Определение кверцетина в фармацевтических препаратах методом цифровой цветометрии с использованием сборных микрофлюидных систем на основе бумаги, модифицированной наночастицами золота и серебра
- Авторы: Фурлетов А.А.1, Якименко А.В.1, Апяри В.В.1, Дмитриенко С.Г.1, Торочешникова И.И.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова, химический факультет
- Выпуск: Том 80, № 7 (2025)
- Страницы: 641-655
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья получена: 18.08.2025
- URL: https://ogarev-online.ru/0044-4502/article/view/304866
- DOI: https://doi.org/10.31857/S0044450225070018
- EDN: https://elibrary.ru/bhhvio
- ID: 304866
Цитировать
Аннотация
Об авторах
А. А. Фурлетов
Московский государственный университет имени М.В. Ломоносова, химический факультет
Email: aleksei_furletov@mail.ru
ГСП-1, Ленинские горы, 1, стр. 3, Москва 119991, Россия
А. В. Якименко
Московский государственный университет имени М.В. Ломоносова, химический факультетГСП-1, Ленинские горы, 1, стр. 3, Москва 119991, Россия
В. В. Апяри
Московский государственный университет имени М.В. Ломоносова, химический факультетГСП-1, Ленинские горы, 1, стр. 3, Москва 119991, Россия
С. Г. Дмитриенко
Московский государственный университет имени М.В. Ломоносова, химический факультетГСП-1, Ленинские горы, 1, стр. 3, Москва 119991, Россия
И. И. Торочешникова
Московский государственный университет имени М.В. Ломоносова, химический факультетГСП-1, Ленинские горы, 1, стр. 3, Москва 119991, Россия
Список литературы
- Silva-Neto H.A., Arantes I.V.S., Ferreira A.L., do Nascimento G.H.M., Meloni G.N., de Araujo W.R., Paixão T.R.L.C., Coltro W.K.T. Recent advances on paper-based microfluidic devices for bioanalysis // Trends Anal. Chem. 2023. V. 158. Article 116893. https://doi.org/10.1016/j.trac.2022.116893
- Morbioli G.G., Mazzu-Nascimento T., Stockton A.M., Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) – A review // Anal. Chim. Acta. 2017. V. 970. P. 1. https://doi.org/10.1016/j.aca.2017.03.037
- Chen T., Sun C., Abbas S.C., Alam N., Qiang S., Tian X., Fu C., Zhang H., Xia Y., Liu L., Ni Y., Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications // Anal. Chim. Acta. 2024. V. 1321. Article 342877. https://doi.org/10.1016/j.aca.2024.342877
- Rypar T., Bezdekova J., Pavelicova K., Vodova M., Adam V., Vaculovicova M., Macka M. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing // Talanta. 2024. V. 266. Article 124911. https://doi.org/10.1016/j.talanta.2023.124911
- Mahadeva S.K., Walus K., Stoeber B. Paper as a platform for sensing applications and other devices: A review // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 8345. https://doi.org/10.1021/acsami.5b00373
- Mao K., Min X., Zhang H., Zhang K., Cao H., Guo Y., Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery // J. Contr. Release. 2020. V. 322. P. 187. https://doi.org/10.1016/j.jconrel.2020.03.010
- Pan Y., Mao K., Hui Q., Wang B., Cooper J., Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance // Trends Anal. Chem. 2022. V. 157. Article 116760. https://doi.org/10.1016/j.trac.2022.116760
- Asano H., Shiraishi Y. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography // Anal. Chim. Acta. 2015. V. 883. P. 55. https://doi.org/10.1016/j.aca.2015.04.014
- Yao X., Jia T., Xie C. Facial fabrication of paper-based flexible electronics with flash foam stamp lithography // Microsyst. Technol. 2017. V. 23. P. 4419. https://doi.org/10.1007/s00542-016-3207-6
- Malekghasemi S., Kahveci E., Duman M. Rapid and alternative fabrication method for microfluidic paper based analytical devices // Talanta. 2016. V. 159. P. 401. https://doi.org/10.1016/j.talanta.2016.06.040
- Henares T.G., Yamada K., Takaki S., Suzuki K., Citterio D. “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device // Sens. Actuators B: Chem. 2017. V. 244. P. 1129. https://doi.org/10.1016/j.snb.2017.01.088
- Motalebizadeh A., Asiaei S. Micro-fabrication by wax spraying for rapid smartphone-based microfluidic devises (μPADs) using technical drawing pens and in-house formulated aqueous inks // Anal. Chim. Acta. 2020. V. 603. Article 113777. https://doi.org/10.1016/j.ab.2020.113777
- Chiang C.-K., Kurniawan A., Kao C.-Y., Wang M.-J. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays // Talanta. 2019. V. 194. P. 837. https://doi.org/10.1016/j.talanta.2018.10.104
- Ramesh H., Prabhu A., Nandagopal G., Dheivasigamani T., Kumar N. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches // Microchem. J. 2021. V. 165. Article 106126. https://doi.org/10.1016/j.microc.2021.106126
- de Oliveira R.A., Camargo F., Pesquero N.C., Faria R.C. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis // Anal. Chim. Acta. 2017. V. 957. P. 40. https://doi.org/10.1016/j.aca.2017.01.002
- Abdulsattar J.O., Hadi H., Richardson S., Iles A., Pamme N. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs) // Anal. Chim. Acta. 2020. V. 1136. P. 196. https://doi.org/10.1016/j.aca.2020.09.045
- Gutorova S.V., Apyari V.V., Kalinin V.I., Furletov A.A., Tolmacheva V.V., Gorbunova M.V., Dmitrienko S.G. Composable paper-based analytical devices for determination of flavonoids // Sens. Actuators B: Chem. 2021. V. 331. Article 129398. https://doi.org/10.1016/j.snb.2020.129398
- Prakobkij A., Sukapanon S., Chunta S., Jarujamrus P. Mickey mouse-shaped laminated paper-based analytical device in simultaneous total cholesterol and glucose determination in whole blood // Anal. Chim. Acta. 2023. V. 1263. Article 341303. https://doi.org/10.1016/j.aca.2023.341303
- Zhang J., Li W., Zhang B., Zhang G., Liu C. Screening of angiotensin converting enzyme inhibitors from natural products via origami microfluidic paper-based analytical devices with colorimetric detection // J. Pharm. Biomed. Anal. 2024. V. 238. Article 115833. https://doi.org/10.1016/j.jpba.2023.115833
- Heidary O., Akhond M., Hemmateenejad B. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine // Microchem. J. 2022. V. 182. Article 107886. https://doi.org/10.1016/j.microc.2022.107886
- Sammani M.S., Clavijo S., Cerdà V. Recent, advanced sample pretreatments and analytical methods for flavonoids determination in different samples // Trends Anal. Chem. 2021. V. 138. Article 116220. https://doi.org/10.1016/j.trac.2021.116220
- Blasa M., Candiracci M., Accorsi A., Piacentini M.P., Piatti E. Honey flavonoids as protection agents against oxidative damage to human red blood cells // Food Chem. 2007. V. 104. P. 1635. https://doi.org/10.1016/j.foodchem.2007.03.014
- Kapoor B., Gulati M., Gupta R., Singh S.K., Gupta M., Nabi A., Chawla P.A. A review on plant flavonoids as potential anticancer agents // Curr. Org. Chem. 2021. V. 25. P. 737. https://doi.org/10.2174/1385272824999201126214150
- Maleki S.J., Crespo J.F., Cabanillas B. Anti-inflammatory effects of flavonoids // Food Chem. 2019. V. 29. Article 125124. https://doi.org/10.1016/j.foodchem.2019.125124
- Khachatoorian R., Arumugaswami V., Raychaudhuri S., Yeh G.K., Maloney E.M., Wang J., Dasgupta A., French S.W. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle // Virology. 2012. V. 433. P. 346. https://doi.org/10.1016/j.virol.2012.08.029
- Zhao L.-L., Jayeoye T.J., Ashaolu T.J., Olatunji O.J. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats // Tissue Cell. 2023. V. 85. Article 102254. https://doi.org/10.1016/j.tice.2023.102254
- Huang Y., Tang G., Zhang T., Fillet M., Crommen J., Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis // J. Pharm. Biomed. Anal. 2018. V. 147. P. 65. https://doi.org/10.1016/j.jpba.2017.08.021
- de Villiers A., Venter P., Pasch H. Recent advances and trends in the liquid-chromatography – Mass spectrometry analysis of flavonoids // J. Chromatogr. A. 2016. V. 1430. P. 16. https://doi.org/10.1016/j.chroma.2015.11.077
- Olech M., Pietrzak W., Nowak R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa thunb. leaves and achenes using LC-ESI-MS/MS-MRM methods // Molecules. 2020. V. 25. Article 1804. https://doi.org/10.3390/molecules25081804
- Formisano C., Rigano D., Lopatriello A., Sirignano C., Ramaschi G., Arnoldi L., Riva A., Sardone N., Taglialatela-Scafati O. Detailed phytochemical characterization of bergamot polyphenolic fraction (BPF) by UPLC-DAD-MS and LC-NMR // J. Agric. Food Chem. 2019. V. 67. P. 3159. https://doi.org/10.1021/acs.jafc.8b06591
- Gotti R. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants // J. Pharm. Biomed. Anal. 2011. V. 55. P. 775. https://doi.org/10.1016/j.jpba.2010.11.041
- Gan Z., Chen Q., Fu Y., Chen G. Determination of bioactive constituents in Flos Sophorae Immaturus and Cortex Fraxini by capillary electrophoresis in combination with far infrared-assisted solvent extraction // Food Chem. 2012. V. 130. P. 1122. https://doi.org/10.1016/j.foodchem.2011.08.018
- Soylak M., Ozdemir B., Yilmaz E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-Vis spectrophotometry // Spectrochim. Acta A. 2020. V. 243. Article 118806. https://doi.org/10.1016/j.saa.2020.118806
- Furletov A.A., Apyari V.V., Garshev A.V., Dmitrienko S.G., Zolotov Yu.A. Fast and sensitive determination of bioflavonoids using a new analytical system based on label-free silver triangular nanoplates // Sensors. 2022. V. 22. P. 843. https://doi.org/10.3390/s22030843
- Dmitrienko S.G., Apyari V.V., Kudrinskaya V.A., Stepanova A.V. Preconcentration of flavonoids on polyurethane foam and their direct determination by diffuse reflectance spectroscopy // Talanta. 2012. V. 102. P. 132. https://doi.org/10.1016/j.talanta.2012.08.017
- Pejić N., Kuntić V., Vujić Z., Mićić S. Direct spectrophotometric determination of quercetin in the presence of ascorbic acid // Il. Farm. 2004. V. 59. P. 21. https://doi.org/10.1016/j.farmac.2003.07.013
- Xu J., Zhang H., Chen G. Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus // Talanta. 2007. V. 73. P. 932. https://doi.org/10.1016/j.talanta.2007.05.019
- Wang M.Y., Zhang D.E., Tong Z.W., Xu X.Y., Yang X.J. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode // J. Appl. Electrochem. 2011. V. 41. P. 189. https://doi.org/10.1007/s10800-010-0223-6
- Транова Ю.С., Мыльников П.Ю., Щулькин А.В., Черных И.В., Правкин С.К., Якушева Е.Н. Метод количественного определения кверцетина с помощью ВЭЖХ-МС/МС // Наука молодых. 2022. Т. 10. С. 251. https://doi.org/10.23888/hmj2022103251-258
- Дмитриенко С.Г., Степанова А.В., Кудринская В.А., Апяри В.В. Особенности разделения флавоноидов методом обращено-фазовой высокоэффективной хроматографии на колонке Luna 5u C18 (2) // Вестн. Моск. ун-та. Сер. 2. Химия. 2012. Т. 53. С. 369. (Dmitrienko S.G., Stepanova A.V., Kudrinskaya V.A., Apyari V.V. Specifics of separation of flavonoids by reverse phase high performance liquid chromatography on the Luna 5u C18(2) column // Moscow Univ. Chem. Bull. 2012. V. 67. P. 254. https://doi.org/10.3103/s0027131412060041)
- Usoltseva L.O., Samarina T.O., Abramchuk S.S., Prokhorova A.F., Beklemishev M.K. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles // J. Lumin. 2016. V. 179. P. 438. https://doi.org/10.1016/j.jlumin.2016.07.020
- Hu Y., Feng T., Li G. A novel solid fluorescence method for the fast determination of quercetin in biological samples based on the quercetin–Al(III) complex imprinted polymer // Spectrochim. Acta A. 2014. V. 118. P. 921. https://doi.org/10.1016/j.saa.2013.09.076
- Volikakis G.J., Efstathiou C.E. Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes // Talanta. 2000. V. 51. P. 775. https://doi.org/10.1016/s0039-9140(99)00352-5
- Nasrollahi S., Ghoreishi S.M., Khoobi A. Nanoporous gold film: Surfactant-assisted synthesis, anodic oxidation and sensing application in electrochemical determination of quercetin // J. Electroanal. Chem. 2020. V. 864. Article 114097. https://doi.org/10.1016/j.jelechem.2020.114097
- Hussain M.A., Mahmoud K.M. Determination of quercetin in some natural products using reversed FIA-CL method // Der Pharma Chem. 2011. V. 3. P. 321. https://doi.org/10.1016/0378-4347(94)00549-k
- Ященко Н.Н., Житарь С.В., Зиновьева Е.Г. Тест-определение общего содержания фенольных соединений в чае // Бутлеровские сообщения. 2022. Т. 71. C. 99. https://doi.org/10.37952/roi-jbc-01/22-71-8-99
- Zaporozhets O.A., Krushynska O.A., Lipkovska N.A., Barvinchenko V.N. A new test method for the evaluation of total antioxidant activity of herbal products // J. Agric. Food Chem. 2004. V. 52. P. 21. https://doi.org/10.1021/jf0343480
- Моросанова Е.И., Беляков М.В., Золотов Ю.А. Кремний-титановые ксерогели: получение и использование для определения аскорбиновой кислоты и полифенолов // Журн. аналит. химии. 2012. Т. 67. С. 17. https://doi.org/10.31857/s0044450221010084 (Morosanova E.I., Belyakov M.V., Zolotov Yu.A. Silicon-titanium xerogels: Synthesis and application to the determination of ascorbic acid and polyphenoles // J. Anal. Chem. 2012. V. 67. P. 14. https://doi.org/10.1134/s1061934812010108)
- Berasarte I., Albizu G., Santos W.F., de Lima L.F., Ostra M., Vidal M., de Araujo W.R. Chemometrics and digital image colorimetry approaches applied to paper-based analytical devices: A review // Anal. Chim. Acta. 2024. V. 1339. Article 343577. https://doi.org/10.1016/j.aca.2024.343577
- Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. Наночастицы золота и серебра в методах оптической молекулярной абсорбционной спектроскопии // Журн. аналит. химии. 2019. Т. 74. С. 26. https://doi.org/10.1134/s0044450219010055 (Apyari V.V., Dmitrienko S.G., Gorbunova M.V., Furletov A.A., Zolotov Yu.A. Gold and silver nanoparticles in optical molecular absorption spectroscopy // J. Anal. Chem. 2019. V. 74. P. 21. https://doi.org/10.1134/s1061934819010052)
- Furletov A.A., Apyari V.V., Zaytsev V.D., Sarkisyan A.O., Dmitrienko S.G. Silver triangular nanoplates: Synthesis and application as an analytical reagent in optical molecular spectroscopy. A review // Trends Anal. Chem. 2023. V. 166. Article 117202. https://doi.org/10.1016/j.trac.2023.117202
- Millstone J.E., Hurst S.J., Métraux G.S., Cutler J.I., Mirkin C.A. Colloidal gold and silver triangular nanoprisms // Small. 2009. V. 5. P. 646. https://doi.org/10.1002/smll.200801480
- Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Синтез и свойства наночастиц серебра: достижения и перспективы // Успехи химии. 2008. Т. 77. С. 242. https://doi.org/10.1070/rc2008v077n03abeh003751 (Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: Advances and prospects // Russ. Chem. Rev. 2008. V. 77. P. 233. https://doi.org/10.1070/rc2008v077n03abeh003751)
- Chen H., Cai S., Luo J., Liu X., Ou L., Zhang Q., Liedberg B., Wang Y. Colorimetric biosensing assays based on gold nanoparticles functionalized/combined with non-antibody recognition elements // Trends Anal. Chem. 2024. V. 173. Article 117654. https://doi.org/10.1016/j.trac.2024.117654
- Alhajj M., Ghoshal S.K. Sustainability, safety, biocompatibility and benefits of laser ablated gold, silver and copper nanoparticles: A comprehensive review // J. Mol. Liq. 2024. V. 414. Article 126130. https://doi.org/10.1016/j.molliq.2024.126130
Дополнительные файлы
