Identification and adulteration of Salmoninae caviar by PCR, IR spectroscopy and digital colourimetry

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility to identify and establish adulteration of salmon fish eggs in a simple and accessible way using PCR, Fourier transform infrared spectroscopy, digital colourometry and chemometric processing of analysis results has been shown. The PCR method was used to determine the species affiliation of Salmoninae caviar. Absence of Salmoninae DNA in the samples of caviar, as well as the presence of DNA of other fish, indicated the adulteration of caviar products. Fourier transform infrared spectroscopy in the near and middle regions allowed to distinguish between natural and imitated caviar after processing of diffuse reflectance spectra by principal component and hierarchical cluster analysis methods. The above methods were combined with a simpler and cheaper colourometric method of analysis. Handmade devices with LEDs emitting light in the UV and IR ranges were used. The analytical signal was recorded using smartphones via specialised applications. Chemometric processing of the spectral characteristics of the samples made it possible to distinguish natural caviar from imitated and structured caviar: in the principal component method and hierarchical cluster analysis, points from the analyzed samples were located in different quadrants and clusters.

Авторлар туралы

V. Amelin

The Russian State Center for Animal Feed and Drug Standardization and Quality; Vladimir State University named after Alexander and Nikolay Stoletovs

Email: amelinvg@mail.ru
Moscow, Russia; Vladimir, Russia

O. Emelyanov

Vladimir State University named after Alexander and Nikolay Stoletovs

Email: amelinvg@mail.ru
Vladimir, Russia

A. Tretyakov

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: amelinvg@mail.ru
Moscow, Russia

M. Gergel

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: amelinvg@mail.ru
Moscow, Russia

E. Zaitseva

The Russian State Center for Animal Feed and Drug Standardization and Quality

Хат алмасуға жауапты Автор.
Email: amelinvg@mail.ru
Moscow, Russia

Әдебиет тізімі

  1. Лаврухина О.И. Современные методы выявления фальсификации мяса и мясной продукции (аналитический обзор) // Труды Федерального центра охраны здоровья животных. 2017. №. 15. С. 153.
  2. ГОСТ 18173-2004. Икра лососевая зернистая баночная. Технические условия. М.: Изд-во стандартов. 2004. 10 с.
  3. Ситникова Н.В. Идентификация и фальсификация икры в России // Ученые записки Санкт-Петербургского им. В.Б. Бобкова филиала Российской таможенной академии. 2007. № 2 (28). С. 84.
  4. Калюжная Т.В., Орлова Д.А., Родак Г.Н. Идентификация икры лососевых пород рыб с помощью полимеразной цепной реакции с наблюдением в реальном времени // Международный вестник ветеринарии. 2021. № 4. С. 88. https://doi.org/10.52419/issn2072-2419.2021.4.88
  5. Santiago-Felipe S., Tortajada-Genaro L.A., Pucha­des R., Maquieira A. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis // Anal. Chim. Acta. 2014. V. 811. P. 81. https://doi.org/10.1016/j.aca.2013.12.017
  6. Taboada L., Sanchez A., Sotelo C.G. A new real-time PCR method for rapid and specific detection of ling (Molva molva) // Food Chem. 2017. V. 228. P. 469. https://doi.org/10.1016/j.foodchem.2017.01.117
  7. Абрамова Л.С., Козин А.В., Гусева Е.С. Проблема фальсификации зернистой икры лососевых рыб и пути решения // Пищевые системы. 2022. Т. 5. № 4. С. 319. https://doi.org/10.21323/2618-9771-2022-5-4-319-326
  8. Mazarakioti E.C., Zotos A., Thomatou A.A., Kontogeor­gos A., Patakas A., Ladavos A. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural poducts’ and foods’ origin // Foods. 2022. V. 11. № 22. Article 3705. https://doi.org/10.3390/foods11223705
  9. https://doi.org/10.3390/foods11223705
  10. Третьяков А.В., Абраменкова О.И., Подколзин И.В., Соловьев А.И. Идентификация географической принадлежности мяса и икры методом химического фингерпринтинга // Ветеринария сегодня. 2012. № 2 (2). С. 39.
  11. Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. (Shogah Z.A.Ch., Bol'shakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. №. 4. P. 317.) https://doi.org/10.31857/S0044450223030131
  12. Böck F.C., Helfer G.A., da Costa A.B., Dessuy M.B., Ferrao M.F. PhotoMetrix and colorimetric image analysis using smartphones // J. Chemometrics. 2020. V. 34. Article 12. https://doi.org/10.1002/cem.3251
  13. Helfer G.A., Magnus V.S., Böck F.C., Teichmann A., Ferrãoa M.F., da Costa A.B. PhotoMetrix: An application for univariate calibration and principal components analysis using colorimetry on mobile devices // J. Braz. Chem. Soc. 2017. V. 28. № 2. P. 328. https://doi.org/10.5935/0103-5053.20160182
  14. Johnson J.B., Walsh K.B., Naiker M., Ameer K. The use of infrared spectroscopy for the quantification of bioactive compounds in food: A Review // Molecules. 2023. V. 28. № 7. Article 3215. https://doi.org/10.3390/molecules28073215

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».