Определение норфлоксацина методом сенсибилизированной флуоресценции тербия в присутствии наночастиц серебра и мицелл поверхностно-активных веществ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние наночастиц серебра и мицелл ПАВ при совместном присутствии на интенсивность сигнала сенсибилизированной флуоресценции комплекса норфлоксацина с ионом Tb3+. Показано, что интенсивность собственной флуоресценции норфлоксацина и его комплекса с ионами Tb3+ в присутствии наночастиц серебра незначительно уменьшается. Установлено, что в присутствии мицелл додецилсульфата происходит модификация поверхности наночастиц серебра, которая сопровождается изменением ζ-потенциала нанокластеров. Добавки модифицированных ПАВ наночастиц серебра к водным растворам хелата тербия способствуют возрастанию интенсивности сенсибилизированной флуоресценции в 11 раз. Увеличение эффективности внутримолекулярного переноса энергии в комплексе Tb3+ с норфлоксацином в присутствии наночастиц серебра и мицелл додецилсульфата позволило предложить способ флуориметрического определения антибиотика в природной воде в диапазоне концентраций 2 × 10–7−1 × 10–5 М. Уравнение градуировочного графика y = 1.0 × 107x − 1.0, R2 = 0.991, предел обнаружения 5 × 10–8 М (3σ).

Об авторах

Т. Д. Смирнова

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

Автор, ответственный за переписку.
Email: smirnovatd@mail.ru

Институт химии

Россия, ул. Астраханская, 83, Саратов, 410012

Е. А. Алябьева

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

Email: smirnovatd@mail.ru

Институт химии

Россия, ул. Астраханская, 83, Саратов, 410012

Н. А. Юрасов

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

Email: smirnovatd@mail.ru

Институт химии

Россия, ул. Астраханская, 83, Саратов, 410012

Список литературы

  1. Picó Y., Andreu V. Fluoroquinolones in soil-risks and challenges // Anal. Bioanal. Chem. 2007. V. 387. №4. P. 1287. https://doi.org/10.1007/s00216-006-0843-1
  2. Santigosa E., Maspoch S., Payán M.R. Liquid phase // . 2019. . P. 280.
  3. Tsanaktsidou E., Markopoulou C.K., Tzanavaras P.D., Zacharis C.K. Homogeneous liquid phase // Microchem. J. 2022. Article 106906.
  4. Samanidou V.F., Demetriou C.E., Papadoyannis I.N. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC // Anal. Bioanal. Chem. 2003. V. 375. № 5. P. 623. https://doi.org/10.1007/s00216-003-1749-9
  5. Liu Y.M., J.T. Cao J.T., Tian W., Zheng Y.L. Determination of levofloxacin and norfloxacin by capillary electrophoresis with electro chemiluminescence detection and applications in human urine // Electrophoresis. 2008. V. 29. P. 3207. https://doi.org/10.1002/elps.200800048
  6. Rahman N., Ahmad Y., Azmi S.N.H. Kinetic spectrophotometric method for the determination of norfloxacin in pharmaceutical formulations // Eur. J. Pharm. Biopharm. 2004. V. 57. № 2. P. 359. https://doi.org/10.1016/S0939-6411(03)00192-9
  7. Thapliyal N., Karpoormath R.V., Goyal R.N. Electro analysis of anti tubercular drugs in pharmaceutical dosage forms and biological fluids // Anal. Chim. Acta. 2015. V. 853. P. 59. https://doi.org/10.1016/j.aca.2014.09.054
  8. Mohammadian E., Rahimpour E., Alizadeh-Sani M., Foroumadi A., Jouyban A. An overview on terbium sensitized based-optical sensors/ nanosensors for determination of pharmaceuticals // Appl. Spectrosc. Rev. 2022. V. 57. № 1. P. 39. https
  9. Штыков С.Н. Химический анализ в нанореакторах: основные понятия и применение // Журн. аналит. химии. 2002. № 10. С. 1018. (Shtykov S.N. Chemical analysis in nanoreactors: Main concepts and applications // J. Anal. Chem. 2002. V. 57. P. 859.) https://doi.org/10.1023/A:1020410605772
  10. Derayea S.M., Omar M.A., Hammad M.A., Hassan Y.F. Application of surface plasmon resonance of citrate capped silver nanoparticles for the selective determination of some fluoroquinolone drugs // J. App. Pharm. Sci. 2017. V. 7. № 2. P. 016. https://doi.org/10.7324/JAPS.2017.70203
  11. Jeong Y., Kook Y-M., Lee K., Koh W-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments // Biosens. Bioelectron. 2018. V. 111. P. 102. https://doi.org/10.1016/j.bios.2018.04.007
  12. Wang H., Si X., Wu T., Wang P. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions // Open Chem. 2019. V. 17. P. 884. https://doi.org/10.1515/chem-2019-0094
  13. Geddes C.D., Lakowicz J.R. Metal-enhanced fluorescence // J. Fluoresc. 2002. V. 12. P. 121. https://doi.org/10.1023/A:1016875709579
  14. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Синтез и свойства наночастиц серебра: достижения и перспективы // Успехи химии. 2008. T. 77. № 3. С. 242. (Krutyakov Yu. A., Kudrinskiy A. A., Olenin A. Yu., Lisichkin. G. V. Synthesis and properties of silver nanoparticles: advances and prospects // Russ. Chem. Rev. 2008. V. 77. № 3. P. 233.) https://doi.org/https://doi.org/10.1070/RC2008v077n03ABEH003751
  15. Uivarosi V. Metal complexes of quinolone antibiotics and their applications: An update // Molecules. 2013. V. 18. № 9. P. 11153. https://doi.org/10.3390/molecules180911153
  16. Ghosh D., Chattopadhyay N. Gold and silver nanoparticle based superquenching of fluorescence: A review // J. Lumin. 2015. V. 160. P. 223. https://doi.org/10.1016/

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».