadronization. During the collision stage, the 
parameters of quark-gluon plasma are estimated 
from the relations at the shock wave discontinuity, 
and the question of shock wave stability has been 
raised in literature, see, for example, [23–25]. The 
caloric equation of state for quark-gluon plasma 
within the framework of the M.I.T. bag model 
(see [26]), which neglects quark masses during its 
derivation, has the form

	 4= ( ),
3

w BVε - 	 (21)

where > 0B  i s  the bag model constant. 
Consequently, the fulfillment of (3) for shock 
waves with a final state in the region of the nuclear 
matter phase diagram corresponding to quark-gluon 
plasma is impossible if the influence of corrective 
amendments to (21) does not exceed the stabilizing 
influence of the constant B .

Let the equation of state of the substance be given 
in parametric form

	 = ( , ), = ( , ).p p V T V Tε ε 	 (22)

Let us transition in (19) from variables ( , )p w  to 
variables ( , )V T . Such transition is one-to-one. As a 
result, we obtain
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	 0( ) | ( | | ) > ,V T V T T VpV Vp Tp pξ- + 	 (23)

1= .
1 | /( | )T V T VVp

ξ
ε+

The necessary condition for the realizability of 
neutral stability, corresponding to the limit of shock 
waves of infinite intensity, 0( 0)p ®  in (23), can be 
written as

	 ( ) | > ,V T V T VV T
pV c Vp ε 	 (24)

where

= | , = .V T V V TT V
Tp p cε ε-

Consequently, for a medium with a positive Gruneisen 
parameter, which is the most common case for real 
media, the independence of internal energy from 
volume = ( )Tε ε  or the negativity of the derivative 

< 0V T
ε  at ( ) | > 0V TpV  means unconditional 
(independent of ñV ) realizability of neutrally stable 
shock waves. In this case, there exists a threshold 
intensity of the shock wave above which the Dyakov-
Kontorovich criterion is satisfied. In the remaining 
cases, the realizability of neutral stability is determined 
by the magnitude of isochoric heat capacity. 
Conversely, if ( ) | < 0,V TpV  the non-negativity of 

V T
ε  implies unconditional stability of shock waves 
according to this criterion. In such examples, we see 
how the property of forced or spontaneous sound 
emission by a shock wave simultaneously with the 
fact of its neutral stability within the framework of 
linear theory is determined from the equation of state 
without constructing shock adiabats and checking the 
criterion in its original form.

4. NON-RELATIVISTIC LIMIT

The form of the neutral stability condition for 
shock waves (18) obtained within the framework of 
a more general theory is equally valid for relativistic 
and non-relativistic shock waves. To illustrate this 
statement, let’s derive it directly from (2). The 
increments of variables along the shock adiabat

	 1
0 0 02

( )( ) = 0p p V Vε ε- + + - 	 (25)

are related by the equation
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which, taking into account the expression for sound 
speed and relations at the shock wave discontinuity, 
leads to the following expression for the Dyakov 
parameter:
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Since, on the other hand, (2) is equivalent to

	
( )

2

2
0

1> 1 ,
1 1 ( ) /
2

ML
M V V V

-
- +

- -
	 (28)

the Dyakov-Kontorovich condition can be written as
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positive and the condition takes the form
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Taking into account the identities
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we have

	 2[ ] > / ,
V

w p c Vε 	 (32)

which is the non-relativistic analogue of (15). Using 
the non-relativistic limit of identity (16)

	 2( [ ]) = / ,
V

w G p c Vε + 	 (33)

we finally have

0> | > .V wp pε-

As expected, we arrive at the result obtained within 
the framework of relativistic hydrodynamics. 
The normal modes method and the method of 
investigating the correctness of the mixed problem 
for perturbations equally define the stability 
boundaries; accordingly, the constraints on the 
derivatives of the equation of state behind the front 
of a neutrally stable shock wave [11]

	 1< 1, 1 > 0
|p V

p
p ε

ρ
ρ ρε
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are equivalent to (18). Indeed, the relations
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show the connection between (34) and (18). 
Moreover, (18) has a simple thermodynamic 
interpretation: neutrally stable shock waves are 
possible only under conditions where internal 
energy decreases during expansion in an isenthalpic 
process, and the boundaries of neutral stability in 
the space of thermodynamic variables are the level 
lines of the derivative of internal energy with respect 
to volume V w

ε .

5. NEUTRAL STABILITY  
OF SHOCK WAVES AND  

FIRST-ORDER PHASE TRANSITION

5.1. Two-phase states behind the shock wave front
For shock waves with final state in the two-

phase region of phase transition ( = ( )sp p T  and 
| = 0V Tp , where sp  is the pressure on the saturation 

line) condition (24) takes the form

	 ( )1> / (1 ) 1 ,Vc I Z
R

θ θ -- - 	 (35)

where

= pVZ
RT

is the compressibility coefficient,

(ln )
=

(ln )
sd p

d T
θ

is a temperature function characterizing the slope 
of the phase equilibrium curve in the plane of 
variables ( , )p T , 0= /I p p  is the pressure drop at 
the shock wave front. The necessary condition for 
the realizability of neutrally stable shock waves, 
corresponding to the limit of shock waves of infinite 
intensity, is

	 ( )> 1 .Vc Z
R

θ θ - 	 (36)

From (36) follows unconditional (regardless of 
Vc ) realizability of neutral stability of strong shock 

waves at 0 < < 1θ . The shock wave in this case 
is neutrally stable at pressure drop on the front 

1> (1 )I θ -- . In the case of < 0θ  and > 1θ  the 

realizability of such shock waves is determined by 
the value of isochoric heat capacity. The liquid-
gas phase transition for a wide range of substances 
corresponds to the case > 1θ .

The value θ at the critical point is a similarity 
parameter  of  thermodynamic properties 
of various substances (Riedel parameter, 

= ( (ln ) / (ln ))cd p d Tα ) and within the law of 
corresponding states is approximated by the 
dependence

= 4.919 5.811,α ω +

where ω is Pitzer’s acentric factor, which, taking into 
account the correlation for compressibility

= 0.291 0.080cZ ω-

gives

( )( )1 8.135 12.97 .
c

Zθ θ ω- » +

At the boundary of the two-phase region from 
the side of saturated liquid and saturated vapor, 
the right part of (36) is a function of temperature. 
These dependencies, following from the law of 
corresponding states for the acentric factor of water 

= 0.344ω  [27], are shown in Fig. 1, which also 
presents data on the heat capacity of liquid water 
and vapor at the boundary of the two-phase region 
from the side of two-phase states [28]. The right 
and left parts of (36) within the two-phase region 

Fig. 1. Left and right parts of (36) for H20 at the boundary of the 
two-phase region depending on the reduced temperature
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on an isotherm are linear functions of specific 
volume; therefore, fulfillment of the inequality at the 
boundaries of the two-phase region from the liquid 
and gas sides is sufficient for it to be fulfilled at all 
internal points. From Fig. 1, it follows that (36) is 
satisfied in the near-critical region at temperatures 
exceeding approximately 0.78, at all values of specific 
volume. At lower reduced temperatures, two-phase 
states with a predominant vapor fraction appear, 
for which (36) is not satisfied. A similar pattern 
occurs for other substances. In [7], based on a wide-
range equation of state, a similar pattern of neutral 
stability of shock waves with final state in the two-
phase region of metals is shown. In Fig. 2 for the 
wide-range equation of state of magnesium (see [7]), 
regions of neutral stability of shock waves are shown 
as level lines V w

ε . The designation 'k  corresponds 
to the boundary of region 

( )pkΩ¶ , where kp  is initial 
pressure of shock adiabat k. Each of the shown 
shock adiabats has sections of neutral stability at 
the intersection with the corresponding region 

( )pkΩ  
both in the two-phase and single-phase regions.

5.2. Single-phase states  
behind the shock wave front

Let us consider the consequences of (23) for 
shock waves with a final state in the single-phase 

region of the phase transition with a positive 
slope of the phase equilibrium curve at the critical 
point > 0.cθ  From continuity V T

p  during the 
transition through the critical point from the two-
phase region to the single-phase region, it follows 
that between the  binodal of the phase transition 
and the Boyle curve (defined by the  condition 
( ) = 0V T

pV ) in variables ( , )V p  holds ( ) > 0V T
pV . 

From the continuity of the derivative T V
p  at the critical 

point (Planck-Gibbs relation ( ) = ( / )T c s cV
p dp dT , 

meaning that at the critical point the slope of the 
saturation line in coordinates ( , )T p  equals the slope 
of the critical isochore) follows the continuity of 

V T
ε , while from the identity

( ( ) / ) = ( / )V VT TV
T c Vε¶ ¶ ¶ ¶

follows the boundedness of its temperature 
derivative. Note that models in which the 
specific heat at constant volume depends only on 
temperature, lead to the constancy of V T

ε  on the 
isochore. Consequently, if the slope of the phase 
equilibrium curve in the plane of variables ( , )T p  
is within the interval 0 < < 1cθ , in the vicinity of 
the critical point from the single-phase states side 
there exists an intersection of regions ( ) > 0V T

pV  
and < 0V T

ε , corresponding to unconditional 
realizability (independent of specific heat Vc ) of 
neutral stability of shock waves.

The neutral stability boundary on the ( , )V p  
diagram in this case is located between the Boyle 
curve and curve = 0V T

ε  and passes through their 
intersection points, if any exist. If the slope of the 
phase equilibrium curve satisfies condition > 1cθ , 
then in the vicinity of the critical point from the side 
of single-phase states, conditions ( ) > 0V T

pV  and 
> 0V T

ε  are satisfied. The liquid-gas phase transition 
corresponds to this case. Let V T

ε  maintain its sign 
throughout the entire region above the binodal, as 
is the case for the real gas models considered below. 
Then, depending on the magnitude of isochoric heat 
capacity, neutral stability of shock waves is possible 
only for states behind the shock wave front enclosed 
between the binodal and the Boyle curve. Since 
the limit of high heat capacity corresponds to the 
fulfillment of the neutral stability condition for shock 
waves for all states between the binodal and the Boyle 
curve, and the limit of low heat capacity corresponds 
to its non-fulfillment (in this limit (23) takes the 

GPa

cm3/g

Fig. 2. Level lines 
V w

ε  for magnesium, 'k  is the boundary of neutral 
stability 

( )pkΩ¶ , where kp  is initial pressure of shock adiabat k, C.p. 
is critical point
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form > 0V T
ε- ), there exists a threshold value of 

heat capacity at which neutrally stable shock waves 
become possible. Let us estimate this threshold based 
on the thermodynamic criterion of neutral stability of 
shock waves for some real gas models.

5.3. Influence of Heat Capacity

Let the state of liquid and gas be described by a 
single equation of state = ( , )p Vε ε , as in the case of 
the Van der Waals equation. From (29) we conclude 
that the boundary 

( )0p
Ω¶  of the neutral stability 

region passes through the intersection points of the 
straight line 0=p p  and the hyperbolicity boundary, 
defined by condition = 0c , where c is the adiabatic 
sound speed. These points are located on the 
plane ( , )V p  below the spinodal and correspond to 
thermodynamically unstable states. Let us consider 
the equation of state of general form:

	 = ( ) ( ),p r V RT A V- 	 (37)

where ( ), ( )r V A V  are specific volume functions.
Dependence (37) generalizes the Van der Waals gas 
equation of state, the second Dieterici equation, 
various approximations of the hard spheres model, 
refining the function ( )r V , and attraction term 
models ( )A V . To evaluate the feasibility of neutral 
stability of shock waves in a single-phase region, the 
weak temperature dependence of this term, which 
is considered in semi-empirical equations of state, 
can be linearized near the binodal. With a known 
temperature dependence of isochoric heat capacity 
of the form | = ( )T V Vc Tε   the fundamental equation 
of such gas is written in parametric form:

	
0

0

0
0
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( , ) = ' ( ') '.
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T V
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ε ε
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The square of adiabatic sound speed in such medium is

	 2 2 '= ( ) ' ,
V

rR rc V p A A
c r

æ öæ ö ÷ç ÷ç ÷÷çç - + + ÷÷çç ÷÷÷çç ÷çè øè ø
	 (39)

' = / , ' = / .r dr dV A dA dV

Using equation (39), we express the square of the 
speed of sound through pressure at с = 0 representing 
it as a function of volume 

=0
= ( , )Vc

p V c :

	 2 2 '= ( ( , )),V
V

rR rc V p V c
c r

æ ö÷ç ÷ç - -÷ç ÷÷çè ø
 	 (40)

	 '( , ) = ' / .V
V

rR rV c A A
c r

æ ö÷ç ÷ç- - -÷ç ÷÷çè ø
 	 (41)

For the given medium:

	 1 1= = .T V V
p V

T V

c
e

V rV Rp

ε
	 (42)

Substituting equations (40) and (42) into equation 
(32) leads to the condition for neutral stability of the 
shock wave:

	 0 0< ( ( , ) ),Vp p V c pλ- - 	 (43)

	 ' '= / 1 .
ñV

r R rV r V
r r

λ
æ ö æ ö÷ç ÷ç÷ ÷ç - +ç÷ ÷ç ç÷ ÷ç÷ç è øè ø

	 (44)

In the case of a gas with constant isochoric heat 
capacity, the curve = ( , )Vp V c  represents the 
adiabatic spinodal. The boundary of the neutral 
stability region ∂Ω(𝑝0) in the (V, p) plane, according 
to equation (43), is the image of the adiabatic 
spinodal stretched relative to the line 𝑝=𝑝0  along 
the p-axis with a coefficient that depends on volume 
and heat capacity. This provides a simple qualitative 
picture of the neutral stability region relative to 
the binodal, as shown in Fig. 3. It follows that if 
𝑝0 exceeds the maximum pressure on the adiabatic 
spinodal (curve 1), equation (18) is not satisfied even 
in the metastable and unstable states. 

binodal

Fig. 3. Diagram showing the dependence of the neutral stability 
region 

( )0p
Ω¶  in real gases on isochoric heat capacity. Curves 1–3 are 

adiabatic spinodal for three values of heat capacity 3 2 1> >V V Vc c c . 
( )0p

Ω  for each value Vc  is determined by inequality (43) 
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With an increase in heat capacity, the adiabatic 
spinodal shifts to the region of higher pressures, and 
at a certain value of heat capacity, ∂Ω(𝑝0) enters the 
region of thermodynamically stable single-phase 
states (curve 2). With further increases in heat 
capacity, supercritical pressures behind the front 
of the neutrally stable shock wave become possible 
(shown by the dashed line). At even higher heat 
capacities, ∂Ω(𝑝0) passes through the critical point 
of the phase transition, and neutrally stable shock 
waves with supercritical density behind the shock 
front become possible (curve 3).To demonstrate the 
sensitivity of threshold heat capacity values to the 
parameter 𝜃𝑐,which according to equation (36) plays 
an important role in the feasibility of neutrally stable 
shock waves in the near-critical region, we provide 
quantitative estimates of threshold heat capacity values 
for Van der Waals and Dieterici gases. According 
to Van der Waals equation, the Riedel similarity 
parameter = 4cθ , while for Dieterici equation = 5cθ , 
which is significantly closer to experimental values. 
For Van der Waals and Dieterici gases

1( ) = ( ) , ( ) = ,
n

ar V V b A V
V

--

and condition (43) has a simple form

	
0 0< ( ( , ) ),

( , ) = ( / ),

V

V n

Vp p V c p
b
aV c n nb V
V

γ

γ
γ

- -

- -




	 (45)

where

= 1 / .VR cγ +

According to (45), the maximum pressure at the 
neutral stability boundary is

	
1

2 1(0)

( ) ( 1)( ) = .max
n n
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b nΩ
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Taking into account critical point parameters
1
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the pressure maximum at (0)Ω¶ , relative to the 
pressure at the critical point, is

	
1

2 2 1(0)

( ) ( 1)( / ) = .max
( 1)
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-
¶
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According to (47), the neutral stability boundary of 
shock waves extends into the supercritical pressure 
region under the condition

	
2/ (2 1)/

( 1)/
( 1)< ,

( 1)

n n n

n n
n nn

n
γ

-

+

-
-

+
	 (48)

which gives
3/2< 2 (2 / 3) 1.455γ - »

for Van der Waals gas ( = 2)n  and
2/5 18/5< 5 / 3(1 5 / 2 ) 1.405γ - »

for Dieterici gas ( = 5 / 3)n .
The condition for achieving supercritical densities 

in a neutrally stable shock wave is obtained by 
substituting critical point parameters into (45)

	 0 0
2 1 1< (1 ) / .

1 1 1
n n np p

n n n
γ

æ ö æ ö- +÷ ÷ç ç÷ ÷- - +ç ç÷ ÷ç ç÷ ÷ç ç- + -è ø è ø
	(49)

For Van der Waals and Dieterici equations of state, 
we have < 1.222γ  and < 1.187γ  respectively. It 
should be noted that these values are close to the 
feasibility condition for neutrally stable shock 
waves with initial state in the single-phase region. 
According to [13], the realization of such shock 
waves becomes possible at 1.215γ »  and 1.199γ »  
respectively. This condition corresponds to the 
tangency of the neutral stability region boundary 

( )0p
Ω¶  with shock adiabat having initial point on the 

phase transition binodal at pressure 0p .
The obtained estimates are consistent with the 

general trend derived from (24) and continuity θ 
during the transition through the critical point: 
the higher the Riedel similarity parameter for the 
phase transition, the higher the threshold values 
of isochoric heat capacity at which neutrally stable 
shock waves are realized. Since the experimental 
values of the Riedel parameter ( 5.8)cθ »  exceed the 
values for the Dieterici equation ( = 5)cθ  and the Van 
der Waals equation, ( = 4)cθ , even more stringent 
restrictions can be expected for real substances than 
these models predict. In this case, the heat capacities 
of translational and rotational degrees of freedom 
of molecules are insufficient for the realization of 
neutrally stable shock waves with a final state in the 
single-phase region. The presence of thermodynamic 
factors associated with the excitation of internal 
degrees of freedom is necessary, which would lead to 
an increase in heat capacity or other thermodynamic 
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factors (corrections for non-ideality), resulting in 
a decrease in the isenthalpic derivative of internal 
energy with respect to specific volume.

Models of media, in which until now several 
authors have noted the fulfillment of the neutral 
stability condition for shock waves, provide insight 
into such factors. For neutrally stable shock waves 
with a final state in the two-phase region of the phase 
diagram, such a factor is phase transformations. And 
here we encounter the following problem.

Linear stability theory of shock waves using the 
method of normal modes or within the framework 
of studying the well-posedness of the mixed 
problem for perturbations considers a shock wave 
as a discontinuity surface behind which local 
thermodynamic equilibrium conditions are satisfied. 
At the same time, factors that lead to the fulfillment 
of the neutral stability condition, such as excitation 
of internal molecular degrees of freedom, phase 
transitions in multiphase media, ionization with 
the establishment of equilibrium between electronic 
and ionic subsystems, etc., suggest that an extended 
relaxation zone towards thermodynamic equilibrium 
adjoins the narrow gradient zone with predominantly 
viscous structure, which can be considered as a 
shock wave discontinuity. In this case, the neutral 
stability condition is not satisfied at the viscous jump 
in the approximation of frozen relaxation processes. 
It is expected that the interaction of the shock wave 
discontinuity with the relaxation zone will lead to 
those properties of long-wave two-dimensional 
perturbations that linear theory predicts, namely: a 
change in the decay law of shock wave perturbations 
compared to the case when the shock wave is stable 
in linear approximation; forced (or spontaneous) 
sound emission by the shock wave. Here we refer 
to the results of recent works [29, 30], in which 
for a shock wave satisfying condition (2), a linear 
stability analysis was performed taking into account 
the relaxation structure, and it was shown that the 
interaction of the shock wave and the adjacent 
relaxation zone is consistent with the classical theory 
conclusion about sound emission by the shock wave.

However, linear analysis does not allow 
determining the fact of stability or instability of the 
shock wave when the Dyakov-Kontorovich condition 
is satisfied and determining the decay law (or growth) 
of perturbations, which in this case is determined 
by nonlinear terms in the perturbation amplitude 
expansion. In fact, the fulfillment of this condition 

simply signals a change in the perturbation decay 
law compared to a shock wave that is stable within 
linear theory. Therefore, in the next section, we will 
consider the influence of non-equilibrium internal 
degrees of freedom on the perturbation decay rate 
within the framework of the nonlinear problem.

6. INFLUENCE OF THERMODYNAMIC 
NONEQUILIBRIUM

As a simple model of a neutrally stable shock wave, 
a shock wave with a final state in a single- phase 
near-critical region of the liquid-gas phase transition 
in a gas with the equation of state is considered
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where the characteristic temperature Θ is the same 
for N  harmonic oscillators per particle. It is assumed 
that when the temperature changes, the system 
reaches equilibrium within a characteristic time τ. 
The model kinetics was postulated in the form

/ = ,eqd dtτ ϒ ϒ ϒ-
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	 1 0

/
/= / .
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The system describing the flow of such gas, 
reduced to dimensionless form using the parameters 
of the phase transition critical point, is
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where =e ρε  is the internal energy density, v is the 
velocity vector. For this system, the problem of the 
evolution of an initial periodic perturbation of the 
neutrally stable shock wave front is considered.

The flow is considered in the spatial domain

( , ) [ , ] [0, ]x y l L ΛÎ - ´

in a reference frame where the unperturbed shock 
wave is stationary. The initial perturbation is given by 
the curvature of the shock wave discontinuity shape

= ( ),x f y

where

( ) = (1 / 5) cos( / ),f y yΛ π Λ

Λ is the half-period of perturbation. Initial data 
corresponding to the neutrally stable shock wave:

( , ) = (0.1,20) at < ( );p V x f y

= 1.2 at > ( ).p x f y

The remaining parameters were determined from the 
relations at the unperturbed shock wave discontinuity 
under conditions of equilibrium of internal degrees 
of freedom = eqϒ ϒ .

At the boundaries = 0y  and =y Λ symmetry 
conditions are set. The condition on the boundary 
section =x l-  fixes the flow parameters before the 
shock wave, at the remote boundary at =x L non-
reflecting boundary conditions were set.

The following model parameters were selected to 
ensure the neutral stability condition of the shock 
wave at given initial state parameters and final 
pressure:

0 / = 3 / 2, = 12, = 3.Vc R N Θ

The attenuation of shock wave perturbations is 
determined by the time dependence of averaged 
pressure fluctuations on the contour C  behind 
its front. The averaging contour is located in the 
relaxation zone behind the shock wave discontinuity 
with a constant offset relative to its current position, 
see Fig. 4. Fig. 5 shows the calculation results for three 
values of the relaxation zone half-width ∆, defined 
as the distance from the shock wave discontinuity 

at which the difference eqϒ ϒ-  decreases by half 
compared to the maximum value. The time scale 
tΛ is the time during which the shock wave travels 
a distance equal to half the spatial period of the 
perturbation Λ. The presented calculations show 
the change in the nature of perturbation attenuation 
depending on the ratio between the relaxation zone 
width and the spatial period of the perturbation. At 
∆ Λ/ = 0.3  the attenuation law is observed to be 
close to exponential, characteristic of stable shock 
waves. At ∆ Λ/ = 0.005  the attenuation law changes 
to a weaker one, which can be approximated by a 
power-law dependence.

The change in the attenuation law compared 
to a stable shock wave is quite expected for shock 
waves that are neutrally stable within the linear 
analysis framework. The stabilizing effect of the 
finite relaxation zone width is more pronounced 
for short-wave perturbations. It should be noted 
that this influence is quite strong: even at a ratio of 
perturbation wavelength to characteristic relaxation 
zone width of about 20, we see a significant change 
in the rate of perturbation attenuation.

From the calculations presented in Fig. 5, it can 
be concluded that regarding the rate of perturbation 
decay the range of neutral stability of shock waves 
remains distinct when accounting for the non- 
equilibrium structure of the shock wave. The 
practical significance will be determined by the 

x / Λ

Shock wave discontinuity

Relaxation zone

0 0.2 0.4 0.6 0.8 1

C

0

0.2

0.4

0.6

0.8

1
y / Λ

Fig. 4. Position of contour C , on which root-mean-square pressure 
fluctuations behind the shock wave front are calculated 
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width of the relaxation zone and the spectrum of 
perturbations in a specific problem.

Consideration of the shock wave structure 
influence, as known, corrects the conclusions 
of linear stability theory of shock waves, which 
considers the shock wave as a discontinuity surface. 
In particular, in the parameter range (1), where linear 
theory predicts the development of two-dimensional 
instability, viscous shock waves are not realized, 
and substance compression occurs in a combined 
wave [31–35]. In a medium with phase transition, 
such a combined compression wave can have a two-
wave structure, where the precursor corresponds to 
substance compression in the initial phase, and the 
following shock wave is a phase transformation wave. 
A theoretical example is given by shock compression 
of nuclear matter under conditions of quark-hadron 
phase transition [25]. From the thermodynamic 
formulation of the neutral stability criterion (18), 
it follows that during the decay of a neutrally stable 
shock wave due to structural instability, the closing 
shock wave in the combined compression wave 
retains the property of neutral stability if the precursor 
intensity does not exceed the threshold value

0< ( ).V w
p pδ ε- +

In this respect, the influence of the structural 
factor is also conditional.

7. CONCLUSION

The thermodynamic formulation of the neutral 
stability criterion for shock waves coincides for 
relativistic and non-relativistic shock waves and 
reduces to a simple condition on the derivative of 
internal energy with respect to specific volume at 
constant enthalpy: 0> >V w

p pε- , where index 
“0” corresponds to the initial state. This formulation 
of the criterion allows considering the feasibility of 
neutrally stable shock waves in media with different 
thermodynamic properties separately from the 
analysis of shock adiabats. In particular, the slope 
of the phase equilibrium curve in the plane ( , )p T  
has a determining influence on the feasibility of 
neutrally stable shock waves in a medium with a 
first-order phase transition. At Riedel parameter 
values = (ln ) / (ln ),c sd p d Tθ  characteristic for the 
liquid- gas phase transition, fulfilling the neutral 
stability condition for shock waves with final state in 
the single-phase region requires high medium heat 
capacity exceeding that of an ideal gas considering 
rotational and translational molecular degrees of 
freedom. Results for the model equation of state, 
generalizing van der Waals and Dieterici equations 
of state, showed that as the Riedel parameter 
increases, the threshold value of heat capacity at 
which neutral stability of shock waves becomes 
possible also increases. High isochoric heat capacity 
due to the heat of phase transition contributes to 
fulfilling the neutral stability condition for shock 
waves with final state in the two-phase region of 
the liquid-gas phase transition. Consideration of 
thermodynamic factors leading to the fulfillment 
of the shock wave neutral stability condition, based 
on the thermodynamic criterion and literature data 
on cases of its fulfillment, indicates that the neutral 
stability condition is met due to the influence of the 
medium relaxation zone to local thermodynamic 
equilibrium behind the shock wave front, since a 
viscous jump with excitation of translational and 
rotational degrees of freedom does not satisfy this 
condition. In the non-equilibrium zone, processes 
occur that reduce the magnitude of the isenthalpic 
derivative of internal energy with respect to specific 
volume. Based on a simple model of molecular 
internal degrees of freedom relaxation for a shock 
wave with final state in the near-critical region of 
the liquid-gas phase transition, the influence of the 
relaxation zone on the damping rate of shock wave 
perturbations is shown.

Fig. 5. Influence of relaxation zone on perturbation decay of 
neutrally stable shock wave; Λ  is perturbation half-period, ∆ is 
relaxation zone half-width, tΛ is time during which shock wave 
travels distance Λ



JETP, Vol. 165, No. 4, 2024

608	 KONYUKHOV	

FUNDING

This work was supported by the Ministry of 
Science and Higher Education of the Russian 
Federation (state assignment No. 075-01129-23-00).

APPENDIX

We transform the right side of the thermodynamic 
identity

	 =V VV w
w wε ε

ε - 	 (53)

as follows:

	

2

= =

= =

= =

= = .

V V

V S VS V

T V
V VS

T V

T V
V S V

T V

w p V p

p V p V p S

p
p V p V S

S

p
p Vp V p hc p w

ε ε

ε

ε

εε

- - -

- - -

- - -

- - - -

 

After substitution into (53) and regrouping

	 2( ) = ,VV w
w p hcε ε + 	 (54)

where

= 1 = 1 / ,e pV
w V Vε Γ+ -

=
V

V pεΓ   is Gruneisen parameter, definition of 
dimensionless parameters eV  and pV  is given in (9). 
In the non-relativistic limit, h ρ®  takes the form

	 2( ) = .VV w
w p cε ε ρ+ 	 (55) 
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