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Abstract. Based on a critical analysis of the traditional theory of homogeneous nucleation of incoherent
precipitates of a new phase in solid solutions, it is shown that the elastic energy associated with a differ-
ence in the atomic volumes of two phases does not contribute to the nucleation barrier due to the ab-
sorption of thermal point defects at the particle-matrix interface (in contrast to the traditional approach).
Correspondingly, a new kinetic model is developed for the rate of nucleation of incoherent precipitates
in a supersaturated solid solution of alloying atoms, which has also been generalized to take into account
excess vacancies formed under non-equilibrium conditions of quenching tests.
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1. INTRODUCTION

When the transformation takes place in the solid
state, i.e. between two solid phases, elastic misfit strain
energy is generally present due to volume and/or shape
incompatibilities between the cluster and the matrix.
However, the changes in volume and shape cannot
occur freely because of the rigidity of the surround-
ing matrix, and elastic strains are induced. The elastic
strain energy and the surface energy created by the new
phase nuclei make a positive contribution to the free
energy and therefore act as a barrier to nucleation. The
magnitude of the elastic energy term generally depends
upon factors such as the cluster shape, the mismatch
between the cluster and the matrix, and whether the
interface between the matrix and cluster is coherent,
semicoherent, or incoherent [1-3].

The interfacial energy of incoherent solid/solid in-
terfaces is typically about (0.7-1) J-m~2, whereas that
of an interface that is coherent is lower by a factor
of 3 or more. Homogeneous nucleation is therefore of-
ten expected in cases where the nucleus interface is co-
herent and the interfacial energy is relatively low.

However, the large difference in atomic volumes
and the difference in crystal structures may result
in a largely incoherent precipitate/matrix interface.

For instance, it appears that there is no coherent clus-
tering of silicon in aluminium alloys. Pure silicon has
a diamond cubic structure and there is no evidence
that a low energy face-centred cubic modification ex-
ists [4]. Besides, silicon has a greater atomic volume
than Al with the deformation strain of 0.2, which can
be too large for formation of the coherent interface.
The precipitation of silicon from a supersaturated solid
solution of Al (1% Si) in the form of equiaxed particles
randomly distributed inside the grains was observed
by X-ray diffraction analysis, as well as by light and
electron microscopy [3, 6]. Similar observations using
a transmission electron microscope in Al-Si alloys af-
ter various quenching and pre-aging treatments were
presented in [7].

Modern principles of strengthening, fracture and
precipitation in alloys suggest that ultra-fine disper-
soids in f.c.c. Al-matrix represent the ideal microstruc-
ture if ultra-high strength and resistance to fracture are
desired. The basis of such a microstructure is provid-
ed only by two binary alloy systems: Al-Si and Al-Ge.
Therefore, these alloys can serve both as models for
mechanistic studies of the nucleation of incoherent
phases and as the basis for a new class of technical al-
uminium alloys [8].
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In the traditional nucleation theory for a transfor-
mation where strain energy effects are not negligible
(see, e.g. [1-3]), the formation of a nucleus of given size
will require an increase in the Gibbs free energy of the
nucleus formation, AGy, with the addition of the elastic
energy term. The elastic energy is proportional to the
number x of atoms in the nucleus, so that

AGy(x) = x(—-Agy + Agy ) + AGy,r, 1))

where Ag, = kT In S, is the bulk free energy change per
atom involved in the formation of the nucleus in the
solid solution with the supersaturation S, ; Ag,; is the
elastic energy per atom; AGsmf = y4nR2 is the surface
energy of the nucleus with surface tension y.

For an incoherent spherical nucleus of radi-
1/3
Q
us R, = (3Ej x1/3, the misfitting sphere model
of Nabarro [9] may be applied to give the total strain
energy (cf. [3]),

3K
AGe‘[ = XAge[ = 6“( janpa (2)

3K +4pu

where & is the transformation strain (for simplic-
ity assumed to be < 1) due to forming the parti-
cle of a volume Vp = xQ placed in a spherical cavity
of a volume V,, = xQ2,,, calculated from the relation
Vy [V =(1+ 8)3 ~1+38; Q and Q,, are the atomic
volumes in the particle and in the matrix respective-
ly; u is the shear modulus of the matrix, and K is the
bulk modulus of the particle. The common boundary
between the inclusion and the matrix will occupy a po-
sition intermediate between the surfaces of the cavi-
ty and the inclusion before matching, with the mis-
fit strain € =8 /[1 + 4n / 3K]. However, in the case
3K > 4p when all the strain is taken by the matrix and
thus € = 3, this equation can be simplified,

AG, = xAgy =~ 6usV,. 3)

Minimization of Eq. (1), AG, (x) / ox =0, gives
the critical nucleus size,

* 32n Y 392 _
kTInS, - Ag, N

3
_ 32n Y o2
=5 5 ,
kTInS, —6pQd

3
and the formation free energy of the critical nucleus,

AGy (x") = 167 e’ , 0
o] 3 (lenSx—6u982)2

Q)
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which demonstrates that the misfit strain reduces the ef-
fective driving force for preciPitation and increases the
critical supersaturation to §, = exp(6u(282 / kT ) >1
[1-3].

This article will present a critical analysis of the tra-
ditional theory of the nucleation of incoherent precipi-
tates in solid solutions based on Eqs (3) and (4). As a re-
sult, it will be shown that taking into account thermal
point defects in the parent phase, which can be absorbed
at the particle-matrix interface during particle nucle-
ation, leads to the removal of the nucleation barrier
associated with the elastic strain energy created by the
nuclei of the new phase. On this basis, a new model for
the nucleation rate of incoherent precipitates will be de-
veloped within the framework of the Reiss theory for
binary homogeneous nucleation as applied to a binary
system of an oversaturated solid solution and thermal
vacancies. The kinetic model can also be generalized
to take into account excess vacancies formed under
non-equilibrium conditions (e.g. during quenching).

2. CRITICAL ANALYSIS OF THE
TRADITIONAL THEORY

It should be noted that Egs (3) and (4) are definitely
valid for coherent particles, since vacancies can only
be trapped (or adsorbed) at the particle-matrix inter-
face and thus do not change the elastic energy of the
particle.

However, for incoherent particles, at the inter-
face of which with the matrix vacancies and self-in-
terstitials are absorbed, the situation can change
significantly: due to the absorption of vacancies
and emission of self-interstitials (with the net num-
ber n = n,-n;), the interface of an oversized par-
ticle relocates outward leading to a simultane-
ous increase in the volume of the cavity (in which
the particle is inserted), V, -V, = (x+n)Q,,,
the radius of the interface,

1/3 s
R—>R’:(34—T"C’J (x+n)"” =

3200 e

and its surface area, S — S'. In turn, this leads to a de-
crease in the elastic energy AG,; (due to a decrease

in the transformation straind — &' = (Vp — Vm) /3V,)
and an increase in the surface energy AGy,,r.

Assuming that the elastic strain in the matrix near
the interface is small (which will be self-consistently
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confirmed below) and thus the chemical potential
of point defects in equilibrium with the interface is close
to zero, then the free energy of the system of equilibri-
um point defects in the matrix (with zero chemical po-
tential) does not change due to their absorption.

In this case, Eq. (1) takes the form

2
AGy(x,n) = —kTxInS, + 4ny(4—3an)3 x

b) 2 2

2 ou( 1 n

3o e - _=
x(x+n)3 + 3 (1+(Pj x[go x) ,

(Q—Qm)/Qm.

Minimization of Eq. (6) with respect to the two
variables, 0AG, (x,n) / 0x = 6AGy(x,n) / on = 0, gives
a new expression for the critical nucleus size,

where ¢ =

X :—
4uQ 1 q
2n( vy 1_3kT1 s,
~ 3 \kTns, 8uQ
where q=(1—;kQI Sj or g~1- ikg;l S,

in the first approximation in a small parameter
3kT / 4pQ <« 1, and

: 3kT
L= (p+1)g-1= (p—zu—Q(l +o)lnS,, (8
X

whereas the formation free energy of the critical nucle-
us is calculated as

AGS = AQ), (x*,n*) =
8y’ Q°[4uQ(g - 1) + 6kTIn S, |
[4ne(1-9)] ¢

S LIS 1+3kT( ! ]21 S, ®
3(kTnS,) 4pQil+o

l6n  yQ?

3 (kTS P
(kTInS,)

which demonstrates that the elastic strain in the matrix
is almost completely compensated by absorbed point
defects, and, consequently, Egs (4) and (5) are invalid
for incoherent precipitates. Therefore, the conclusion
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of the traditional theory that the strain energy created
by the nuclei of the new phase acts as a barrier to nu-
cleation is not correct and must be amended when
evaluating the nucleation rate of incoherent particles
(as shown below).

It is interesting to note from Eq. (8) that for a rel-
atively small misfit strain of oversized particles with

0<op< ik—lnS , the critical nucleus does not ab-
pQ

sorb but emits vacancies, n o< 0; this occurs because,
at such misfits, the decrease in the nucleus surface en-
ergy due to the emission of vacancies prevails over the
increase in the elastic strain energy. This additionally
demonstrates the importance of self-consistent consid-
eration of changes in the nucleus volume and surface
due to absorption/emission of point defects.

In typical experiments with supersaturated alloys
(see, e.g. [5-7]), the maximum number of particles was
nucleated when the samples were quenched, creating
an excess of vacancies in the matrix (with a supersatu-

ration level §, = ¢, / c&o), where ¢, is the dimensionless

non-equilibrium concentration of vacancies and cgo)
is its thermal value), which can significantly acceler-
ate the nucleation process. More generally, an excess
of self-interstitials in the quenched (non-equilibrium)

matrix (with supersaturation §; =¢; / cl.(o)), should
be additionally taken into account. However, under

the condition cl(o) /c‘(,o) < 1 before quenching which
is normally realised in metals (since self-interstitials
have rather high formation enthalpies compared to va-
cancies [10]), fast recombination during subsequent
cooling leads to the survival of only excess vacancies.

The influence of excess vacancies on the nucleation
barrier was considered by Russel [11]. His predictions,
while qualitatively passable, turned out to be insuffi-
cient due to some inconsistencies in the model formu-
lation, which can be avoided after some modification
of his model. In particular, in the free energy of for-
mation of an incoherent particle, the change in its
volume due to the absorption of vacancies was taken
into account, but the increase in the interface area was
neglected (which makes this approach inconsistent,
as explained above).

A more adequate result can be obtained by general-
izing the model presented above to take into account ex-
cess vacancies formed under non-equilibrium (quench-
ing) conditions, which makes it possible to refine
Russel’s model. For this, an additional term, —k7nIn S,
describing the variation of the free energy of n vacan-
cies due to absorption at the interface from the matrix,
should be implemented in Eq. (1), leading to
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AGy (x,n) = —kTxInS, —kTnlnS, +

2

+4my (%Qm )3 (x+n)3 + 10)

2

2 1 n

IR N
37 (+9) X

which minimization with respect to x and » in the

critical point gives in the first approximation in
3kT [ 4pQ < 1,

*

n kT S
—=(p+1)g-1=g@—(p+1)—=In=X, (11
= (o+1) o-(0+1)g s
1/2
_ 3kT . S,
where g = (1 - %—ans—vj , and
o 2881y°Q° ~
[3kT(1+¢)InS, + 4uQ(1- )] 4
3 2
32n Q
- %) 7
3KT(, S,
{ll’lsx +(p1nSv +8u£2(1n5,v)
3kT S,
X[1+m HS—VJ

Correspondingly, the expression for the formation
free energy of the critical nucleus takes the form

X 4pQ (g - 1)+ 6kTIn S, +3kT[ -2+ (1 +¢)§
AGO=48ny3§22[ ne(g 1) nSy [ (3 ‘P)qﬂ:
[4nQ(1-§)+3kT(1+¢)InS, | g

_ lom v’ !

3 2 3
(kT) {lnS +@InsS, +3”[lns"j2}
* Vo8 uQl S,

v

3kT . S,
InS, +¢InS, + Klns—vlnSv +

L3k Vsl s Y[
4uQ\1+0o 2 S,

with the critical supersaturation In S; ~ —pIns,.

Therefore, the results of calculations [11] with the
overestimated nucleation barrier

2
. 32 2 _ 9kT(1 —V) 2
AG) = 16my°Q /{3(kT) [lnSx +¢lnsS, 78u9(1+v)1n S, ’

where v is Poisson’s ratio (which appeared due to the
erroneous use of the expression for the strain energy

VESHCHUNOV

of coherent particles as applied to incoherent parti-
cles), led to an underestimation of the effect of excess
vacancies on nucleation barrier (along with an over-
estimation of the critical supersaturation S;), or even
to the cancellation of this effect at typical values of ¢ =
0.1 and InS, =5 (when @In S, ~ mlnz S).
8uQ(1+ v)

3. BINARY NUCLEATION

The problem of nucleation of equiaxed incoherent
precipitates (observed in [3, 6]) is an example of homo-
geneous nucleation in binary systems where the nuclei
can be considered as a spherical particle of a new phase
in the parent solid phase containing solute atoms (and
vacancies). However, the classical nucleation theory
[12—14] was developed mainly in relation to one-com-
ponent (unary) systems.

This theory was generalized to the kinetics of nu-
cleation in binary mixtures by Reiss [15]. In his theory,
the parent phase is thought of as a mixture of molecules
(monomers) of two components X and ¥ with number
densities N, and Ny (corresponding to dimensionless
concentrations ¢, and c)), respectively, together with
clusters of all sizes and compositions. A particular mo-
lecular cluster is characterized by the numbers of single
molecules (or monomers) x and y of species X and Y,
respectively, that it contains. Reiss showed that the crit-
ical point of unstable equilibrium corresponds in this

case to a saddle point x*, y* on the free energy surface
AGy(x,y). He characterized the rate of the transition
by a two-dimensional flux vector (in the phase space

of cluster sizes x, y) at the critical point, J x*, y* , OTi-
ented in the direction of the steepest descent of the free
energy surface (the axis of the pass x").

Accordingly, in Reiss’ expression for the nucleation
rate

BLB, 1+ te’6) )

NIl B, +Byte’0

(14)

| 12
X Dlll [ B \J ’
Dy — Dy Dy,

where f;(x,y) is the equilibrium size distribution
function,
fo(x,y) = Fexp[-AGy (x,y) / kT ], (15)

F is the kinetic factor discussed below in Section 3.1;
0 is the angle between the original axis x and the axis
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of the pass x'; B;k =f; (x*,y* = 4nD,~cl-R*Q_l, i=x,Y,
are the arrival rates of monomers X and Y to the critical
1 3*AGy (x,y)

cluster (x*, y*) of radius R"; D; = > Avix
9%

* %

X,y
are elements of the matrix D = Dij , which determi-
nant is negative in the saddle point (in accordance with
the classification of the critical points, cf. [16]), and,
thus, detD = Dy, Dy, — D, < 0;

D = 1 62AGO (x,")
11 — Eax—,z

(16)

-
X,y

= Dy cos’ 0 + Dy, sin® 0 + 2D;, sin O cos,

is the second derivative of AGj in the direction x’ of the
orthogonal coordinate system (x',y") obtained by ro-
tating the original coordinate system (x, y) through
the angle 6, which should be negative, Dj; < 0, to pro-
vide a maximum of the free energy at the critical point
in the direction of the x'-axis.

Reiss’ theory was modified by Langer [17] (with
subsequent reiteration by Stauffer [18]), who corrected
the orientation of the flux vector in the direction par-
allel to the direction of the unstable mode at the sad-
dle point (the new axis of the pass x'), using a formal
approach based on additional trial assumption (ansatz)
to solve the steady state equation for the non-equilibri-
um size distribution function in the critical zone.

The modified value of 6 was explicitly calculated
in [18] and later refined in [19] as

1/2
s+(r+s2) , Dy <0,
tgb = 17)

s—(r+ s2)1/2, D, >0,

where r =B, /B, s =(d, —rdy)/2,d, =-Dy, / Dy,
and db = —D22 / D12‘

3.1. Pre-exponential kinetic factor

In the Reiss theory, given the total number density
of N, clusters small compared to the number density
of single molecules (monomers) of X and Y in the par-
ent phase, N xy<<Nx,Ny, respectively, the pre-exponen-
tial factor F of the equilibrium size distribution func-
tion in Eq. (14) is equal to the total number density
of monomers

F=N,+N,. (18)
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Accordingly, in three different situations inves-
tigated by Reiss [6], it was assumed that no third in-
ert gas was present in the parent phase. As applied
to a lattice gas (with a lattice site density N,), this
assumption corresponds to the complete filling of the
lattice sites with monomers, i.e. N, + N, = Nj. This
approach was a generalization of the Frenkel model
[20], which characterizes the cluster size distribution
in a one-component system.

The correctness of such approach as applied to va-
pours in an inert atmosphere (with N, + N y < Ny,
where N is the total density of the gas mixture, in-
cluding inert gas) was widely criticized in the litera-
ture. In particular, Lothe and Pound [21] suggested
that degrees of freedom corresponding to the transla-
tion of clusters have been neglected in the development
of nucleation theory. As a result, they predicted that
the pre-exponential factor is proportional to the total
number density of gas molecules (or lattice sites in the
case of a lattice gas) N, rather than vapour molecules,
leading to a large discrepancy with the previous ap-
proach. A similar conclusion as applied to the lattice
gas was made in a large number of subsequent works,
reviewed and supported in [22]. For binary vapours
in an inert carrier gas, the approach of Lothe and
Pound was generalized in [23].

This disagreement (‘translation paradox’) was dis-
cussed by Reiss and Katz [24], who evaluated the parti-
tion function of the system taking into account permu-
tations of monomers among clusters and showed that
Lothe and Pound’s correction to the nucleation theory
does not arise (for unary vapours). However, in their
subsequent paper [25], where the main qualitative con-
clusions of [24] were reaffirmed, a correction factor
of several orders of magnitude was calculated (how-
ever, much smaller than the Lothe and Pound correc-
tion). Presumably for this reason, Katz disregarded his
previous results [24] and modified the Frenkel model
in his subsequent works (e.g. in [26, 27]).

Therefore, the contradiction between different
approaches has not been completely resolved and re-
quired further analysis. Such an analysis for unary
systems was carried out in the recent work of the au-
thor [28] within the framework of the thermodynam-
ic approach [29], taking into account the interaction
of monomers with clusters (considered in the statistical
mechanics approach [24, 25] and disregarded in the
Lothe and Pound model [21, 22]). A generalization
of this consideration to binary systems is presented
in the Appendix A, where the validity of Eq. (18) is jus-
tified in relation to binary solid solutions.
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3.2. Nucleation rate

When applying the Reiss theory to the nucleation
of incoherent particles, the index x will be assigned
to solute atoms and the index y to vacancies in the ma-
trix. Results of calculations of the elements of the ma-
trix D = (Dy) and other related parameters of Eq. (14)
are presented in the Appendix B, where it is assumed

that Dvcgo) > D,c,, taking into account that in the
majority of metals, the self-diffusion coefficient D
is determined by the vacancy mechanism and thus
D, ~ D,c\" [10], and D, ~ D, for Si in Al [30], where-
as the typical concentration of Si in Al in the precipi-
tation tests [5—7] was a few percent, ¢, < 1. In the case

of thermal vacancies in the matrix (with cgo) < ¢,), the
nucleation rate of incoherent particles (number per
unit volume per unit time) takes the form

1
7 1 302
N~ 4npxc§Y(ij2 "2, exp| —— L |(19)
KT\ 4pQ 3(kT) In? S,
In the case of quenched samples with an excess
of vacancies in the matrix, a more general expression

is derived in the Appendix B,

1
Nl kT \2 4nD.c, (¢, +¢,) y
KT\ 400 l
3KT(, S,
llnSx + (plnSv +8L|Q[ln&;j ]
(20)
302
XEXpy— 167[’}’ Q 3
2
3 3KT(, S,

From this equation, it may be concluded that an ex-
cess of vacancies in quenched samples not only reduces
the nucleation barrier, but also increases the pre-expo-
nential factor due to increased diffusion of dissolved
atoms D, o« c, in materials with a vacancy diffusion
mechanism.

As noted in [1], the experimental measurement
of nucleation rates during precipitation in solid solu-
tions is extremely difficult, since measurable rates can
only be obtained in a very limited range of experimen-
tal conditions. An additional difficulty is related to the
calculation of the actual number of particles formed,
since there is often a significant simultaneous coars-
ening of the particles. Therefore, the common proce-
dure is to find the thermodynamic driving force that
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is needed to obtain measurable amounts of nucleation.
Since the nucleation rate is so sensitive to the value
of the driving force, it is not necessary to know with
high precision the many other (kinetic) factors in the
overall expression for the nucleation rate. Therefore,
the key problem of the theory of nucleation in solid
solutions, in view of the many uncertainties involved,
is a qualitatively correct understanding of the under-
lying mechanisms and their consistency with exper-
imental observations. In this regard, the obtained
Eqgs (19) and (20) for the nucleation rate can be used
to adequately interpret available and new observations.

4. CONCLUSION

The traditional theory for a homogeneous nucle-
ation of incoherent precipitates in solid solutions (cf.
[1-3]), is critically analysed. It is shown that the pre-
diction of the theory that the formation of a nucleus
of a given size will require an increase in the free en-
ergy of nucleus formation due to the elastic energy as-
sociated with a difference in the atomic volumes of the
two phases becomes incorrect for incoherent precip-
itates. Namely, it is shown that taking into account
thermal point defects in the parent phase which can
be absorbed at the particle-matrix interface during
the nucleation of particles, leads to relaxation of the
emerging nucleus, removal of the contribution of elas-
tic strain energy to the nucleation barrier, and resto-
ration of the critical supersaturation S, ~ 1 (overesti-
mated in the traditional approach).

On this basis, within the framework of the Reiss
theory for binary homogeneous nucleation, a kinetic
model is developed for the rate of nucleation of in-
coherent precipitates as applied to a binary system
of a supersaturated solid solution of alloying atoms and
thermal vacancies in the matrix.

The model is generalized to take into account ex-
cess vacancies formed under non-equilibrium condi-
tions of quenching tests in dilute alloys (e.g. Al-Si).
It is shown that an excess of vacancies in the quenched
samples lowers the nucleation barrier, shifts the critical
oversaturation to the value S, ~ —¢InS, (which may
differ significantly from the estimates of the simplified
thermodynamic model [11]), and increases the kinetic
pre-exponential nucleation rate factor.
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Appendix A.

Calculation of the pre-exponential factor of the
equilibrium size distribution function

Although the Lothe and Pound approach [21] cor-
rectly identified the limitations of the earlier approach
(in which the influence of an inert carrier gas was
ignored), it inherited the main drawback of this ap-
proach, considering the system of monomers and clus-
ters as an ideal mixture.

Indeed, such consideration is valid only in the case
of Boltzmann statistics (to which the ideal gas obeys),
when all particles are distributed over different thermo-
dynamic states completely independently of each other
[29]. For clusters of finite sizes, their interaction with
monomers (described in the statistical mechanics ap-
proach [24, 25] by permutations of monomers among
clusters), cannot be neglected, since clusters, in contrast
to monomers, cannot be considered as point particles.

In accordance with general thermodynamics, the
additivity of thermodynamic quantities, such as free
energy or entropy, is preserved only as long as the inter-
action between different parts of the system is negligible,
as in the case of ideal gas mixtures, for which, for exam-
ple, the entropy of the mixture is equal to the sum of the
entropies of each of gases. Therefore, for a non-ideal
mixture of several substances (for example, monomers
and clusters), the entropy is no longer equal to the sum
of the entropies of each of the substances [29].

To find the excess entropy of a mixture of mono-
mers and clusters, let @ (P, T, Nx,Ny) be the Gibbs
free energy of an ideal solid solution in the crystal
matrix (with the number density of lattice sites N,)
of monomers X and Y (with the number density N,
and N y, respectively), whose chemical potentials are
w (P, T,¢;)=vy;(P,T)+kTInc;, where i = x,y, and
¢ = N;/Ny <1. Let a,, denote the small change
which would occur in the free energy if one spheri-
cal cluster X, Y, consisting of (x, y) monomers (a nu-
cleus of the new phase) was added to the system.
In the thermodynamic approach, clusters are con-
sidered as ‘macroscopic’ systems with Ny, hy, > 1.
Due to the interactions of clusters with monomers,
XY, £ X =X.Y,, and X,Y, £Y = X,V,,,, this
value should be sought as a function of N, and N,
ie. oy =0y (P.T,N,N,). Dueto Ny, < N, N,
where N Xy is the number (per unit volume) of clusters
of size (x, y), interactions between clusters can be ne-
glected, and thus the free energy takes the form

® =Ny, +Nyp, + Nyo

Xy xy(P’T’Nx’Ny)+

+kTin(N 1), Ay
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where the latter term, k]]n(ny !) = kTny ln(ny /e),
takes into account that all (spherical) clusters of one
size (x, y) are identical and, being macroscopic bod-
ies, are uniformly distributed in the external medium
(represented by the lattice gas).

This consideration is fundamentally different from
the distribution of a new ideal lattice gas with density
in the existing lattice mixture of lattice gases, which
becomes part of the ‘medium’ and transforms the con-
figurational entropy

N,!
kTIn 0 ~
(Ng =N, =N, JIN N,
S T A v
- * 0 Y NO

(which enters through chemical potential terms) in the
N,!
(Ng =Ny =N, = N_JININ IN!

kTIn

Consequently, the additional entropy term

N
in Eq. (A.l) will be of the form kTN zln Vz , instead
0

of kTNz ln(Nz /e), with simultaneous vanishing
of the interaction term N a._.

Ny Gxy
® =Ny, + Nyuy, + kTN, In Texp T .(A.2)

Since @ must be a homogeneous function
of the first order in N,, N, and N, [29], the term
exp[oc (P,T,Nx,Ny) / kT | in the argument of the
logarithm should be sought in the most general form
Sy (P.T) /SNX + BNy). Given that after redefining
x <> y, the free energy should not change, we can con-
clude that B = 1. Accordingly,

®=Np, + Ny, +kTN,, In

N
e(Niin)fxy (P’T)}(A-?’)

or, introducing a new function y,, (P,T) =
= kTn £, (P,T),

® =N, +Nypy, + Ny, (PT)+

N A4
+kTN,, In ﬁ , (A4)
e(Ny+ N,

Comparison of Eq. (A.4) with Eq. (A.1) shows that
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Ny (P.T,N, N, )=

(A.5)
(P.T) - kTN, In(N, +N,).

xyVaxy

Therefore, since the first term in Eq. (A.5),
Ny, (P,T), does not depend on the number
of monomers, the value vy, (P,T) is the standard free
energy of a cluster, while the second term of Eq. (A.5),
kTN,, ln(Nx +Ny), is the excess entropy of the

mixture.

This leads to the following expressions for the
chemical potentials of the ‘solvents’

0D

W = N = Hx kTcy, =y, (A.6)
. 0
Myzmzuy_chxyzuy, (A7)

where ¢, » Ny, /(Nx + Ny) < 1, and of the ‘solute’

wo = oD

W 9N Xy

Therefore, from the equilibrium condition of the
chemical reaction xX + yY = X, Y,

= kTincy, + . (A9

Xy + YRy, = Py (A9)
the mass action law can be derived as
¢y * Ny /(N + N, =K (T),  (A10)
with the equilibrium constant
AGy (x,y
K, (T)= exp(—%], (A.11)

where AGy (x,y) = v, — X, — yu, is the Gibbs free
energy of formation of a cluster.

If concentrations of other clusters are also small,
their contributions to the total free energy of the sys-
tem are linear; therefore, the equilibrium size distribu-
tion function has the form

fo(x,y)= (Nx + Ny)exp(—AGO (x,y)/kT), (A.13)

which is derived, as mentioned above, in the ther-
modynamic approach for ‘macroscopic’ clusters with
x,y > 1. For this reason, the assertion in Ref. [27] that
this expression for a cluster size of 1 does not return
the number of monomers N, is irrelevant.

Appendix B.
Calculation of the nucleation rate parameters

The first and the second derivatives of the free en-
ergy, Eq. (9), are calculated as
2

JAG, 3
#:-lenSv+§ny(%Qm]3 x
1 { (B.1)
xx_3(1+f)3——4”9—1 2(<p—£),
b 3 (1+(p) X
2
0AG, (x,n) 8 (3 3
T——lenSx+§TC’Y Egm X
B.2
L n)3 2uQ 1 n\ B
et
X 3 (1+(p) X
2
PAG(xn) 8 (3 Q3
o o 4nT+e
) K (B.3)
xx_3(1+£]3 a1 21,
b 3 (1+(p) b
2
82AG0(x,n) _§n 3 Q §><
axz 9 i 4TEI+(P (B4)
4 - 2 '
X X 3(1+£) e 2l(ﬁj,
X 3 (1+(p) x\ x
2
PAG(xn) 8 (3 Q 5
onox o™ A1+
(B.5)
4 _x
Xx‘s(HEj e 1 A
X 3 (1+(P) X X
O*AG
Accordingly, the elements Dl-j = %#X’}})
A R

of the matrix D calculated in the first approximation
in a small parameter 37T / 4uQ ~ 102 <« 1 using
Eq. (10) take the form

B 82AG0 (x, n) 4uQ 1 1
1= 5 | =3 . o
ox e 3 (1+(p X
_3kT Sy ’ LI )% «|  (B.6)
P70, ) Tl T

2 9
3KT(, S,
X[lnSx +(plnSv +§H—Q(IHS—V) ]
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3*AG, (x,n)
on’

~ “_Q;L(l _

3 (l+¢) x

22 =

(B.7)

0’AG, (x,n)
D = onox

3kT . S kT 4
><|:((p — 4;1_521“5_):] + T(1 + (p)3 (ln S, + (plnSV):|,

and thus

which is ne§ative above the critical supersaturaziog,
InS, > 1InS, = —¢InS,, and thus confirms that (x ,y )
is a saddle point. This leads to

L1 4p0( 1
(—detD)2 = _*T(l " (p]

X
kT
X{A‘MQ{IHSX + ¢

2
3kT(, S,

For simplicity, only relatively large values of
3kT

ml S_ ~0.01,
taking into account that for Si (with Q = agi /8
and ag; =0.5431 nm) in Al (with Q,, = a3, /4 and
an =0.4049 nm) @ ~ 0.2; for Ge (with Q = @, /8and
age =0.5658 nm) in Al ¢ = 0.41; and a negative value
¢ =~ —0.1 for incoherent CuAl, phase in Al. In these
cases,

4
3

(B.10)

N —

|o| > will be further analysed,

3kT . S| _ kT 4
‘ m Q1 S > —(1 +9)3(InS, +¢InsS,) ~ 0.01,
and thus Eq. (B.8) can be simplified as
2
4uQ( 1 1 3kT S, ,
Do = ‘T(mj 7[“@1 s—] (5:5)

In the considered case Bi /Bz =D,/ Dy, <1,
from Eq. (17) one obtains
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3kT
tg0 = (p—mlns ,if Dy <0,
3kT
orq)—‘m—anSx > 0, (B.11)
3kT S, | .
org— K ins <0 (B.12)
4p
or, more generally,
3kT S
c0s20 = — — = ! ~1, (B.14)
1+1tg76 {4 3kT1 ‘i
4uQ S,

and thus, taking into account that B, << B, (as ex-
plained in Section 3.2),

BB, (1+1£%6)

i Wi (B.15)
B, +Biyte’0

= [31 (1 + tgze).

By substituting Egs (B.13)—(B.15) in Eq. (16), one
obtains

2
D), ~ —%(ﬁy ! kT[lnS +olns, +§%(1 %vj J,(B-16)
which is negative above the critical supersaturation,
InS, > lnS; ~ —pInS§,, and thus ensures a maxi-
mum of the free energy at the critical point in the
direction of the x'-axis (and a positive sign of the
r.h.s of Eq. (13)).

Taking into account Eq. (B.15) and

3Q /3 1/3
R =|—— (x* + n*) =
4n(1+9)

~(1 kT S 2yQ/(kT) _(B.17)
T s, 3kT(. S,V
InS, +¢InsS, +8u[lnSJ
B 2yQ/(kT)
2’
3kT(, S,
lnS +(plnS +8|.L(1ns)

Eq. (14) takes the form
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1
N L kT \2 4nD,c, (cx + cv) o
kT \ 4uQ 1

202
3KT(, S,
|}nSx +(plnSv +8p,Q(lnS) :l

v

(B.18)

16my°Q?

2
3 3KT(, S,
3(kT) [lnSx + (plnSv + 8m(ln5,‘}) :I

X expq—

Taking into account that cso) can be generally ne-
glected compared to ¢, in the absence of excess vacan-
cies this equation is reduced to

1
Sl
N = 4nD czl( kT )2 In 28, exp[—

2l g ].(3.19)

3(kT) In® S,

It should be noted that the above expression for the
cavity volume, V,, = (x + n)Q,,, used in Egs (6) and
(10), is applicable only in the case Q / Q, <2 which
corresponds to ¢ <1 while in the case 2< Q / Q, <3
and ¢ <2 the correct expression is V,, = (2x + n)Q,,.
Therefore, the transformation strain S(x,n) should
be recalculated from the expression

(2x +n)Q,,
vV T XQ

=(1+8)3 ~1+38
where g =@ —-1<1.
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