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Abstract. Screened electrostatic and van der Waals interactions of nano- and micron-sized particles
in dusty plasma were considered. The electrostatic interaction is considered on the basis of the linear-
ized Poisson-Boltzmann equation for particles both with fixed charges uniformly distributed over their
surfaces and with fixed surface electric potentials. The found solution of the problem makes it possible
to study the interaction of both particles of comparable radius and particles of very different sizes. The
interaction force takes into account the osmotic component, which in the case of constant charges leads
to the restoration of the equality of the forces acting on the first and second particles. For the van der
Waals interaction, the screening of static fluctuations and the retardation of electromagnetic fields for the
dispersive part of the interaction were taken into account. Based on the analysis of various expressions
for the geometric factor, taking into account the retardation of the electromagnetic field, a numerically
stable method for calculating this factor was proposed. The total energy of interaction of two charged
dust particles is calculated for plasma parameters characteristic of dusty plasma: the electron and ion
number densities from 10% to 10'2 cm, the particle radius from 10 nm to 1 um and the particle charges
from 10 to 103 elementary charges per micron of particle radius.
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1. INTRODUCTION

Interaction forces between charged surfaces, col-
loidal particles, ions and organic molecules dissolved
in aqueous electrolyte play an important role in colloi-
dal physics [1], biophysics [2], electro- and photo-ca-
talysis [3], and environmental geochemistry [4]. These
forces determine the stability of colloidal systems, dy-
namic properties and phenomena such as self-assembly
in them [5-7], adsorption of ions on surfaces [8], ad-
hesion of particles at the liquid-solid interface [9], and
many other properties.

Studies of interaction forces at small distances are
also important in the physics of dust plasma [10-22].
These forces play a particularly important role in the
process of particle coagulation [23, 24]. Its study
is also important for the development of a number

of applications, such as the nanoparticle industry [25-
29] and the formation of thin protective films or films
with unique physical and chemical properties from
them [30-33], in the accurate extraction of the van der
Waals interaction at small distances [34-38], in the
study of charged particle adhesion [39], modeling the
process of removing small dust particles from the air
using different types of gas discharge [40], etc.

To describe the interaction between micro- and
nanoparticles, approximate approaches are currently
mainly used (see, for example, the review [41]), in which
the forces of electrostatic and van der Waals interaction
are computed on the basis of the Deryagin approxima-
tion [42]. The electrostatic screened interaction is de-
scribed by the Deryagin-Landau-Verwey-Overbeek
theory (DLVO) [43]. In a number of works, the electro-
static interaction was considered more precisely on the
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basis of the solution of the linearized Poisson-Boltz-
mann equation [44-53], while others developed very
accurate methods for calculating the van der Waals
interaction force (see, e.g., [54]). Below we present
an exact solution of the problem of electrostatic inter-
action between nanoparticles based on the linearized
Poisson-Boltzmann equation, which is supplemented
with a description of the methodology for calculat-
ing the van der Waals interaction force. Based on the
developed approaches, the total interaction energy
of nano- and microparticles is calculated. The present
work does not consider the interaction forces related
to the finite size of electrolyte molecules, a modern
description of which can be found in [55-57].

The present work is a continuation of [58, 59],
in which special attention was paid to the case of con-
stant particle surface potentials and their interaction
in electrolytes at sufficiently high ion concentrations
and, accordingly, high values of the screening con-
stant. In the present work, the developed methods for
calculating the interaction force taking into account
plasma shielding will be tested by comparison with the
solution of the interaction problem in vacuum [60-64].
Special attention will be paid to the interaction of par-
ticles in dust plasma.

2. SHIELDED ELECTROSTATIC
INTERACTION

The geometry of the problem on the interaction
of particles in the plasma taking into account the
shielding effects is shown in Fig. 1. As in [46-49],
we will consider the electrostatic interaction in the
electrolyte in the framework of the linearized Pois-
son-Boltzmann model [65]:

AG = kpo, ()

where ¢ is the self-consistent electric field potential, &,
is the Debye shielding constant:

2
kp = e L 2

e - proton charge, ¢ - static dielectric permittivity
of the medium, n, - concentration of electrons or neg-
ative ions, n;, z; — concentration and charge number
of positive ions, respectively, T,, T, — temperature
of electrons or negative ions and positive ions in en-
ergy units.

The general solution of the Helmholtz equation
(1) for the potential of the system of charges associ-
ated with the k-th particle in the spherical coordinate
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Fig. 1. Geometry of the problem on the interaction of particles
in plasma taking into account shielding effects. Here g;, ¢;¢, 4;,
€; — charge, surface potential, radius and dielectric constant of the
i-th particle, respectively, i = 1,2, r; — radius-vector of the obser-
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vation point P, drawn from the center of the i-th particle O;, 6; —

zenith angle in the spherical coordinate system with the pole in the
center of the i-th particle and the axis, directed to the center of the
other particle, R — interparticle distance, e- dielectric permittivity
of the electrolyte, kj, — inverse screening length (screening con-
stant) of the plasma (electrolyte).

system with a pole in the center of this particle is de-
fined by the expression (see, for example, [66]):

Zk“(

1) P, (cos6, ), €)

where A4, , are the expansion coefficients, &, are modi-
fied spherlcal Bessel functions of the 3rd klnd

k,(x) = \/gl(nﬂ /2(X), Q)

K, ., are modified Bessel functions of the 3rd kind
(McDonald functions) [67]. To find the coefficients
A, , from the boundary conditions, we need to find the
coeflicients of the re-expansion of the potential of the
i-th particle, written through Lejandre polynomials
with a pole in the center of this particle, by Lejan-
dre polynomials with a pole in the center of the other
k-th macroparticle for which we will use the addition

formula [44, 68]:
k (fl)P (cose )

n

= i;“ (2m+1)L,,,(R)i, (7 )P, (cos8, ), ~ (5)

where 7. = kpr., r. = kpr,, R= kpR, Ris the distance
between the centers of macroparticles, i = 1,2, k=3 -
i, i,(x) — modified spherical Bessel functions of the Ist

kind:
i, (x) = f L1 2(0), (©)
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1,,,, — modified Bessel functions of the 1st kind
(Infeld functions) [67], R-dependent coefficients of L,
are defined by the sum of

. min{n,m}
an(R)= 2 kn+m 26( ) nm’ (7)
, _(n+m—€)!(n+m—2€+1/2)
nm Nn— 0)(m — 1)) .
1 D(n=0+1/2)T(m—¢+1/2)0(0 +1/2) @®
Xn F(m+n—£+3/2) ’

where I'(x) is the the gamma function:

2 —1)!
=\/E—(n ), o)

r(n+1/2) >
(2n - 1)!! =1-3-...-(2n—-1). In expression (7) and be-
low, the values reduced to the Debye radius are marked
with a tilde R = kpR. Note that GZ = G[ and hence
L, (Regardlng the calculatlon of the coeffi-
ments of G see. Appendix A.)

Finally, for the potential of the i-th particle we ob-
tain an expression through Lejandre polynomials with
a pole at the center of the k-th macroparticle (i = 1, 2,
k=3-i):

o reo) -
- i i lm nm(rk’ )Pn(COSGk),

where the coefficients b,
expression:

b, (;k,INQ) = (2n + l)in (;‘k )Lmn (7{)

In [46-49], the coefficients b,,, were defined as dou-
ble sums from products of modified Bessel functions
of the 1st and 3rd kinds, and expression (11) contains
only a single summation when calculating L, . Numer-
ical calculations have shown that the coefficients b, ,
calculated by (11) and the formulas given in [46-49],
coincide within the limits of calculation errors with
double precision on the computer.

(10)

are determined by the

(11)

In plasma or electrolyte, depending on the pa-
rameters of the plasma and particles of the condensed
disperse phase, either the regime of constancy of the
macroparticle surface potentials or the regime of con-
stancy of their charges can be realized (for a detailed
discussion of this issue for electrolytes, see [49]). For
macroparticles with radius of 1 um and more and

at sufficiently high plasma concentration n, > 109cm‘3,
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when the interparticle distance changes with the
thermal velocity of macroparticles, their surface po-
tential ;.05 which coincides with the floating plasma
potential, is constant. For nanoparticles with a radius
of about 100 nm or less and at sufficiently low plasma

concentration n; < 10%m?3, the constant charge regime
is realized. Therefore, in the present work we consider
both modes of convergence of nano- or macroparticles.

2.1. Constant charge mode

Boundary conditions at the particle surface in this
case are [69, 70]

ooy vl (12
¢H| =0+ “’2)rz=az :
€ % — ew = 4no
Yon | _ or P
h=a,-0 r=a+0 (13)
€ % —_ 8M =410
’ ar2 n=a,=0 87‘2 rn=a,+0 ?

where ¢, ¢;; are the electric field potentials inside the
Ist and 2nd particles, respectively, €, €, are their di-
electric permittivities, 6, and 6, are the charge density
distributions on their surfaces.

The general solution of the Laplace equation in-
side a homogeneous dielectric, taking into account
the requirement of finiteness of the potential inside
nanoparticles, can be written as [69, 70]

o (.6,) = Z
Oy (”2’62) - ;)ann

(cosel)ff’
(14)
(cosez);ﬁ’,

where C,, D, are the expansion coefficients.

Using expressions (10) and (14), from the boundary
conditions (12) and (13) for the potential expansion
coefficients ¢; and ¢, we obtain a system of equations
(n=0,1,.)

- 47
O{‘l,nAl,n + zBl,nmALm - k_cl,n’
m=0 D
(15)
< 47
0(‘2,nA2,n + ZBZ,nmAl,m - k_62,n’
m=0 D
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where coefficients o, , and Bi ame = 1,2, are defined
by the relations
. n(a. - 8) .
0‘z,n 8kn+l (a )+ I&. n( l)’
1
- (16)
_ Ig; D ab"m( i’R)
Brm = 5 bam (@ R) = o2

o; , — expansion coefficients of the surface charge den-

sify by Lejandre polynomials:

2n +1
Gi,n _[P p‘z
-1

o; (1; )du,;. (17)

It is taken into account here that in this paper
we consider the surface charge distribution axially
symmetric about the z-axis. In the case of uniform
distribution of free charges only the term with n = 0
will be different from zero:

4;

bl
41ral.2

G,y = i=1,2. (18)

Let us rewrite the system (15) by excluding the co-
efficients A2 from the first equation using the second
equation. As a result, we obtain

oo

Al,n 2 Lk z B1 nt2 mk _ Gl,n _

k=0I3 m=0 %1,n%2m ) (19)
1,nm _

— ——— Gy > n=20,1,...
m=0a1,na2,m

The system of equations (19) allows us to determine
the expansion coefficients of the potential of the first
particle and, using the second equation of the system
(15), to determine the expansion coefficients of the po-
tential of the second particle.

From (7), (11) and (16) we see that the values B, , .
are the sum, each term of which contains a spher-

n+m-2/0 R)’
max{n,m}, therefore they have a common

ical Macdonald function, namely k
¢=0,1,...,
denominator exp(-R). Hence, the product B, , B, .,
includes a common exp(—27€) denomingtor. Now, fle—

glecting the terms containing exp(—2R) and higher
degrees, from (19) and the analogous equation for the
2nd particle in the case of uniform charging of the par-
ticles we can find

in in°n0 3-i,0°
kpo; , kp 0,05 ;0
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From (11) at m = 0 we have

b (7. R) = (21 +1)i, (e )&, (R). 1)
Now, using the definitions (16), we obtain (see [71])

A = 4no, B
ek ph(a) " (22)
4no,_; ] ~
_ 7 (2 NWk(R\M ) .
8ka1(d3—i)( n+ ) Vl( ) n (al,g,gl)’

where M, are functions defined by the relation (see

[71])
s ee)o n(e; —¢e)i,(a,)-edi,,, (4)
LACR) eqk,,, (a)+n(e; —)k,(a)

At a, = 0 this solution passes to the solution of the
problem of interaction of a point charge with a di-
electric ball in a plasma (see [71]). As the number n
increases, the value of the functions i, grows and k,
falls, and the value of the product i, (x)k,(x) decreases
very slowly. The rate of decrease can be judged by the
relation [67]

oy (3) i () + Ky (x )n(x)=2xiz.

(23)

24

Therefore, the calculation of the coefficients Ai,n
with acceptable accuracy requires taking into account
a large number of terms. Below the approximate solu-
tion (22) will be used to determine the number of con-
sidered terms of the potential decomposition.

2.2. Constant Surface Potential Mode

In the case when the characteristic time of charging
of particles considerably exceeds the characteristic
time of changing the distance between them, the re-
gime of constant surface potentials is realized, which
are determined by the floating potential of the plasma.
Note that in the case of conducting particles the sur-
face potential is also constant in the in the sense that
it does not depend on angular variables, but at a con-
stant charge it changes at changing of the interparti-
cle distance. In the regime of constant, not depending
on the interparticle distance of the particle surface po-
tentials ¢; 0 = 1,2, the solution of the problem con-
sidered here is considerably simplified and to find the
expansion coefficients from the condition of continuity
of the potential at the interface of dielectric media [69]
we obtain a system of equations (n = 0,1,...,):

JETP, Vol. 165, No. 2, 2024
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("1>A1n + 2 ("15 )
k(@) 4y, + :E: (a2’ )

Having excluded 4, on from the first equation
with the help of the second, after changing the order
of summation we obtain

= 4’1,05;10’
(25)

= ¢2,08n0‘

b (dlak)bmk (&2’R)
=0 Tmmo K, (a)k, (4 (26)
3,0 (2n+1)in &l)k"(ﬁ)
%0 k() i ko (@)K, (@)

If we neglect the terms containing exp(—21~€) and
higher degrees, we find from (26)

~ ¢l’0 —
Ai,n - k0<~i)6n0
e - (27)
(o) nl@S(B)
kn(&l)kO(&3—i) 30

The charges of particles in the regime of constant
potentials become functions of the interparticle dis-
tance. From the boundary condition of continuity
of electric induction (13) for determination of charges
we obtain the expressions

ke (@) A4 -

g = ea,4; < o 08)

After simple transformations using (25) and rela-
tion (24), from (28) we can get the following:

eq, {E A —[&icosh(ﬁi)—sinh(di)]q)i’o}.(”)

sinh(a;) 2"
From (28), another expression for determining the
charge can be obtained:

q; =

9 = i — eal.eﬁ" ikm (R)A3—i,m’ (30)

m=0

which explicitly contains the relation of the charge
to the potential of a solitary particle:

Qe = €4;0; (1+a), @D
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since for the particles removed from each other
on a large distance, R = oo, their influence on each
other is negligibly small. In this case it follows from
(27)

2
—;q)l.oaie ,i=1,2.

(32)

The relation (31) can also be obtained from a com-
parison of expressions (27) and (32), which must coin-
cide when R — oo

2.3. Determining the interaction force

In [46, 47], to find the force, we use the Maxwell
tension tensor:

, (33)

T, =— (E E—lnEZJ
Y 4n 2

r=a,

I
where E = -V, n is the vector of the external normal
to the surface of the i-th particle, £, = E-n. As a re-
sult of integration by angles for the z-component of the
force acting on the i-th particle, the following expres-
sion was obtained

S S
F, _8}%(%—1)(2”+1)L(n_l)\}'zn_1]x (34)
x| Z;,+(n+1)¥,, ],

where

[1]

in Ai,n |:nkn (21’) - glikn+l (21’ ):| +
oo db, (a,,~)

—i,mal )
m=0 da;

(35)

W, = Ak, (ar) + i A5 b (@, R). (36)

Note that according to Fig. 1, the z-axis for the sec-
ond particle is directed to the left.

In [72, 73], an expression was proposed to deter-
mine the density of surface forces associated with os-
motic pressure at the surface particles, which in [74]
was transformed into the usual Maxwell tension tensor:

€
e =—Ek,2)¢2 Sup0 (37)

.o —a
i
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where o,3 = x,y,z. For the problem considered in this
paper, only the z-component of the Maxwell tension
tensor is significant:

cos 0.
r=a,
1

_ € .,2 2
Ty = =3 kp® (38)

Thus, for the osmotic component of the force
we find

F=[r, dS——a2k2j¢2‘ cosOsin 00 =
r=a_

1,rZ

39
oon‘I"I’ (39)

in—1

- _wzz(zn “1)(2n+ 1)’

where the value of ‘Pl.,n is defined by expression (36).

2.3.1. Constant charges of particles

In the case of constant charges of particles, the os-
motic component of the force is different from zero,

so adding F; .and F ¢, for the total interaction force
from (34) and (39) we obtam

(40)

Let’s exclude the derivative abnm / 821,- in the ex-
pression (35) for E; | with the equations (15) and after
simple transformations we find

_ _ Amna ne;
:[’n = _Tci’” +?‘{Ii,n' (41)
As a result, from (40) we obtain
o 4g Tt 2¢e
ﬂ,z a 3¢ it
+i (n - 1)(81 - e)[nsl + e(n + 1)] - sza? @)
= e(2n-1)(2n+1)
xn¥, |\¥,.

Then we obtain the expression for the interaction
force at kR > 1, neglecting the terms containing

FILIPPOV

the exp(—27€) and higher degrees. Using (20) or (22),
we find from (34)

_ 449, 1+R & L
hem e lra)iig)

-1
)

x| 1+ —2= i )
el+2£1+a1

This expression shows the inequality of forces:
F # F, o which was emphasized in [46, 47]. Thus,
for the osmotic component of the force (39) with the

same accuracy we find

43)

Fi(,lz __ 9% o kol (1 + I~€) %

R? (1+4)(1+a)

)
a

“4)

X

(el + 28)(1 + al) + e&f .

Summarizing (43) and (44), for the total force
we find symmetric with respect to the permutation
of particles, well known expression in the Deryagin
approximation [43]:

D=_‘11‘12 1+R —k,L
ey T (0

Z

This expression can also be obtained directly from
(42).

2.3.2. Constant surface potentials particles

In the case of constant particle surface potentials,
using expression (25), from (36) we find

Wio=00%:, = 0,n>1. (46)

In this case, the osmotic component of the force
disappears and to determine the force in the case
of constant particle surface potentials from expression

(34) as follows

47)

For the value £, using the properties of modified
spherical Bessel functions [67] and the first equation
of the system (25), we can obtain

JETP, Vol. 165, No. 2, 2024
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T

S E—"
2Zill‘n (al ) !

48)

hnt

As a result, the expression for the force (47) takes
the form

A 2
b= _8%.;11‘1’1,0 + 8[%] X
ly (al) 9 (49)

oo A
xz n

1,n—1"1,n

S(2n-1)(2n+1) i, ()i, (a)

At large distances, if the condition kR > 1 is sat-

isfied, neglecting the terms containing exp(—2R) and
higher degrees, using (27), we find from (49) the well-
known expression for the force in the Deryagin ap-
proximation [43]:

_ k(R
Foivo _8¢1,0¢2,05m= 50

_ 449, —k,L
= —sq)l’oq)z,()?(l +kpR)e ",

where L = R—a1 —-a,.

Fig. 2 compares the interaction force between two
particles of the same (a) and different radii (b) at dif-

ferent plasma densities from n, = n, = 10% to 102
cm™ with the interaction force in vacuum (e = 1).
It can be seen that at low plasma density at small dis-
tances the shielding effects are negligibly small and
the electrostatic interaction force in plasma is prac-
tically no different from the electrostatic interaction
force in vacuum. As the plasma density increases, the
shielding effect increases and appears already at small
distances between the surfaces of particles.

2.4. Particle electrostatic interaction potential

After integrating (50) and (45), we obtain the well-
known expressions for the electrostatic potential in the
Deryagin approximation [43]:

a,a T
_ 19 I _
Up =€) 59,0 R ¢ T

_ 51
a4, ool (D

eR (1+a))(1+d,)

JETP, Vol. 165, No. 2, 2024

The transition from this formula to another one
is easily accomplished by using the relation (31).

In [72], an expression for the free energy or inter-
action potential of particles was proposed on the basis
of thermodynamic considerations:

oo

U(R)+U_ =
0,(000)- 50,0, o) a5,

RSO S

L, um

Fig. 2. Dependences of the reduced to Coulomb F = qlqz/R2 in-
teraction force F, of two particlesat T, = 7; = 300 K, ¢y = a, =1
um, g, = g, =100e (@) and g =1 um, a, =100 nm, g; = 100e,
g, = 10e (b) at different concentrations of electrons and ions in the
plasma (the Debye radius R, = 1/kp in um is given in brackets):
1—n, = 10% (84.6), 2— 10° (26.7), 3 — 10'° (8.46), 4 — 10" (2.67),
5— 410" (1.34), 6 — 10'2 cm™ (0.85), 7 — in vacuum.
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where ¢_ is the particle surface potential, generally de-
pending on the angular variables of the spherical coor-
dinate system with a pole at the center of the particle:
o, = 0, (9,(p), r, is the radial coordinate of the particle
surface, o is the surface charge density: 6, = o, ( e,q)),
U_, provides zeroing of the interaction potential at R_,
0O, is a functional integral:

o,
0, (0,:r,) = [ 0o, (07.1;)- (33)
The integration in (52) is over the surface of the first
S, and second §, particles.

2.4.1. Constant charges of particles

In the case of uniform and fixed free surface charge
density, integration (53) gives O, = ¢ .o, and from (52):

r=

U(R) = %lznafcl j (0, + 0,

du, +
a
1 1

1
+2na§62 _[ (¢1 + ¢2)

du2] ~U.. (54
-1

I‘2=02

Hence, using expressions (3) and (10) expressed
in the coordinate system corresponding to each par-
ticle, we obtain:

Ug(R) = %[‘11 (015~ ¢1,w) +4 (¢2,s 0. )}(55)

where ¢,  is the angularly averaged surface potential
of the i-th particle:

q)i,s (R) - kO ([li)Ai,O + 2 bOm (di’R)A3—i,m’ (56)

m=0

¢; . is the particle surface potential at infinite distance
from each other, which is determined by an expression
similar to relation (31):

4% 1
O eq; (1+4;)

1

(7)

Note that the calculation of the interaction poten-
tial from (55) is considerably simplified by using the
relation

A — A"
,0 0 T
¢i,s(R)_¢i,oo - I- ~ : PR
b4 (ai) 2a;

FILIPPOV

w _ 2
1,0

S S [N 58
nkDe(1+&l.)e" 9

At large distances, the difference (58) comes out
to the asymptotics of the DLVO potential

D _ _ 9 ~R+d +a,
R S (v (Ew AT L

2.4.2. Constant potentials of the particle surface

In the case of constant surface potentials, it fol-
lows from (53) that Q, = 0 and in this case, we have
the expression for the determination of the interaction
potential:

o(R)-U, = —% [0,401dS, + [0,40,dS, | (59)
S, N

1 2

Integration (59) leads to the following expression
for determining the electrostatic interaction potential
in the case of constant particle surface potentials:

00| 4 (R) - 4.
¢(R)=—% 1,0[1( ) 1] , (60)
+0, [‘b (R)- qzoo]
where g, _, g, ., are the charges of particles at R = e
[see expfessioﬁ (31)].

Numerical calculations have shown that the values
of the electrostatic interaction potential determined
from expressions (58) or (60) and found by integrating
the dependence of the interaction force on the distance
between particles differ no more than the accuracy
of the solution of equations (15) or (25) by the LU-de-
composition method [75].

3. VAN DER WAALS INTERACTION

The theory of interaction of solids due to fluctua-
tions of the electric field began to develop with the work
[76], in which an expression for the interaction poten-
tial of solids was obtained by summing the van der
Waals pairwise interaction of all atoms composing the
bodies. In [77], the interaction potentials of an atom
with a perfectly conducting wall and with another
atom were found, taking into account the retardation
of the electromagnetic field. In [78] a more accurate
theory of the interaction between two infinite planar
dielectrics separated by vacuum was constructed, and

JETP, Vol. 165, No. 2, 2024
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in [79] — separated by liquid. The general theory of the
van der Waals interaction is stated in many papers (see,
for example, [80-82]).

Today, due to the complexity of the theory in the
general case, to determine the Hamaker constant for

the interaction lIst dielectric — liquid (vacuum) — 2nd
dielectric we can use expression:
| S o
A 4J.£+a(e+e)’
0 1 3 2T&3

obtained in [79] and valid at negligibly small distanc-
es between dielectrics. Here €, €,, €, are dielectric
permittivities of bodies and liquid (gas) medium, fre-
quency dependences of which are taken at imaginary
frequency i€.

The potential of van der Waals interaction in a di-
electric fluid of two dielectric particles of spherical
shape without taking into account the retardation ef-
fects by a method close to the one used in [78] was
obtained in [83] for the case L < a;,a,

2naja, L A5,

, 62
(4 + ay) 1211 ©

UvdW =

where A4, ;, is the Hamaker constant defined by relation
(61). In [83], the following approximation term is also
obtained, which requires the calculation of the ana-
log of the Hamaker constant by a different from (61)
formula.

In the present paper, the vdW interaction potential
is determined according to [54] by expression

1
Usaw = _E(A()fshFH + Ang)’ (63)

where A, is the contribution of zero oscillations to the
Hamaker constant, which is shielded but does not ex-
perience retardation effects, A, is the dispersive con-
tribution to the Hamaker constant, which is retarded
but not shielded, f, is the shielding factor, F; is the
geometric Hamaker factor, F, is the geometric factor
taking into account the retardation of the fluctuating
electromagnetic field. The contribution of zero fluc-
tuations (constant 4;) and the dispersion contribution
(constant A4)) to the Hamaker constant were calculated
according to [54, 84]:
e,(0)-2,(0)T
A, = 2kBT[;] , (64)
4 g
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37 @00,
A= X
64 /2
m
X?n +2XAegn, + Aef(3+2Y) (65)

(\/Y—W+\/Y+MT’

where 7 is Planck’s constant, €,(0) and €,(0) are static
dielectric permittivities of media 1 and 2, n,; and n,
are refractive indices, @, and o, are absorption fre-
quencies, the values n, , Ag,, Xand Y are determined
by the relations

ny = (”31 + ”02)5 Aey = njy — gy, (66)
=2 ) -Sp)
o (67)
e L+ 1)+ 22y 1)

The shielding factor in (63) was determined by the
expression [54]
fie = (14 2kpL)exp(-2k,L). (68)

The geometric Hamaker factor in expression (63)
was calculated according to the expression [76]

D,
Fy =|4aa, Lo lom2] (69
Dl D2 D2

A number of works are devoted to the calculation
of the geometric factor taking into account the retar-
dation, among which we will focus on the following
ones. All of them are based on one or another approxi-
mation of the contribution of retardation effects to the
interaction potential of atoms, based on [77]. In [85]
there were proposed the following approximation:

0<p<3, f(p)=101-0.14p,

245 2.04

P23, f(P)='7——2,
p

(70)

where p = 2nr / A, r is the distance between atoms.
On the basis of this approximation, the following for-
mulas for calculating the geometric factor taking into
account the retardation were proposed in [86]:
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_ 11 D,
F, =2a2aa,| —+— |+In—L |+
s D D, D,
(71)

2bs Dl .
t—| 8aay + (D, + 1)2)1nF , L<L;

2
2
2a, i 2 2(Z+ - "1“2)
L= daay, | —+—|-—F—+
sl 5K D D D,
2(zZ + aa, D, | 2
+ ( ) ln_2:| _LI:L — L +
D, D, 15D, D 72)
2(z+ alaz) 2(z + alaz)
+

where a, =101, b =0.28n/A), a; = 2.45\,/2m,
b, =2.04(\,/2m)?, z, = a, % a,, the values of D, and
D, are defined by the expressions

D =R-7z}, D,=R -7 (73)
The interparticle transition distance from formu-
la (71) to (72) in [86] was proposed to be determined

by the formula
L, =109-1071g(faa, ) +
+37.5)1g(|faa, )T - 4.35(1g(Jaa, )T

where a;, a, and L  are expressed in nanometers. Note
that due to the dependence of the value of L, on the
radii of nanoparticles, a small jump of the geometric
factor may occur when passing from (71) to (72) (see
below).

In [87] the approximation (70) was also used and
five different formulas for the geometric factor for five
distance intervals in the general case of particles of dif-
ferent radii were obtained. The analysis has shown
that for the extreme intervals on the small and large
distance sides the obtained formulas coincide with
the formulas from [86], but the formulas for the inner
intervals contain errors, which has already been men-
tioned in [54].

In [88] the approximation was used as follows

¢ 3y
p%

(75)
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and a sufficiently long expression for the geometric fac-
tor was obtained taking into account the lag effects.

In [89] the approximation was used as follows

L, ;BN

—’ b - b
/r2 +L§ 3n2n

and an expression for the geometrical factor taking into
account the retardation effects for particles of equal
size was obtained. The expression obtained in [89] can
be easily generalized to a more accurate approximation
of the retardation factor proposed in the same work:

¥ (p) _ &Ly, oLy
\/r2 + 12 \/rz + 2 ’
b,1 b,2
&1 = 0.462, Lb’1 = 0.485Lb,
&2 = 0.538,Lb’2 = 1.443Lb.

f(p)= (76)

(77)

(For a number of other forms of approximation
of the lagging factor, see [90]). The formula for cal-
culating the geometric factor obtained in this paper
within the framework of the model proposed in [89]
is given in Appendix B.

In Fig. 3 we compare the values of the geometric
factor taking into account the retardation from [86, 88]
and calculated from expression (86) with the retardation
factor (77) proposed in [89]. The following conclusions
can be drawn from the analysis of the presented data.

1.  For small values of particle radii (up to about
100 nm), all three data sets result in nearly coincident

values of the geometric factor up to L < 10° —10* nm,
with a relative error of less than 15%.

2. For particles with a radius of about 1 pum,
one can see a marked difference between the calcula-
tions according to [86] in the vicinity of the transition
point L, from one formula (71) to another (72). From
the comparison of curves 6 and 7 it can be seen that
it is impossible to provide a smooth transition from one
formula to another. In this case, the data according
to [88] and those obtained from (86) again practically
coincide and the relative error again does not exceed
15%.

3. After the transition region, all three works lead
to geometric factor values differing by no more than
15%.

4. At large values of L > 10° —10* nm, the cal-
culations of the geometrical factor according to [88]
and from expression (86) lose their accuracy and are
unacceptable for the calculations. The same happens

JETP, Vol. 165, No. 2, 2024
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at calculations according to formulas from [86], but
at values of the interparticle distance greater by an or-
der of magnitude. The loss of accuracy of calculations
is caused by the fact that the geometrical factor is cal-
culated as a difference of several values exceeding the
desired value by many orders of magnitude. This can
(and does, as can be seen from Fig. 3) lead to the wrong
sign of the geometric factor even when calculating with
numbers with double precision. For example, expression

(72) contains terms decreasing as R_3, and the geomet-
ric factor at large distances decreases as R (see below).

Note that the approach used in [86-89], which
summarizes the interaction of each atom of one par-
ticle with each atom of another particle, does not al-
low us to obtain accurate values of the geometric fac-
tor with the retardation, and the error can reach 15%,
as can be seen from the comparison of the retardation
factors for the mutual atom-atom and atom-plane ac-
tions in [77] (see also [85]).

When calculating the geometric factor according
to formula (72) when the condition (al2 + a% )/ R* <1
is fulfilled, the difficulties noted above arise, so let
us present this formula as a sum of series:

33
P 64a; a; o

) 4
X2(n+2)(n+3)(2n+5) a, _b_Lx -
n=0 R*" n+3 3R

n (k+1)(n—k+1)(2n+3)!azk02n_2k
=0 (2k+3)(2n -2k +3)! a

X

From (78) we see — at large distances the van der
Waals interaction potential decreases as R”7. Note
that if the condition (a} +a3)/R* <107 is fulfilled,
the first two terms of series (78) with » = 0 and 1:

a ——
33 L
FLz64“_1"2 K N )
& 3R’ 7 4, \ a a
+— 3aL__L _1+_2
5 R | 2 R

provide relative accuracy of calculations at the level
of 10°.

Fig. 4 shows the dependence of the ratio of the se-
ries term (78) with number # to the zero term n = 0.
It can be seen that with the growth of the interparticle
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Pl
-

1072t ST
107 10° 10 10° 10° 10* 10°

Fig. 3. Dependences of the geometric factor fg on L according
to [88] (solid lines), [86] (dotted lines) and calculated from (86)
(black circles) at different particle sizes: curve | —ag; = a, =10nm,
2 —a =10 nm, a, =100 nm, 3 — ¢ =a, =100 nm, 4 —
a, =100 nm, a, =1um, 5 —a =a, =1 um. Curve 6 — expression
(71), 7 — (72).

distance, the members of the series with high number
n decrease rapidly.

In light of this, the following procedure for calcu-
lating the geometric factor with consideration of the
retardation is adopted in this paper.

I. At L< L, =3\,/2n, the geometric factor
taking into account the retardation was calculated ac-
cording to [88].

2. At L > L, (in this case for any pair of atoms
the parameter p > 3 and the second formula (70) is val-
id), the geometric factor, taking into account the retar-
dation, was calculated from expression (72) with new
values of the parameters a; and b, , determined from
the continuity condition of the geometric factor and its
derivative at the cross-linking point L = L.

3. When L > L,, where

[2 . >
_NY T4
L=Y1"2

3 _(al +a2),

geometric factor was calculated by formula (79). At
L > L, the ratio (al2 + a% ) /R2 becomes smaller than &
and the discarded term in the series (78) will be of the
order 8. In the present work, & = 10~ was set to en-
sure good accuracy and at determining the strength
of the interaction.
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10'4;— 3 Lo \

L, nm

Fig. 4. Ratio of the summand with number » to the summand
with number n =0 in the sum (78) for g = @, =1 um (a) and
g, =100 nm, a, =1 um (b). The curve numbers correspond to the
value of n.

4. NUMERICAL RESULTS AND
DISCUSSION

In the present work it was assumed that ®; = @y,
®, = Wy, ,, Where wy,,, and oy, are the boundaries
of absorption zones in the ultraviolet region of the
nanoparticle material and the liquid (plasma-form-
ing gas) in which the nanoparticles are located. Ar-
gon, which is widely used in dusty plasma studies
[10-22], is considered as the plasma-forming gas
in this work. For argon, &,(0) = 1, oy, = 1.767-10'¢ ¢!,
n, =1.000282, 1, = 106.66 nm [91]. The present work
will mainly consider spherical particles made of poly-
styrene, for which the necessary data are well known:

at 20°C &,(0) = 2.557, wyy, = 1432100 ¢!, 2, = 1.447

[54]. For dust plasma and electrolyte experiments also
one uses spherical particles made of polymethyl meth-
acrylate (PMMA), for which at 25°C ,(0) = 3.6, gy, =

=6.3-105 ¢!

of quartz with properties: ¢,(0) =
oyy; = 2.033:10 ¢

The system of equations (19) in the case of constant
charges or (26) in the case of constant particle surface
potentials was solved numerically by the LU decompo-
sition method [75]. The n ., | terms of the expansion
of the potential of the 1st partlcle and n_| nax,2 (EIMS for
the 2nd particle were taken into account, which en-
sured that the given accuracy was achieved. The nec-
essary number of expansion terms in the case of con-
stant charges was determined from the condition (see
expressions (22) and (23)):

, ngl = 1.492 and spherical particles made
3.81, n3, = 2.098,

Qn+1)—n"l K, (R v (a,,ee) 8
k(a3 i)
forn > Prax.io i=1,2, (80)

and in the case of constant potentials from the condi-
tions (see expression (27))

i (a)k (R
Qn+1) ”<~’) ”(~ ) <dforn>n__
(d;) ko (a5;) ’
i=1,2 81)
In this paper, it is assumed that § = 10-'¥!, The pro-

cedure for computing Bessel functions is described
in Appendix C.

In Fig. 5 compares the dependences of the total
interaction energy U, = U,, + U, ,on the distance
between their surfaces at different values of elec-
tron and ion concentrations. It can be seen that the
potential barrier is very high and its height decreas-
es with increasing concentration. At small distances
between particles the attraction due to van der Waals
interaction prevails, while the electrostatic interaction
between identical particles with equal charges turns
out to be repulsive at all distances between particles.
In dust plasma, the particle charge appears to be ap-
proximately at the level of 10° electron charges per mi-
cron of particle radius [10, 11, 92, 93], so the potential
barrier under these conditions will inhibit the coagu-
lation of particles of the same size.

Fig. 6 shows the dependences of the total inter-
action energy of identical particles at different values
of their charge. It is well seen that the height of the
potential barrier practically disappears as the charge

JETP, Vol. 165, No. 2, 2024
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Fig. 5. Total interaction energy of polystyrene particles with radius
a, = a, = 100 nm, charges ¢, = ¢, = 100e in argon plasma with
different density of charged particles: curve 1 —n, = n,= 10% cm=,
2—-10c¢cm=3,3-10"cm™3, 4 — 102 cm™3.
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Fig. 6. Total interaction energy of polystyrene particles in argon
plasma atn, = n; = 10" em3, a, = a, =100 nm at different val-
ues of charge: curve 1 — ¢, =g, =10e, 2 — g, = g, = 20e, 3 —
q, = q, = 30e, 4— g, = g, = 40e.

of the particles decreases. As can be seen from Fig. 7,
a decrease in the radius of one of the particles (when
the charge is proportional to the radius) also leads
to a noticeable decrease in the height of the potential
barrier.

Fig. 8 investigates the effect of the deviation of the
charge of particles from the linear dependence on their
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Fig. 7. Total interaction energy of polystyrene particles in ar-
gon plasma at n, = n; = 10" cm3, a, =100 nm, ¢, = 10e at dif-
ferent values of radius and charge of the Ist particle: curve 1 —
a; =100 nm, ¢, = 10e, 2 —a = 50 nm, g; = 5e, 3 — a; = 20 nm,
q =2e,4—a =10nm, g = le.

10°

10" 102

10* 10"

L

, um

Fig. 8. Total interaction energy of polystyrene particles in argon
plasma at n, = n; = 10" cm?, g =10 nm, a, =100 nm, with
deviation from the linear dependence of particle charge on their
radius: curve / — g, =le nm, g, =10e, 2 — ¢, = 2e nm, g, = Se,
3—gq, =lenm,q, = 20e, 4 —q, = 2e nm, g, = 10e

radius. It can be seen that at the same value of the
product g,g, the violation of the linear dependence
leads to the appearance of electrostatic attraction be-
tween the particles, while the total interaction turns
out to be weakly sensitive to it.

In Fig. 5-8, the dependences of U, on L are indi-
cated by dashed-dotted lines.
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5. CONCLUSIONS

The study of the screened electrostatic interaction
and van der Waals interaction of dielectric particles has
shown that at particle charges characteristic for dusty
plasmas of the order of 103 electron charges per mi-
cron of particle radius the total interaction potential
has a sufficiently high barrier, which strongly prevents
convergence and coagulation of particles of compa-
rable sizes in the dust plasma. The decrease of radius
of one of particles in a pair leads to a noticeable de-
crease of height of the potential barrier. Also, violation
of the linear dependence of the charge on the radius
of particles leads to some decrease in the height of the
potential barrier, which should be taken into account
when modeling the processes of particle coagulation
in dusty plasmas. These processes can be important
at weak rates of gas ionization by an external ion-
ization source (e.g., products of radioactive decay)
and in the Earth’s atmosphere, where the attachment
of electrons to oxygen molecules leads to a significant
decrease in their concentration and a significant de-
crease in the charge of particles.
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Appendix A.
Computation of coefficients G,fm

The coefficients of G,fm can be easily calculated us-
ing recurrence relations:

Gy =G =Gy, =1, n=1,00,m=1,00 (82)
0 o (n+1/2)(n+m+1)
Glrn = Com (n+)(n+m+1/2)
n=20,.,0om=n+1,cs; (83)
i a=n  (m=1) (£+172)
"o (n=0-172)(m-0-172) (¢+1)
(n+m—0+1/2)(n+m-20-3/2) ,
(ntm=10)  (n+m-20+1/2) "™
0=1,...,00,m,m > (. (84)

The calculation of the values of Gon +1) oM the re-
lation (83) is first carried out forn = 0and m =1,2,...
consecutively, then forn =1 and m = 2,3,... etc., and

the calculation of Gf 1 from the relation (84) is carried
out sequentially for ¢ = 0,1,... for all necessary values
of n and m.

Appendix B.
Geometrical factor with retardation
factor L, /«/Li +r?

Let us introduce the following notations and func-
tions (we do not specify the arguments of functions g,
and a,):

X, =R-a,-ay, x, = R+a —a,,
X; = R-a, +a,, x, = R+a +ay;
V=2 432 = Ly T =+
i=1,..4
f,1(R) =24 (a, - R)+,
+243 (a, - R) + R(R* - a? - a2,
f,5(R) = 4a] + 445 —3R(a + a,) - R* - 12aya,,
fy1(R) = 64, (3a, - 5a,) +5x, (3, - 3a, + R),
foa(R)=9(a? =503 +5R?) - 160x,R,
.1 (R) = 48x,x, +29x, R + 60a,a,,
fo2(R) =133x,R = 204x,x; + 364,a,,

£ (R) =124 (23a, — 66a,) +
+12a; (54a, - 17a,) +
+R(17a? +337a3 - 426a,a, ) -
—R*(62a, + T1R + 222a;),

£, (R) = af (3124, — 660a, + 275R) -
~30a; (a, — R)*(10a, + 9R) +
+20a,(a, — R’ (9a, +13R) -
~(a, - RY*(48a, + TTR) +
+20a; (213 - 22a,R + R?).
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After summarizing (integrating) the interaction
of each atom of one particle with each atom of anoth-
er particle for the geometric factor with the lag factor
in the form (76), we obtain

7 (R I )= 2L, 1,7, x,G, x4C5
g\"™"b

+ 21n +
X384

b1n-23 4+ 2In
11‘54

%{Yz{ %J(R)+)£—%;,,,Z(R)]+
lzf,,l( )——sz( )]‘

x3
3
~ 8a; - 3a1 ~ - 3a2 x2C3 ~
LR 20L 4L2 x3C2
2 1§2
———1 £ (R)+ »(R)
LﬁR[ al ) x2C1

(85)

R 2 R>]

2
1

1 Y X
T R{ 1[fc,l (R)+Efc,2 (R)]+

Ll ) %,ju)]}

fe
x2
6OL3 [ Zfi Y3fi ( )]

302R[ £ (R) - IZ fz(—R)].

As noted above, in [89] there was given expression
for the geometrical factor taking into account the lag
effects for particles of equal size (note that in expres-
sion (22) for g, in this work the minus sign before
the fourth term in the first row is lost). Calculations
have shown that at equal radii expression (85) gives the
values of geometrical factor, coinciding with the data
of calculations according to the formulas from [89].

With the retardation factor in the form (77) the
geometric factor will be defined by the expression

Sy (RL) =&/, (R L, )+&/, (R Ly,). (36)

Appendix C.
Computation of the modified
spherical Bessel functions

Modified spherical Bessel functions at x = kpa;,
i = 1,2, were computed using recurrence relations [67]
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2n+1
kn+1 (x) - kn—l( ) nx+ kn( )’ (87)
i ()= o () + 2250, ()

In the first step, using the first formula (87), the
values of k, (x) forn =1,2,...,n_ . +1 (1, =1000),
starting from k,(x) and k; (x) were calculated decreas-

ing as n increases:

ko) = e,

| (88)
ky(x) = kO(x)[l + —}
X

In the second step, the ratio i, , /i, forn =n_  was
calculated based on Gaussian continuous fraction [94]:

in(x) X 1
= 8
i) (g Y
1+a2(x)
I+...

where the coefficients a, are defined by the relations:

2
X
- k=12,..
%) (2n+2k -1)(2n+ 2k +1) 77

90)

The calculations started with k& = 20, which en-
sured high accuracy of the calculation of this ratio.
Then, using the relation (24) and already calculated
values of k, (x) forn=n_, andn_  +1, we calculate
i(x)forn=n_, andn_  +1. Finally, the values of
i (x) functions decreasing as n decreases were com-
puted forn =n_  —1,...,1from the second recurrence
relation (87). In order to control the accuracy of the
calculations, at the last step, the calculated values ;
for n = 0,1 were compared with those calculated from

known relations:

. sinh x
h(x) = P
91
. sinh?x coshx On
i, (x) —— .
X X

The modified spherical Bessel functions at x = k;, R
were computed based on the first recurrence relation
&7) forn=10,1,...

Here we also give expressions for the derivatives
of the modified spherical Bessel functions:

max 2°
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10.
11.

12.

13.

14.

16.

17.

18.
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di, (z
RN
akn(x) n
% = _kn+1 (x) +;kn (X)
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