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Abstract. The Monte Carlo method was used to study phase transitions and thermodynamic properties
of the two-dimensional antiferromagnetic Potts model with the number of spin states ¢ = 4 on the kag-
ome lattice with interactions of the first J; and second J, neighbors. The studies were carried out for the
magnitude of the interaction of second neighbors in the interval 0 < r=|J,/J| < 1. It was found that at r =
0 the system exhibits disorder and strong degeneracy of the ground state. It is shown that taking into
account ferromagnetic interactions of second neighbors will remove the degeneracy of the ground state.
An analysis of the nature of phase transitions in the considered interval r was carried out. It is shown
that in the range 0.2 < r < 1 a second-order phase transition is observed.
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1. INTRODUCTION

The study of phase transitions (PT) and thermo-
dynamic properties of compounds having a kagome
lattice attracts a lot of attention. This is due to the
fact that frustrations can occur in such compounds
due to the special geometry of the lattice. In anti-
ferromagnetic compounds having a kagome lattice,
frustrations are observed when taking into account
the exchange interactions of the nearest neighbors.
In kagome lattice ferromagnets with antiferromag-
netic interactions of the second neighbors, frustra-
tions arise due to the competition of exchange in-
teractions between the first and second neighbors.
Frustration effects play an important role in mag-
netic spin systems. Frustrated magnets exhibit prop-
erties different from the corresponding non-frus-
trated magnetic systems, which causes increased
interest in studying the phenomena of frustration
in magnetic systems [1 — 3]. The models of Ising,
Heisenberg, Potts, etc. are widely used to study the
physical properties of such magnets. These models
describe a large class of real physical systems: lay-
ered magnets, liquid helium films, superconducting

films, adsorbed films, etc. [1, 4, 5]. To date, the clas-
sical Ising and Heisenberg models have been studied
quite well and many of their properties are known
[6 — 10]. Unlike the Ising and Heisenberg models,
there are very few reliably established facts for the
Potts model. In recent years, a significant number
of papers have been devoted to the study of spin
systems described by the Potts model [4, 11- 16],
in which many questions were answered. It has been
shown that the physical properties of the Potts model
depend on the spatial dimension of the lattice, the
number of spin states ¢, the magnitude of the in-
teraction of the second neighbors and the geometry
of the lattice [11 —19]. Most of the available results
are obtained for the Potts model with the number
of spin states g = 2 and ¢ = 3 [11, 12, 13]. Depend-
ing on the number of spin states g spatial dimension,
the Potts model demonstrates PT of the first or sec-
ond kind. The two-dimensional Potts model with
the number of spin states is ¢ = 4 quite unique and
has so far been little studied. This model can be used
to describe the behavior of some classes of adsorbed
gases on graphite [20]. This model is also interesting
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because the value g = 4 is the boundary value of the
interval 2<g<4, where PT of the second kind is ob-
served and the range of values ¢ > 4 in which PT oc-
curs as a transition of the first kind [4]. In this paper,
we study the two-dimensional antiferromagnetic
Potts model with the number of spin states ¢ = 4
on the Kagome lattice, taking into account the ferro-
magnetic exchange interactions of the second neigh-
bors. This model, even without taking into account
the interactions of the second neighbors, is frustrat-
ed due to the special geometry of the lattice. Taking
into account the ferromagnetic interactions of the
second neighbors in this model can lead to a change
in the degeneracy of the ground state, the appear-
ance of various phases and OP, as well as affect its
thermodynamic and magnetic properties. The study
of the effect of the magnitude of the ferromagnetic
interaction of the second neighbors on the PT and
thermodynamic properties of the two-dimension-
al antiferromagnetic Potts model with the number
of spin states ¢ = 4 on the Kagome lattice is prac-
tically not found in the literature. In this regard,
in this paper we conduct a study of the PT and ther-
modynamic properties of this model in a wide range
of values of the interaction of the second neighbors.
The study of the considered model based on modern
methods and ideas will provide an answer to a num-
ber of questions related to the physics of frustrated
spin systems and systems with competing exchange
interactions.

2. MODEL AND METHOD OF STUDY

The Hamiltonian of the Potts model with a num-
ber of states ¢ = 4 taking into account the interac-
tions of the first and second neighbors, can be rep-
resented in the following form [21, 22]:

H=-J, }, cos6; ; —J, > cosb,,, (1)
(i,j)i= ’ (i k) i=k ’

where J; and J, are the parameters of the exchange an-
tiferromagnetic (J; < 0) and ferromagnetic (J, > 0)
interactions, respectively, for the first and second
neighbors, r =| J, /J, | the magnitude of the inter-
action of the second neighbors, 91.’ » 91., « — the angles
between the interacting spins §; —§; and §; —.S,.
In this paper, we consider the interval of values in
0<r<1 at 0.1 increments. The summation in equa-

tion (1) is performed for each pair of adjacent spins.
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Fig. 1. The Potts model with the number of spin states ¢ = 4
on the kagome lattice. The inset shows a corresponding color rep-
resentation for each of the four possible spin directions

In this model, each spin has four nearest neigh-
bors, so the summation 4N was performed once.
N = L x L — the number of spins in the system,
L =12 —72, where L is measured in the size of the
unit cell. The same procedure is carried out for the
next nearest neighbors. A schematic description
of the model under study is shown in Fig. 1. As you
can see in the figure, each spin has four nearest (/)
and four next-to-nearest (J,) neighbors. The backs,
marked with circles of the same color, have the same
direction. The inset to the drawing shows a corre-
sponding color representation for each of the four
possible spin directions. The directions of the spins
are set in such a way that the equality is satisfied

0, ifS=S;
e_.z
M |109.47°, if S =S
or
I, ifS=S;
cos®, ; = ! )

~1/3, if$;=S,.

According to condition (2) for two spins, §; and
Sj, the energy of the pair exchange interaction
El.j =—J,if §; = Sj. In the case when §; = Sj,
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energy El.’ ;= J,/3. Thus, the energy of the paired
interaction of the spins is equal to one value with
their identical direction and takes on a different val-
ue when the directions of the spins do not match.
For the Potts ¢ model ¢ = 4in three-dimensional
space, this is possible only with the orientation of the
spins, as shown in the box in Fig. 1. Currently, one
of the most effective algorithms for studying such
systems is the Wang—Landau algorithm of the Mon-
te Carlo method [23], especially in the low-tempera-
ture region. Therefore, we used this algorithm in this
study. This algorithm is an implementation of the
entropy modeling method and allows you to calcu-
late the density function of the system states. The
Wang—Landau algorithm is based on the fact that
by making a random walk in the energy space with
probabilities inversely proportional to the density
of states g(E ), we get a uniform distribution of en-
ergies. By selecting the transition probabilities such
that the visit to all energy states would become uni-
form, one can obtain an initially unknown density
of states g(E ), knowing which, one can calculate
the values of the necessary thermodynamic param-
eters at any temperature. Since the density of states
increases g(E )Very rapidly with the increase in the
size of the studied systems, the value is used for the
convenience of storing and processing large num-
bers lng(E ) The Wang—Landau algorithm is de-
scribed in more detail in [13]. By determining the
density of the system states, it is possible to calcu-
late the values of thermodynamic parameters at any
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Fig. 2. Temperature dependences of heat capacity C
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temperature. In particular, internal energy U, free
energy F, heat capacity C and entropy .S can be cal-
culated using the following expressions:

S Ee(E)e 8
Ur)=-=L =(E), Q)

Zg(E)efE/kBT
E

F(T) = —k,TIn

S g(E)e ! "BT], @)

E

c=nlraat [(02) =)o

) (6)

where K =[J, | /kgT', N is the number of parti-
cles, T s the temperature (hereafter the temperature
is given in units| J; | /kp), U is a normalized value.
Calculations were performed for systems with peri-
odic boundary conditions (CCGT).

3. SIMULATION RESULTS

Figure 2 shows the temperature dependences
of the heat capacity Cfor different values r obtained
for a system with a linear size L = 24 (hereinafter,
the statistical error does not exceed the size of the
symbols used to construct the dependencies). As can
be seen in the figure, there is # = 0.1no sharp peak
for the value on the temperature dependence of the
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heat capacity, but a smoothed peak is observed.
The absence of a pronounced peak in heat capacity
is explained by the fact that at #<0.1 there is no order
in this model. For the values » = 0.2 and the r = 0.3
splitting of the heat capacity is observed. There are
two peaks and one smooth “hump”. As the value in-
creases, the » smooth hump and the low-tempera-
ture peak disappear and one pronounced peak re-
mains on the temperature dependence of the heat
capacity. The presence of a hump indicates the low
dimensionality of the system, and splitting of the
heat capacity is usually observed for frustrated spin
systems [2, 24]. For the model we are investigating,
the splitting of the heat capacity is due to the fact
that taking into account the exchange interactions
of the second neighbors leads to the appearance
of a partially ordered magnetic state. The r growth
is accompanied by a shift of maxima towards high
temperatures and an increase in the value of maxi-
ma. The increase in the absolute values of the heat
capacity maxima occurs due to an increase in the
contribution of the exchange interactions of the sec-
ond neighbors.

The magnetization of the system m was calculated
using the formula

m=—"S, (7)

where is a three §,— component unit vector
S, = (Sf,Sl?’,Sl.Z). It can take one of the four direc-

tions shown in the box in Fig. 1.

Figure 3 shows graphs of the dependence of mag-
netization mon temperature for different values r.
In the absence of interactions of the second neigh-
bors, there is no order in the system and the mag-
netization value is close to zero. When taking into
account the interactions of the second neighbors,
a partial ordering is observed in the system and the
magnetization in the low-temperature region has
values other than zero. This is explained by the fact
that the interaction of the second neighbors leads
to a change in the magnetic structure of the ground
state, and a partial order arises in the system. The
figure shows that »>0.1 with increasing temperature,
the magnetization m gradually decreases, which in-
dicates in favor of the second kind of PT.

The dependences of entropy .S on temperature are
shown in Fig. 4. As can be seen in the figure, for
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the entire considered range of r values with an in-
crease of temperature entropy tends to a theoreti-
cally predicted value In4. For the case » = 0 in the
low-temperature region, the entropy tends to a value
other than zero. At the same time, this entropy value
is very different from zero. This behavior of entropy
indicates that at » = 0 the basic state of the system
is highly degenerate. In addition, it is known that
in systems with frustrations, entropy .S at low tem-
peratures should tend to a value other than zero.
In the range 0.1<r<1 in the low-temperature region,
the entropy tends to zero. This means that there is
r no degeneration of the ground state in this range.
Thus, we see that taking into account the ferromag-
netic interactions of the second neighbors leads to the
removal of the degeneracy of the ground state, even
at small values r.

To determine the type of PT, we used a histogram
analysis of the MC method data [23, 25]. This meth-
od allows you to reliably determine the type of PT.
The method of determining the type of PT by this
method is described in detail in [26, 27]. The re-
sults obtained on the basis of histogram data analysis
show that in this mode 0.2<r<1.0 of the second kind
is observed in the interval. This is demonstrated
in Figure 5. This figure shows the histograms of the
energy distribution for systems with different linear
dimensions for the value » = 0.5. Graphs are plot-
ted for temperatures close to critical (7" = 0.718).
The figure shows that, depending on the probability
W of energy, there is one maximum for all values L,
which indicates a second-kind PT. The presence
of one maximum on the histograms of the energy
distribution is a sufficient condition for PT of the
second kind. In addition, the figure shows that
as the linear dimensions of the system increase, the
width of the histogram decreases, which is typical
for PT of the second kind. Note that one maximum
on the histograms of the distribution for the stud-
ied model is observed for values r in the interval
0.2<r<1.0. This allows us to assert that PT of the
second kind is observed in this range of values.

4. CONCLUSION

The study of phase transitions and thermody-
namic properties of the two—dimensional antiferro-
magnetic Potts model with the number of spin states
g = 4 on the Kagome lattice, taking into account the
ferromagnetic interactions of the second neighbors,
was performed using the Wang-Landau algorithm
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Fig. 3. Temperature dependence of magnetization m
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Fig. 4. Temperature dependence of entropy .S
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Fig. 5. Histograms of energy distribution for » = (.5 at various L

of the Monte Carlo method. The analysis of the na-
ture of phase transitions in a wide range of values
of the interaction of the second neighbors is carried
out r. It is shown that a phase transition of the sec-
ond kind is observed in the interval 0.2<r<l. For
the values r<0.1 there is no order in the system and
frustrations are observed. It is shown that at a value
of r = 0 ground state of the system is strongly degen-
erate. Taking into account the ferromagnetic inter-
actions of the second neighbors leads to the removal
of the degeneracy of the ground state for the values
r=0.1.
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