

ORDERED MESOPOROUS SILICA IN MODERN VERSIONS OF SOLID-PHASE EXTRACTION

© 2025 A. S. Zavalyueva*, S. I. Karpov**, N. A. Zatonskaya, and V. F. Selemenev

Voronezh State University, Voronezh, Russia

*e-mail: a-kh-01@yandex.ru

**e-mail: karsiv@mail.ru

Received July 09, 2024

Revised September 19, 2024

Accepted September 23, 2024

Abstract. The review systematizes information on nanostructured materials used in solid-phase extraction (SPE) and its modern versions. The main attention is paid to the consideration of nanostructured analogues of MCM-41 and SBA-15 both in classical SPE and in modern versions of solid-phase microextraction, microextraction by matrix solid-phase dispersion, dispersive solid-phase extraction, and magnetic SPE. The use of silicas with a hexagonal and cubic mesophase structure makes it possible to significantly increase the completeness of analyte extraction, improve the metrological characteristics of determining both metal ions and biologically active substances in complex multicomponent matrices of real objects of analysis. An abnormally high surface area (up to 1000 m²/g and more), adjustable mesopore size, ease of modification by grafting functional groups allow to significantly increase the selectivity of solid-phase materials compared to traditionally used silica gels and polymer ion exchangers. The advantages of ordered silicas when used at the stage of extraction and concentration of analytes in solid-phase extraction options, as well as chromatographic separation of substances similar in nature, make it possible to expand the range of linearity of the analytical signal response of the analysis methods used, and the detection limits of ions and molecules can be reduced to the level of ng/mL, ng/g.

Keywords: *ordered mesoporous silicas, MCM-41, SBA-15, sample preparation, solid-phase extraction, dispersive solid-phase extraction*

DOI: 10.31857/S00444502250101e5

Recently, there has been a tendency to miniaturize sample preparation and reduce the duration of analysis. Along with the traditionally used liquid-liquid and solid-phase extraction (SPE), new sample preparation options are widely used in the determination of ions and molecules in multicomponent matrices. Among them are solid-phase microextraction, dispersive SPE, matrix solid-phase dispersion, etc., which are discussed in several reviews [1–5].

Modern variants of solid-phase extraction using classical sorbents have become the most widespread [1]. Traditionally, normal-phase silicones (silica gels) [6], as well as modified reverse-phase sorbents with grafted groups C8 and C18 [7] and polymer materials [8] are used. It is noted in [2] that the development of sample preparation methods is associated with the expansion of the range of sorbents, including new materials based on silicon oxide, which can increase the degree of analyte extraction or increase the efficiency of their concentration. The emergence of new classes of silica with an ordered nanostructure suggests an increase in the availability of sorption centers for analytes, the proportion of the used capacity of the sorption layer at the time of

flow termination [9]. This is especially necessary when implementing SPE under dynamic conditions in order to achieve maximum efficiency values for the sorption concentration of *CE* [10, 11].

Taking into account the physical meaning of *CE*, increasing the efficiency of sorption concentration is important for increasing the analytical signal by concentrating the analyte per unit time [10]. Significantly lower limitations in the kinetics of ion and molecular sorption, noted in [9, 12–14], suggest an increase in the full utilization of the sorption layer capacity of ordered mesoporous silica. In this case, an increase in the efficiency of sorption concentration is associated with an increase in the ratio of the amount of sorbed substance «before the slip» to the amount of the component entering the layer [9]. It was shown in [9] that with dynamic sorption concentration of phosphatidylcholine, the efficiency (*CE* value) is several times higher when using nanostructured silica compared with silica gel. The disordered structure and uneven distribution of sorption centers on the pore surface of classical sorbents lead to a significant blurring of the output curves, which makes it impossible to achieve high concentration efficiency [9].

The peculiarities of sorbent synthesis determine the primary role in the formation of their structure and degree of order. In addition, the properties of solid-phase materials used at the stages of extraction, concentration and separation of substances can vary significantly depending on the development (specific area) of the surface, porosity and pore size distribution. The influence of synthesis conditions on the structure of silica is considered in detail in the literature [15–20]. Special attention was paid to the use of ordered silicones in solid-phase extraction in [21]. However, the issues of choosing sorbents for SPE are not sufficiently considered, including taking into account the role of the ordering of silicones, as well as the advantages provided by nanostructured materials.

The novelty of silica-ordered compounds complicates the choice of a criterion for comparing sorbents used at the stage of component concentration. In general, concentration is characterized by a concentration coefficient, which is defined as the ratio of the concentrations of a component in the initial solution and in the concentrate. However, in works on the use of ordered materials, this value is practically not given. The metrological characteristics of determining a component in a certain matrix are usually indicated [22–26]. In some works [22, 23, 27], the Enrichment Factor (**EF**) has been calculated. In this case, the complexity of comparing sorbents remains, since **EF** is provided only for the most «effective» sorbent [22, 23, 27]. The «most effective» material is understood to be the material whose use makes it possible to achieve the largest chromatographic peak area of the component being determined [22, 23] or the maximum degree of extraction [24–26].

Most frequently the nature of changes in analytical parameters when using ordered mesoporous silicones in SPE is not given in the literature, but only at the qualitative level, changes in the properties of sorbents are considered as a result of varying the nature of the matrix, modifiers, and functional grafted groups.

The purpose of this review is to discuss the peculiarities of changing the sorption properties of nanostructured silicones, as well as to identify their advantages for the implementation of modern solid-phase extraction options.

SYNTHESIS OF ORDERED SILICONES

Ordered mesoporous silica is obtained by the sol-gel template method (Fig. 1) [28, 29]. Alkoxysilanes, colloidal solutions of SiO_2 , and sodium silicates are used as sources of silicon oxide. There are known works on the synthesis of ordered silica based on quartz [30], sand [31], rice husk ash [32] and other agricultural waste [33]. The use of such sources of silicon oxide significantly increases the environmental friendliness of synthesis, and in some cases makes it possible to organize waste-free production [34]. Surfactants of various natures are used as a template. The most commonly used are

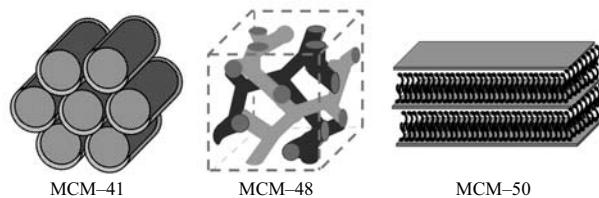


Fig. 1. Structure of some ordered mesoporous silica

cetyltrimethylammonium bromide [15] and polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymers (Pluronic P123, Pluronic F127) [17, 35]. By varying the synthesis conditions, it is possible to control the structure of silica (cubic, hexagonal, layered), the size of pores and particles, the surface area, the density of surface silanol groups, etc. Ionic liquids [36, 37], fatty acids [38], phospholipids [39, 40], et al are used as alternative templates. In some cases, synthesis is carried out on mixed micelles [41–43].

One of the first papers devoted to the synthesis of silica with a controlled pore size was presented in 1990. Kuroda et al. [44]. The material was obtained by the ion exchange method from kanemite polysilicate in the presence of alkyltrimethylammonium salts with different hydrocarbon chain lengths. Later, the authors were able to obtain more ordered silica FSM-16 [28].

Nanostructured silica aroused particular interest after the publications of a group of scientists from Mobil Oil Corporation [15]. By varying the conditions, silicones with hexagonal (MCM-41), cubic (MCM-48), and layered (MCM-50) structures were obtained (Fig. 2). The pore size was 1.5–10 nm, depending on the chain length of the structure-guiding component. The first ordered mesoporous silica was obtained in the presence of ionogenic surfactants (templates) interacting with silicate due to electrostatic forces. According to the proposed mechanism of silica formation, silicate ions condensed on already organized micelles [29]. However, it was later shown that such materials are formed as a result of more complex processes [45].

Scientists from other groups have obtained new ordered mesoporous silicones with a cubic mesophase structure (MSM-48, KIT-6) [15, 20]. In the mid-90s, a nonionic synthesis pathway was proposed [17]. Mesoporous silica MSU-1, MSU-2, and MSU-3 were obtained on the basis of polyethylene oxide surfactants [46]. In the presence of neutral diamines with a hydrocarbon chain length from 8 to 12 carbon atoms, ordered MSU-V silicones were synthesized [47]. The idea of using nonionic block copolymers as templates led to the appearance of SBA (Santa Barbara Amorphous) series materials with a bimodal system of micro- and mesopores [17, 35], the size of which exceeded the size of MCM-41 and MSM-48 mesopores.

Further development of methods for the synthesis of ordered materials is associated with the introduction

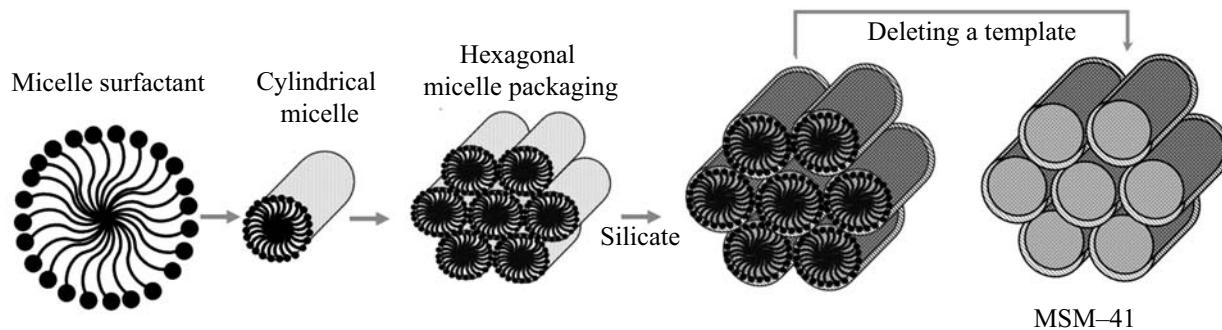
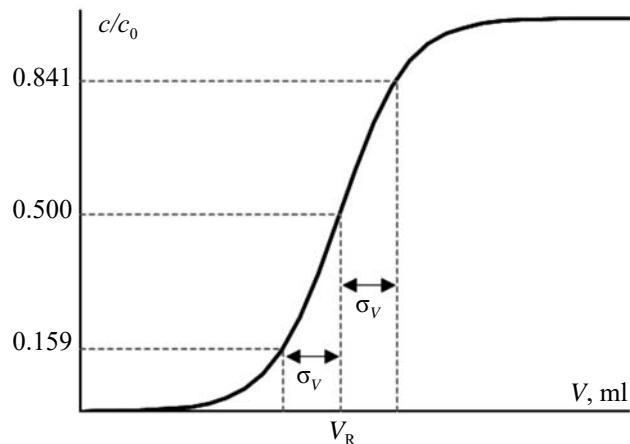


Fig. 2. Scheme of synthesis of ordered mesoporous silica (using the example of MCM-41)

of various additives into the reaction medium [48–50]. The presence of alkanols (for example, butanol-1) in the reaction mixture during the synthesis of ordered silicones can lead to the transition of the hexagonal structure of silica into a cubic one with a significant change in the distribution and specific density of sorption centers on the surface, their solvation, and, as a result, the sorption properties of silica as a whole. The sorbents synthesized in this way are classified as analogues of KIT-6 silica [48].

An important task to ensure high sorption capacity, high rate of sorption and desorption of analytes is to vary the size of mesopores while maintaining an ordered structure [51]. The mesopore dimension factor is regulated by the nature of the template, the conditions of silica synthesis, as well as additives that affect both the structure formation of the template and the formation of the silica matrix with the participation of precursors [52]. In particular, for MSM-41 analogues, the mesopore size can vary from 2 to 10 nm when using ionogenic alkylamines $R-N(CH_3)_3X$ with the number of carbon atoms in the aliphatic part from 12 to 22 [13] ($R = C_{12}H_{25}, C_{14}H_{29}, C_{16}H_{33}$, etc.; X is the halide or hydroxide anion). Nonionic surfactants (for example, Pluronic P123 and Pluronic F127 block copolymers) are used to synthesize SBA-15 analogues with a pore size from 4 to 30 nm [17]. The change in the size of silica mesopores can be realized by using substances that affect the size of template micelles [49]. The addition of 1,3,5-trimethylbenzene as a solvent made it possible to obtain a material of the MCF (Mesostructured Cellular Foam) type [50], which is a uniformly arranged spherical cell forming a continuous three-dimensional pore system with a size of more than 10 nm. Large pores, uniform in size, determine the prospects for the separation of large molecules on MCF-type materials. It should be noted that the size of the mesopores, as well as the width of the pore size distribution, are especially important for the kinetics of ion and molecular sorption, including under dynamic conditions. Therefore, these parameters must be controlled to increase the efficiency of sorption concentration and sorption chromatographic separation of analytes using these silicones.


One of the factors determining the efficiency of columns in chromatography and the efficiency of sorption

concentration during solid-phase extraction is the fractional composition of the sorbent, which ensures a narrow size distribution of sorbent granules [53]. Pseudomorphic transformation of silica gel [54, 55] to obtain ordered analogues of MSM-41 is a common synthesis method that allows achieving high efficiency of sorption concentration at SPE, as well as reducing the height equivalent to the theoretical plate for the sorbent layer during sorption chromatographic separation of substances [56].

Martin and Galarnu et al. [56] noted that the control of porosity and morphology in the synthesis of ordered materials (for example, MSM-41) allows to improve chromatographic characteristics compared with classical commercial columns. A very large surface area ($\sim 1000 \text{ m}^2/\text{g}$) leads, on the one hand, to higher retention times (a larger number of theoretical plates in the absence of a more significant erosion of the sorption front and peak width compared to classical sorbents). On the other hand, as noted by the authors of [56], the ordered porosity increases the efficiency of the column for high flow rates compared to classical silica gel-based columns, providing higher and more uniform molecular diffusion. This makes it possible to separate connections much faster without significant loss of column efficiency.

During sorption sample preparation under SPE conditions, ordered silica exhibits chromatographic patterns similar to those associated with more homogeneous molecular diffusion. It can be assumed that a lower dispersion of the analyte mass transfer rate in the sorbent layer also leads to an increase in the ratio of the amount of the substance «before the slip» to the amount of the component entering the layer, and therefore suggests that there is an increase in the efficiency of CE sorption concentration [9].

Similarly to chromatography, sorption concentration of a micro component can be characterized by the number of theoretical plates in accordance with the model of the theory of equivalent theoretical plates applied to solid-phase extraction [57]. The number of theoretical plates (N) is estimated taking into account the relative volume of retention (V_R) and the standard deviation of the relative volume of the «slip» of the substance (σ_{V/V_0}) on the output curve, corresponding to the relative concentration of $c/c_0 = 0.159 - 0.500$ and $c/c_0 = 0.500 - 0.841$:

Fig. 3. A typical view of the output curve. V_R is the retention volume, σ_V is the standard deviation of the retention volume of the substance during its movement in the sorbent

$$N = V_R (V_R - \sigma_V) / \sigma_V^2.$$

The blurring of the output curve is related to the level of overshoot (Fig. 3), therefore, it directly affects the efficiency of the sorption concentration of CE [9].

However, Galarneau et al. [58] showed that the resistance to mass transfer is closely related to the size and shape of mesopores. Significant deviations of the mesopore diameter from the average value can lead to a decrease in *chromatographic* efficiency. This is often observed for classical silicones with a wide pore size distribution. Also, a decrease in the availability of sorption centers with a decrease in the size of mesopores leads to lower values of the number of theoretical plates of the sorption layer. In this context, spherical sorbent granules with large pores, narrow pore size distribution, and cubic symmetry (a highly connected pore network, as for MSM-48) may be the most suitable stationary phase for rapid separation processes in HPLC [58] and for concentrating analytes under dynamic conditions at SPE.

Modification of the surface by organic and inorganic reagents is one of the directions of variation in the sorption properties of silica. The most well-known and traditional approach to the modification of silica gels, which has become widespread, is the grafting of groups of octyl-, dodecyl-, hexadecyl- or octadecylsilanes, which make it possible to obtain reverse-phase silica C8, C12, C16 and C18. Silicones with grafted functional (amino-, cyano-, diol, etc.) groups have also become widespread, including in SPE. By their properties, such sorbents are often considered for variants of normal-phase processes in which the sorbent is more polar than the solvent. Similar grafting approaches for nonpolar and functionalized silanes are also used for ordered silicones (analogues of MSM-41, SBA-15, etc.) [59–63]. Modification of silicones, taking into account the variation of their sorption properties and use in various SPE variants, is

carried out by encapsulation, impregnation [64, 65] and chemical grafting of functional groups [59, 66–73]. The modification of ordered silica by organic reagents is considered in detail in [74]. Currently, the field of modification of ordered silica by metal ions for the creation of complexing sorbents is actively developing [27, 75–77]. In some cases, silica is used at the sample preparation stage without first removing the template from the mesopores [78–80].

CLASSICAL SOLID-PHASE EXTRACTION USING NANOSTRUCTURED SILICA

A number of features of nanostructured silica distinguish them from traditionally used sorbents, in particular, analogues of MSM-41 and SBA-15 in SPE processes. In [21], the authors pay attention to a large surface area of up to $1000 \text{ m}^2/\text{g}$ and a pore volume of more than $0.7\text{--}1.0 \text{ cm}^3/\text{g}$. In addition to the size of the specific surface area, it is necessary to take into account the polarity of the surface and the nature of the sorption centers. The sorption properties of solid-phase materials can also vary significantly with varying structures. In [81], the sorption properties of SBA-15 and an analog with spherical granules (SM) were studied in relation to one of the hormones 17 β -estradiol. It was found that when using unmodified silica SBA-15 and SM, the analyte recovery is 16 and 84%, respectively. A noticeable difference in sorption properties in this case is related to the nature of the sorption centers (silanol and siloxane groups). Using the ^{29}Si NMR method, the authors of [81] showed that isolated silanol groups predominate on the surface of SBA-15 (signal Q³), while the most intense signal in SM analysis corresponds to surface siloxane groups (Q⁴). The above example indicates that, depending on the conditions of synthesis and modification of silicones, the ratio of silanol and siloxane groups makes it possible to regulate the sorption properties of solid-phase materials with respect to polar and nonpolar sorbates. It is worth noting that the control scheme for the nature of sorption centers is simplified in the case of analogues MSM-41 and SBA-15 due to the ordering of their hexagonal structure.

Nanostructured silica is used as sorbents for SPE in the procedures of sample preparation and subsequent chromatographic determination of substances in extracts of food and pharmaceutical products [24, 81–86]. An important group of analytes are substances with anti-cancer activity. The authors of [83] demonstrated the possibility of isolating and purifying the natural isothiocyanate compound sulforaphane from broccoli extract by solid-phase extraction using silica of varying degrees of order. It is worth noting that SBA-15 silicones with an ordered mesoporous matrix can achieve the highest completeness of analyte extraction (up to 98%) compared with the traditionally used silica gel C18, zeolites ZSM-5, Y, L and sodalite (SOD) [83].

It was noted in [84] that mesoporous silica SBA-15 achieves a more complete extraction of analytes compared

to silica gels with grafted groups of octadecylsilane C18 and mesoporous carbon during solid-phase extraction of triterpenoid saponins from the herbaceous plant Chinensis. It is worth pointing out that with a sorption capacity comparable to some other solid-phase materials, SBA-15 has a significant advantage associated with the possibility of repeated use. The authors of [84] noted that the reproducibility of the results of the determination of saponins during their solid-phase extraction on SBA-15 does not decrease after five cycles of use.

The consumption of sorbents used in the sorption extraction and concentration of target substances is also important. The most common use of SPE cartridges with a sorbent weight of 200 or 500 mg. The high distribution coefficients of analytes during sorption on ordered silicones (MSM-41, SBA-15, UVM-7, etc.) due to the large specific surface area, the peculiarities of the distribution of sorption centers and their solvation make it possible to use small sorbent masses (10–100 mg) in the SPE of analytes. In [26], the sorption properties of silica MCM-41 and UVM-7 during the release of phosphatidylcholine were studied. Silica UVM-7 with ordered bimodal porosity has maximum sorption capacity for phospholipid. The authors attribute the higher capacity of UVM-7 to a high density of free silanol groups and a specific surface area ($S_{\text{spec}} = 1275 \text{ m}^2/\text{g}$) almost twice that of the MCM-41 analog ($S_{\text{spec}} = 660 \text{ m}^2/\text{g}$). The noted features of silica [26] substantiate the prospects of choosing UVM-7 for solid-phase extraction of phospholipids from multicomponent matrices (including when analyzing human milk for phospholipid content). The use of ordered silica allows the determination of phosphatidylcholine at concentrations of 150–600 micrograms/ml with a detection limit of 3.5 micrograms/ml. An important advantage of cartridges filled with nanostructured UVM-7 analogues is the preservation of satisfactory reproducibility of phospholipid determination results after 15 cycles of sorbent use (the degree of extraction remained in the range of $94 \pm 4\%$).

Just as for traditional silica gels, their modification by grafting functionalized silanes is essential when varying the sorption properties of ordered silica. A large number of papers (for example, [24, 85–86]) are devoted to the solid-phase extraction of various substances with mesoporous silica grafted with nonpolar octadecyl groups. Obviously, the modification of silica by C18 groups contributes to the implementation of the distributive mechanism of sorbate retention. At the same time, it is worth noting improvements in the kinetics of the extraction process due to the greater availability of ordered mesopores [12]. It was noted in [12] that for nanostructured MSM-41, the effective diffusion coefficients of flavonoids (for example, quercetin and +(-)-catechin) take 2–5 times higher values than for silica gels with a wide pore size distribution. Moreover, the lower dispersion of the sorbate mass transfer rates may be due to both the greater

proportion of sorption centers on the highly developed (surface area $S_{\text{spec}} = 1,000\text{--}1,250 \text{ m}^2/\text{g}$) mesoporous surface of MSM-41 involved in the retention of analytes, and the narrow pore size distribution for ordered silica.

The selectivity of sorbents can be increased by forming molecular imprints in the sorbent structure. The authors of [25] obtained the sorbent MCM-41 with molecular imprints of nonylphenol for its solid-phase extraction from textile samples. The use of a potential analyte (as a molecular fingerprint) in the synthesis of silica makes it possible to achieve a sorbate recovery rate of up to 92–95% and a relatively high selectivity coefficient ($\alpha = 2\text{--}3$). As noted above, an increase in the efficiency of sorption concentration when using a nanostructured sorbent is important for increasing the analytical signal due to the concentration of the analyte per unit time. At the same time, the absence of experimental output curves and a number of concentration parameters does not allow estimating the *CE* parameter based on the literature data. The use of ordered silicones at the stages of sample preparation (with SPE) makes it possible at subsequent stages of determination to more significantly reduce the noise level of the analytical signal by removing impurities that interfere with the determination and expand the range of detectable concentrations of the target components. For example, the authors of [25] noted a linear response in the concentration range of 0.25–20 micrograms/ml when determining nonylphenol by HPLC with UV detection. At the same time, a higher analytical signal, provided the sorption concentration is more efficient, leads to an increase in the sensitivity coefficient and a decrease in the detection limit of the analyte to 0.12 micrograms/ml.

Under the conditions of solid-phase extraction using disordered sorbents, the low rate and completeness of analyte desorption are due to the kinetic features of the relatively slower analyte mass transfer process under dynamic conditions, the mechanism of analyte retention (with a higher binding energy to sorption centers), as well as the slow establishment of sorption (distributive) equilibrium. Silica-based SPE variants with a system of ordered mesopores are partially devoid of these disadvantages. Such nanostructured sorbents provide relatively faster mass transfer of sorbates and shorter equilibrium time (sometimes by more than an order of magnitude) [9] due to a more developed outer surface and accessible sorption centers on the surface of the mesopores.

MODERN VARIANTS OF SOLID-PHASE EXTRACTION

Solid-phase microextraction. An important feature of ordered silicones for use in modern solid-phase extraction options is the possibility of miniaturization of SPE cartridges due to a significantly more developed surface (proportional increase in sorption capacity) and a decrease in the contribution of kinetic limitations of

analyte sorption (increase in sorption concentration efficiency under dynamic conditions). Solid-phase microextraction (**SPME**) refers to either a number of methods that use a small amount of sorbent (usually 10–50 mg) [87–89], or applying a sorbent to the surface of a fiber or a microspriice needle [79, 90–98]. The small amount of sorbent makes it possible to expand the capabilities of traditional cartridges for solid-phase extraction [99]. At the stages of sample preparation, various sorbent packaging options can be implemented. Solid-phase extraction with ordered silica in the tip of a dispenser (pipette-tip) has been successfully applied in the determination of endogenous peptides in human plasma [100] and estradiol in milk [87].

Another feature of solid-phase microextraction is continuous mixing, which makes it possible to increase the surface area of the sorbent in contact with the sample. This approach involves using a stirrer together with a sorbent inside a polypropylene membrane. The use of the SPE variant with mixing makes it possible to expand the range of linearity of calibration dependencies for the determination of substances (for example, phenolic compounds) by an order of magnitude compared with traditional sample preparation methods. In [101], the determination of the content of nitrosamines in cosmetics was implemented by the SPME method with mixing on SBA-15 doped with cerium, followed by GC–MS determination. By optimizing the amount of dopant, the mass of the sorbent, the type and volume of the eluent, the degree of extraction can be increased to 80–100% [101], the linearity range is extended to 10–1000 ng/ml, and the detection limits during sample preparation with solid-phase microextraction can be reduced to several ng/ml (2.7–3.4 ng/ml according to [101]). It is worth noting that the use of nanostructured silica makes it possible to achieve high completeness of extraction in a wider range of concentrations compared to carbon nanotubes and carboxene/polydimethylsiloxane (CAR/PDMS) fibers [101].

The use of silica in aqueous solutions is limited by the competitive sorption of water molecules [74]. At the same time, ordered silicones can be used in SPE variants both in nonpolar media and in aqueous solutions due to the peculiarities of matrix formation and the distribution of sorption centers on the surface and, as a result, higher hydrophobicity. The authors of [102, 103] demonstrated the possibility of determining phenolic compounds in water during their solid-phase microextraction with mixing on SBA-15 with various grafted organic groups. The concentration coefficients of phenolic compounds on ordered silica were 20–30.

In a number of works, SPME is understood as a sample preparation option based on the dependence of the sorption of substances on temperature [92–94, 104–105]. The method consists in adsorption of analytes on the sorbent surface followed by desorption at higher

temperatures. One of the main advantages of this type of SPME is the absence of the need for quantitative extraction of target components from the sample. It is sufficient to perform a linear relationship between the amount of the analyte to be sorbed and its concentration in the analyzed sample. The authors of [105] noted that the advantages of the method include the cylindrical geometry of the fibers, which provides easy access of analytes to the surface of ordered silica, as well as the absence of the need for complete desorption of sorbates.

In solid-phase microextraction, as in classical SPE versions, the nanostructure of the sorbent, its specific surface area and the distribution of sorption centers over the surface (including inside the mesopores) play an important role. If the structure of a solid-phase material (including the degree of its ordering, the type of mesophase) determines the kinetic features of analyte sorption (contributes to a change in the efficiency of sorption concentration under dynamic conditions), then the specific surface area of silica affects the sorption capacity, the ability to vary the operating range of analyte concentrations.

It was noted above that it is not always correct to select a sorbent based only on the degree of extraction of the substances being determined. The authors of [92] considered the solid-phase microextraction of aliphatic amines from air and fungi while varying the structure and pore size of ordered silica. The surface area, according to the authors, is not always a factor determining the sorption properties of a solid-phase material. When using MCM-41 silica with a specific surface area of 1180 m²/g, the degree of amine extraction reaches only 60%. At the same time, for analogues KIT-6 and SBA-15 ($S_{\text{spec}} = 970$ m²/g and $S_{\text{spec}} = 760$ m²/g, respectively), the degree of analyte extraction is close to 100%. The authors of [92] attribute the difference in the completeness of analyte extraction primarily to the pore size, which is about 8 nm for KIT-6 and SBA-15, while in the case of MCM-41 it is 4 nm. To achieve high values of the degree of extraction of the analyte, it is important that the inner surface of the sorbent is accessible to it. However, as noted above, the quantitative extraction of detectable substances in solid-phase microextraction is not a necessary condition. A more important property of sorbents, especially when it is necessary to determine substances in multicomponent matrices, is the selectivity of the sorbent. It was shown in [92] that when analyzing real objects, solid-phase materials with relatively wide mesopores (KIT-6 and SBA-15) with high sorption capacity (significant volume and diameter of mesopores) had low selectivity for extractable substances. On the contrary, the choice of MCM-41, taking into account the conditions of the implementation of SPME and the modification of the sorbent, makes it possible to extract mainly target substances from complex mixtures. In this case, the sieve effect of ordered sorbents is manifested when the size of the mesopores varies.

Similarly to the peculiarities of the use of sorbents in classical SPE variants, modified ordered silicones have become widespread in SPE. SBA-15-C8 has been successfully used as a sorbent in solid-phase microextraction in the determination of polycyclic aromatic hydrocarbons [93, 94]. It was shown in [93] that 2–5 times more analyte is extracted on SBA-15 fiber with grafted C8 octyl groups compared with commercial polydimethylsiloxane.

Solid-phase microextraction is often used at the sample preparation stage followed by gas chromatographic determination of substances. In [95], aromatic hydrocarbons were determined with preliminary extraction on SBA-15-C8 by HPLC with UV detection. It is shown that after the sample preparation stage (in the solid-phase microextraction variant), a needle with the extracted analyte is placed in a static chamber for desorption, followed by the determination of the analyte by HPLC. In this case, 5 minutes in contact with the mobile phase in the injector is sufficient before introducing the sample to extract the analyte from the sorbent. The reduction in desorption time is due to the advantages of the ordered nanostructure of the sorbent, namely, the availability of the mesopore space for analytes.

The expansion of the SPME capabilities is an online sample preparation option with the connection of a tube filled with sorbent and the inclusion of a gas [54, 96] or liquid [97, 98, 106] chromatograph (in-tube solid phase extraction) into the system. In this type of sample preparation, the possibility of repeated use is important. It was shown in [97] that after more than 120 analyzes, the tube retains sorption properties with satisfactory metrological characteristics for determining analytes.

Matrix solid-phase dispersion. In most variants of solid-phase extraction, preliminary extraction of the substances to be determined with solvents is assumed [107]. This stage is not required in the matrix solid-phase dispersion method, which consists in the direct addition of a sorbent to a liquid or solid analyzed sample [108]. The sample is mixed and dispersed with the sorbent, and the substances are distributed into small sorbent particles. To extract the interfering components, the resulting mixture is transferred to a cartridge filled with the same or another sorbent. The analytes are desorbed with a suitable eluent for subsequent determination [109]. The undoubted advantage of microextraction by matrix solid-phase dispersion is the small mass of the test sample (about 20 mg), small volumes of solvent for eluting analytes (about 0.5 ml of 75% ethanol according to [88]), and the extraction time is 2–5 minutes. Compared with other SPE variants, this approach makes it possible to significantly reduce the duration of sample preparation, as well as the consumption of reagents, and significantly reduce the amount of the analyzed sample [4, 109].

Over the past ten years, nanostructured silicones have been widely used in microextraction options by matrix

solid-phase dispersion. It is worth pointing out that the developed nanostructure of silica (analogues of MSM-41 and SBA-15) with a significant surface area and a narrow mesopore size distribution determines the advantages of these sorbents and the prospects for their use at the stages of sample preparation in the analysis of real objects of food, pharmaceutical, chemical industries and agricultural products. It was shown in [110] that the matrix solid-phase dispersion of analytes on MCM-41 and MCM-48 can be used to determine pesticides in fruit crops.

In a series of publications by Cao et al. [111–113], the determination of flavonoids in various sample preparation facilities using matrix solid-phase dispersion on mesoporous silica with cubic and hexagonal structures is considered. In [111], ordered silica with a cubic structure of the KIT-6 type was used as a sorbent for the determination of flavonoids in toothpaste and saliva. The degree of flavonoid extraction in these cases was more than 90%. The ordered structure of silica makes it possible to achieve higher degrees of extraction compared to normal-phase silica gel and reverse-phase sorbent with grafted C18 groups.

In the case of matrix solid-phase dispersion, the available outer and inner surface of the sorbent is the determining factor in increasing the completeness of analyte extraction. The sorption properties of ordered silicones with mesopores of 3–4 nm in size (MCM-41, MCM-48), as noted above, are determined primarily by the outer surface and weakly depend on the type of structure [110]. An increase in the pore size to 5–10 nm (SBA-15 and KIT-6) during the transition from hexagonal to cubic symmetry leads to noticeable differences in the sorption properties of ordered silicones [112]. In the considered SPE variant, it is assumed that substances are adsorbed mainly on the outer surface of MSM-41 and MSM-48. For SBA-15 and analogues with larger mesopores, analyte retention largely occurs at sorption centers inside the mesopores, which affects the sorption kinetics. In this case, it is important to take into account the desorption stage, which makes it possible to assess the completeness of analyte extraction, as well as the possibility of reuse of the sorbent.

It is also important to take into account the mechanism of retention of substances (adsorption, distribution, ion exchange, exclusion, etc.). Each of them can be implemented in the sorption of substances, taking into account the nature (polarity) of sorbates, its solubility in contacting phases, and the composition of the solvent. The authors of [88] showed that in the case of SBA-15, quantitative desorption of analytes is achieved (the recovery rate according to [88] was 96.8–104%) due to weak binding of analytes to a nanostructured dispersing material. At the same time, the extraction of substances by classical sorbents such as Florisil PR, alumina-B, AZO, and C18 is complicated by a low degree of desorption

from the surface of traditionally used aluminum oxides and silica gel with grafted octadecyl groups [88].

Dispersion solid-phase extraction (dSPE). One of the requirements in solid-phase extraction for maintaining high concentration efficiency and extending the range of working concentrations of the analyte is uniform packing of the sorbent in the cartridge and uniform particle size distribution [114]. Failure to comply with these requirements complicates the diffusion of the sample components. The dispersion version of solid-phase extraction increases the contact area with the analytes by introducing the sorbent directly into the analyzed solution [3]. Compared with other SPE variants, this helps to reduce the required sample quantities, solvents, and sorbent weight and shorten the analysis time [114].

The method of dispersion solid-phase extraction was initially proposed only to purify the sample and eliminate the influence of the matrix [3]. In [115], dSPE is used for sample preparation in the extraction of tetracyclines from milk and surface waters, followed by determination by HPLC with diode-matrix detection.

Dispersion solid-phase extraction using ordered silica is also successfully used to determine polycyclic aromatic hydrocarbons in groundwater [116], phenolic compounds in strawberry fruits [117], polyphenols in juices and smoothies [114], manganese ions in water, hippuric and methylhippuric acids in human urine [89], etc. In [118], ketoconazole and voriconazole were determined in biological fluids during sample preparation using the DTE method on MCM-41, followed by HPLC-MS/MS determination. The use of nanostructured silica at the sample preparation stage with a relatively small sorbent mass ($m = 20$ mg) and solvent volume ($V = 200$ μ l) makes it possible to expand the linearity range of the analytical signal at concentrations of ketoconazole and voriconazole in the range of 0.1–10 μ g/l.

In the dispersion SPE variant, sorbents with grafted functional groups are used along with normal-phase silicones to increase selectivity and sorption capacity. In [116], SBA-15, modified with aminopropyl, phenyl, octyl, and octadecyl groups, is used in the dispersion microhardness phase extraction of polycyclic aromatic hydrocarbons from groundwater from monitoring wells at gas stations. The use of nanostructured sorbents SBA-15-C8 followed by GC-MS determination makes it possible to achieve minimally detectable analyte concentrations from 0.15 to 3.0 micrograms/l.

It was noted above that in SPE processes, both the size of the mesopores, the size of the specific surface area, and the structure (symmetry) of the sorbent can be essential. MSM-48 belongs to materials with cubic ($Ia3d$) mesophase structure [119]. Along with MSM-41 and SBA-15 sorbents (with a hexagonal mesopore structure), MCM-48 analogues can be used in dSPE to extract toxic substances from water [120]. During

sorption of hormone molecules (estriol, 17 β -estradiol, estrone), as well as bisphenol A, inoculation of functional groups (amino –NH₂, phenyl –Ph, octadecyl –C18, aminopropyltrimethylsilyl –APTMS) leads to an increase in the completeness of extraction in the range MCM-48 < MCM-48-NH₂ < MCM-48-Ph < MCM-48-C18 < non-calcined MCM-48 < MCM-48-APTMS. When extracting less polar alkyl derivatives of phenol, there are no noticeable differences between the sorbents.

Nanostructured KIT-6 material (with a cubic structure) synthesized on the basis of the nonionic Pluronic P123 template is used in dispersion SPE. The KIT-6 sorbent, functionalized with amino groups, was used [89] for the extraction of hippuric and methylhippuric acids from human urine. An additional reduction in extraction time was achieved by the authors during ultrasonic treatment due to the acceleration of mass transfer and diffusion of analytes in sorbents. The relative recovery of analytes was 99.6–104.0% [89]. The open channels of KIT-6 mesoporous silica significantly reduce the resistance to sorbate mass transfer. The authors of [89] note a higher diffusion rate in KIT-6 pores compared to other ordered silicas (SBA-15 and MCM-41).

The characteristics of the matrix (wall thicknesses, distribution and nature of sorption centers) have a significant effect on the sorption properties of silica when used in dSPE variants. The authors of [114] synthesized mesoporous silica with worm-like pores (HMS) modified with octadecylsilane (C18). HMS-type silicas have thicker walls compared to SBA-15 and, accordingly, are more stable to aggressive media. The work [114] shows the applicability of HMS sorbents in dSPE variants for the extraction of a wide range of polyphenols (more than 20 compounds of various nature and structure) from fruit and vegetable juices and smoothies. The use of nanostructured silica with a large specific surface area of mesopores at the sample preparation stage in the UHPLC-MS method allowed the authors to carry out rapid determination of substances (in less than 10 minutes). The mesoporous structure of HMS provides a higher completeness of extraction of the *R* analyte (up to 99%) compared to commercially available amorphous silica gel C18 (for most analytes *R* < 50%).

It was shown in [121] that in the classical version of solid-phase extraction of thyme analytes by ordered mesoporous silicones with grafted sulfogroups, a higher degree of extraction is achieved on SBA-15 particles of uniform size compared with HMS (hexagonal mesoporous silica with «worm-like» pores). The particles of the latter are close to a spherical shape, but differ markedly in the size of the granules, since under the conditions of HMS synthesis it is not always possible to synthesize materials with a narrow particle size distribution. In the case of dSPE, on the contrary, an increase in the completeness of extraction is observed during the transition from SBA-

15 ($S_{ud} = 560 \text{ m}^2/\text{g}$) to ordered silica HMS with a larger specific surface area ($S_{ud} = 710 \text{ m}^2/\text{g}$).

One of the promising directions for expanding the possibilities of dispersion SPE options is the modification of ordered silica with ionic liquids. In the work of Si et al. [122], the use of ordered mesoporous silica functionalized with an imidazolic ionic liquid in the determination of indole derivatives of aliphatic acids in ginseng was demonstrated in dSPE. This modification of the ordered material contributes to a more complete extraction of nitrogen-containing heterocyclic analytes compared with the initial silica and commercial sorbents, including silica gel, C18, SCX, MCX, NH₂, AL₂O₃ [122]. The range of linearity (0.05–22.5 ng/g) and detection limits (3–8 ng/kg) are noteworthy, while maintaining the metrological characteristics of determining target substances after five sorption—desorption cycles.

To increase the selectivity (specificity) of sorbents in SPE variants, they often resort to the immobilization of modifiers (for example, cyclodextrins). [117] describes the use of hybrid mesoporous silica with large pores functionalized with β -cyclodextrin for the dispersion solid-phase extraction of polyphenols from the fruits of the strawberry tree. The authors point out the advantages of the dSPE variant compared to classical SPE, including through the use of β -cyclodextrin-functionalized mesoporous silica. Sample preparation with the specified sorbent makes it possible to significantly increase the degree of extraction of the determined compounds (up to 73–102%) from complex matrices [118].

A special case of dispersion SPE is the QuEChERS method (Quick, Easy, Cheap, Effective, Rugged, and Safe—fast, simple, cheap, efficient, reliable, and safe), in which gas or liquid chromatography-mass spectrometry is used for detection after liquid extraction and dispersion solid-phase extraction [114, 123, 124]. Due to the high detection sensitivity, solvent evaporation is not required for additional concentration of the sample. A change in the signal-to-noise ratio is often considered as a parameter for comparing sorbents in this sample preparation option [123, 125]. In [123], the features of the modification of SBA-15 and its use in dSPE in the determination of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in strawberries were considered. Silicones with grafted N-[3-(trimethoxysilyl)propyl] aniline (SBA-15-AN) improves the signal-to-noise ratio by 20% compared to the commercially available PSA sorbent (primary/secondary amine), which is most commonly used in the QuEChERS method.

Iskara et al. [124] used mesoporous silica and their analogues modified with amino groups in the sample preparation of QuEChERS for the extraction of biologically active substances from herbs. In the case of nanostructured sorbents with grafted amino groups, there is an improvement in the metrological characteristics of the determination of substances (detection limits were

0.7–2.8 $\mu\text{g}/\text{kg}$) compared with unmodified ordered silica and traditional sorbent (PSA).

Another variant of dSPE is magnetic DSPE, in which sorbents are nanocomposites based on magnetite. The sorbent with retained analytes is extracted from the suspension using a magnet, which further reduces the duration of sample preparation. Composites based on ordered mesoporous silica have been successfully applied in magnetic SPE [80, 126–130]. The authors of [127] note that, despite the low sensitivity of the determination of substances by gas chromatography with flame ionization detection, due to the high sorption capacity of the Fe₃O₄/MCM-41-NH₂ nanocomposite, relatively low detection limits (0.2–0.9 $\mu\text{g}/\text{L}$) can be achieved when determining parabens in cosmetic products.

The papers published over the past 10–20 years considering the use of nanostructured silicones in solid-phase extraction options (classical SPE, SPME, matrix solid-phase dispersion, dispersive SPE, magnetic SPE, etc.) at the stages of extraction and concentration of substances for their subsequent determination in complex multicomponent matrices are analyzed. The sorption properties of ordered silicones (MSM-41, MSM-48, SBA-15, KIT-6, UVM-7, HSM, etc.) improved in comparison with traditional sorbents (silica gels, zeolites, polymer materials), especially under dynamic conditions of sorption of target components. These nanostructured silicones are considered in SPE variants to increase the completeness of analyte extraction, reduce detection limits, and expand the range of detectable concentrations of substances. The advantages of ordered silicones with hexagonal and cubic mesophase structures are achieved due to the higher sorption capacity of materials with a developed surface (up to 1000 m^2/g), with a large volume of mesopores (up to 1 cm^3/g) and a narrow mesopore size distribution.

Depending on the nature of the substances to be determined, the sample matrix, and the sample preparation option, it is important to use silica as sorbents for SPE, which make it possible to vary the density of surface silanol groups, the size of the specific surface area, or the pore size. In the case of solid-phase microextraction, the size of the mesopores is decisive. Matrix solid-phase dispersion requires a highly developed external surface of the sorbent.

Varying the SPE variants and the dispersion conditions of the analyzed sample with the sorbent makes it possible to control the completeness of sorbate extraction from the matrix. In dispersion SPE, when using nanostructured materials, it is possible to reduce the duration of sample preparation and significantly reduce the detection limits of substances, despite the absence of the need to completely extract the analyte from the sample. A significant improvement in the metrological

characteristics of methods for the determination of substances was noted when combining SPE variants (with ordered silica) with HPLC and GC methods.

FUNDING

The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment for universities in the field of scientific activity for 2023–2025, Project FZGU-2023–0009.

CONFLICT OF INTERESTS

The authors of this paper declare that they have no conflict of interest.

REFERENCES

1. *Fedotov P.S., Malofeeva G.I., Savonina E.Y., Spivakov B.Y.* Solid-phase extraction of organic substances: unconventional methods and approaches // *J. Anal. Chem.* 2019. V. 74. No. 3. P. 205. <https://doi.org/10.1134/S1061934819030043>
2. *Zaitsev V.N., Zui M.F.* Preconcentration by solid-phase microextraction // *J. Anal. Chem.* 2014. V. 69. No. 3. P. 715. <https://doi.org/10.1134/S1061934814080139>
3. *Khezeli T., Daneshfar A.* Development of dispersive micro-solid phase extraction based on micro and nano sorbents // *Trends Anal. Chem.* 2017. V. 89. P. 99. <https://doi.org/10.1016/j.trac.2017.01.004>
4. *Capriotti A.L., Cavaliere C., Foglia P., Samperi R., Stampachiacchere S., Ventura S., Laganà A.* Recent advances and developments in matrix solid-phase dispersion // *Trends Anal. Chem.* 2015. V. 71. P. 186. <https://doi.org/10.1016/j.trac.2015.03.012>
5. *Elattar R.H., Kamal E.-D.A.* Porous material-based QuEchERS: Exploring new horizons in sample preparation // *Trends Anal. Chem.* 2024. V. 172. Article 117571. <https://doi.org/10.1016/j.trac.2024.117571>
6. *Akhmedov R.L., Kravtsova S.S., Dychko K.A., Ramus I.V.* Application of solid-phase extraction for the determination of additives in automotive lubricating oils by GC/MS method // *Analytics and Control.* 2019. Vol. 23. No. 4. P. 532. <https://doi.org/10.15826/analitika.2019.23.4.001>
7. *Deineka V.I., Mikheev A. Yu., Oleinik E. Yu., Deineka L.A.* Purification of chlorogenic acids by solid-phase extraction // *Sorption and Chromatographic Processes.* 2018. Vol. 18. No. 4. P. 488. <https://doi.org/10.17308/sorpchrom.2018.18/556>
8. *Tolmacheva V.V., Yarykin D.I., Gorbunova M.V., Apyari V.V., Dmitrienko S.G., Zolotov Y.A.* Preconcentration of catecholamins on hypercrosslinked polystyrene and their determination by high-performance liquid chromatography // *J. Anal. Chem.* 2019. V. 74. No. 11. P. 1057. <https://doi.org/10.1134/S1061934819090107>
9. *Sinyaeva L.A., Belanova N.A., Karpov S.I., Selenev V.F., Roessner F.* Adsorption preconcentration of phosphatidylcholine on nanostructured mesoporous materials under dynamic conditions // *J. Anal. Chem.* 2018. V. 73. No. 9. P. 847. <https://doi.org/10.1134/S1061934818090149>
10. *Zolotov Yu.A., Tysyn G.I., Morosanova E.I., Dmitrienko S.G.* Sorption preconcentration of microcomponents for chemical analysis // *Russ. Chem. Rev.* 2005. V. 74. No. 1. P. 37. <https://doi.org/10.1070/RC2005v074n01ABEH000845>
11. *Venetsianov E.V., Kovalev I.A., Tsizin G.I.* Optimization of dynamic sorption concentration in analytical chemistry // Theory and practice of sorption processes. Interuniversity collection of scientific works. 1998. Vol. 23. P. 24.
12. *Karpov S.I., Korabel'nikova E. O.* Separation of (+) — catechin and quercetin on mesoporous MCM-41 composites: Dynamics of the sorption of flavonoids // *Russ. J. Phys. Chem. A.* 2015. V. 89. No. 6. P. 1096. <https://doi.org/10.1134/S0036024415060151>
13. *Sinyaeva L.A., Karpov S.I., Belanova N.A., Selenev V.F., Roessner F.* Characteristics of the mass transfer of phosphatidylcholine during its sorption on mesoporous composites based on MCM-41 // *Russ. J. Phys. Chem. A.* 2015. V. 89. No. 12. P. 2278. <https://doi.org/10.1134/S0036024415120298>
14. *Krizhanovskaya O.O., Sinyaeva L.A., Karpov S.I., Selenev V.F., Borodina E.V., Roessner F.* Kinetic models for describing the sorption of fat-soluble physiologically active substances by highly ordered inorganic silicon-containing materials // *Sorption and Chromatographic Processes.* 2014. Vol. 14. No. 5. P. 784.
15. *Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C. T-W., Olson D.H., Sheppard E.W., McCullen S. B., Higgins J.B., Schlenker J.L.* A new family of mesoporous molecular sieves prepared with liquid crystal templates // *J. Am. Chem. Soc.* 1992. V. 114. P. 10834. <https://doi.org/10.1021/JA00053A020>
16. *Huo Q., Margolese D.I., Stucky G.D.* Surfactant control of phases in the synthesis of mesoporous silica-based materials // *Chem. Mater.* 1996. V. 8. No. 5. P. 1147. <https://doi.org/10.1021/cm960137h>
17. *Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D.* Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures // *J. Am. Chem. Soc.* 1998. V. 120. No. 24. P. 6024. <https://doi.org/10.1021/ja974025i>
18. *Margolese D., Melero J.A., Christiansen S.C., Chmelka B.F., Stucky G.D.* Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups // *Chem. Mater.* 2000. V. 12. No. 8. P. 2448. <https://doi.org/10.1021/cm0010304>
19. *Yismaw S., Kohns R., Schneider D., Poppitz D., Ebbinghaus S.G., Gläser R., Tallarek U., Enke D.* Size control of monodispersed spherical nanoparticles with mcm-48-type mesostructure via novel rapid synthesis procedure // *J. Nanopart. Res.* 2019. V. 21. No. 12. <https://doi.org/10.1007/s11051-019-4699-7>
20. *Kim T.W., Kleitz F., Paul B., Ryoo R.* MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system // *J. Am. Chem. Soc.* 2005. V. 127. No. 20. P. 7601. <https://doi.org/10.1021/ja042601m>
21. *Wang D., Chen X., Feng J., Sun M.* Recent advances of ordered mesoporous silica materials for solid-phase extraction // *J. Chromatogr. A.* 2022. V. 1675. Article 463157. <https://doi.org/10.1016/j.chroma.2022.463157>
22. *Du L.-J., Yi L., Ye L.-H., Yu-Bo Chen, Cao J., Peng L.-Q., Shi Y.-T., Wang Q.-Y., Hu Y.-H.* Miniaturized solid-

phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent // *J. Chromatogr. A.* 2018. V. 1537. P. 10. <https://doi.org/10.1016/j.chroma.2018.01.005>

23. *Jiang H., Li J., X. Hu, Shen J., Sun X., Han W., Wang L.* Ordered mesoporous silica film as a novel fiber coating for solid-phase microextraction // *Talanta*. 2017. V. 174. P. 307. <http://doi.org/10.1016/j.talanta.2017.06.026>

24. *Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I.* One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks // *J. Chromatogr. A.* 2016. V. 1428. P. 228. <https://doi.org/10.1016/j.chroma.2015.08.063>

25. *Cen S., Chen Y., Tan J., Zhong Y., Luo X., Pan X., Wang H., He R.* The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples // *Microchem. J.* 2021. V. 164. Article 105954. <https://doi.org/10.1016/j.microc.2021.105954>

26. *Pérez-Cejuela H.M., Ten-Doménech I., El Haskouri J., Amorós P., Simó-Alfonso E.F., Herrero-Martínez J. M.* Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: Application to human milk samples // *Anal. Bioanal. Chem.* 2018. V. 410. No. 20. P. 4847. <https://doi.org/10.1007/s00216-018-1121-8>

27. *Pellicer-Castell E., Belenguer-Sapiña C., Amorós P., Haskouri J.E., Herrero-Martínez J. M., Mauri-Aucejo A.R.* Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples // *J. Chromatogr. A.* 2022. V. 1662. Article 462729. <https://doi.org/10.1016/j.chroma.2021.462729>

28. *Inagaki S., Fukushima Y., Kuroda K.* Synthesis of highly ordered mesoporous materials from a layered polysilicate // *J. Chem. Soc. Chem. Commun.* 1993. V. 8. P. 680. <https://doi.org/10.1039/C39930000680>

29. *Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S.* Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // *Nature*. 1992. V. 359. P. 710. <https://doi.org/10.1038/359710a0>

30. *Dong X., Wang Y., Dan H., Hong Z., Song K., Xian Q., Ding Y.* Facile route to synthesize mesoporous SBA-15 silica spheres from powder quartz // *Mater. Lett.* 2017. V. 204. P. 97. <https://doi.org/10.1016/j.matlet.2017.05.115>

31. *Lázaro A. L., Rodríguez-Valadez F.J., López J. J. M. H., Espejel-Ayala F.* SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide // *Mater. Res. Express*. 2020. V. 7. No. 4. P. 45503. <https://doi.org/10.1088/2053-1591/ab83a5>

32. *Costa J.A.S., Sarmento V.H.V., Romão L.P.C., Paranhos C.M.* Adsorption of organic compounds on mesoporous material from rice husk ash (RHA) // *Biomass. Convers. Biorefin.* 2020. V. 10. No. 4. P. 1105. <https://doi.org/10.1007/s13399-019-00476-4>

33. *Mohanraj R., Gnanamangai B.M., Rajivgandhi G.N., Li W.J., Vijayalakshmi G.R., Ponnurugan P., Alharbi N.S., Kadaikunnan S., Khaled J.M., Alanzi K.F.* Monitoring the decolourisation efficacy of advanced membrane fabricated phytosilica nanoparticles in textile effluent water // *Chemosphere*. 2021. V. 273. Article 129681. <https://doi.org/10.1016/j.chemosphere.2021.129681>

34. *Oliveira A. de N. de, Cardoso R. da S., Ferreira I.M., Costa A.A.F., Pires L.H. O., Rocha Filho G.N., Luque R.*

35. *Noronha R.C.R., Nascimento L.A.S.* Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications // *Micropor. Mesopor. Mater.* 2023. V. 354. Article 112520. <https://doi.org/10.1016/j.micromeso.2023.112520>

36. *Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D.* Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores // *Science*. 1998. V. 279. P. 548. <https://doi.org/10.1126/science.279.5350.548>

37. *Yang X., Quan K., Wang J.* Particle size and pore adjustment of dendritic mesoporous silica using different long alkyl-chain imidazolium ionic liquids as templates // *Micropor. Mesopor. Mater.* 2022. V. 345. <https://doi.org/10.1016/j.micromeso.2022.112249>

38. *Zhang H., Liu S.* Synthesis of ordered cubic smaller supermicroporous mesoporous silica using ionic liquid as template // *Mater. Lett.* 2018. V. 221. P. 119. <https://doi.org/10.1016/j.matlet.2018.03.118>

39. *Heidarnezhad Z., Ghorbani-Choghamarani A., Taherinia Z.* Surfactant-free synthesis of mesoporous silica materials (using tetraethylorthosilicate and oleic acid): Preparation, characterization, and catalytic applications // *J. Mol. Struct.* 2024. Article 137807. <https://doi.org/10.1016/j.molstruc.2024.137807>

40. *Galarneau A., Sartori F., Cangiotti M.* Sponge mesoporous silica formation using disordered phospholipid bilayers as template // *J. Phys. Chem. B.* 2010. V. 114. No. 6. P. 2140. <https://doi.org/10.1021/jp908828q>

41. *Toumi N., Bégu S., Cacciaguerra T.* Phospholipid-silica mesophases formed in hydroalcoholic solution as precursors of mesoporous silica // *New J. Chem.* 2016. V. 40. No. 5. P. 4314. <https://doi.org/10.1039/c5nj03563e>

42. *Bueno V., Ghoshal S.* Self-assembled surfactant-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis nanoencapsulation // *Langmuir*. 2020. V. 36. No. 48. P. 14633. <https://doi.org/10.1021/acs.langmuir.0c02501>

43. *Witecka A., Schmitt J., Courtien M., Gérardin C., Rydzek G.* Hybrid mesoporous silica materials templated with surfactant polyion complex (SPIC) micelles for pH-triggered drug release // *Micropor. Mesopor. Mater.* 2024. V. 365. Article 112913. <https://doi.org/10.1016/j.micromeso.2023.112913>

44. *Mani G., Pushparaj H., Peng M.M.* Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: its application to controlled delivery of duloxetine // *Mater. Res. Bull.* 2014. V. 51. P. 228. <https://doi.org/10.1016/j.materresbull.2013.12.037>

45. *Yanagisawa T., Shimizu T., Kuroda K., Kato C.* The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials // *Bull. Chem. Soc. Jpn.* 1990. V. 63. No. 4. P. 988. <https://doi.org/10.1246/bcsj.63.988>

46. *Vartuli J.C., Schmitt K.D., Kresge C.T., Roth W.J., Leonowicz M.E., McCullen S. B., Hellring S.D., Beck J.S., Schlenker J.L., Olson D.H., Sheppard E.W.* Development of a formation mechanism for M41S materials/Proceedings of the 10th International Zeolite Conference. Garmisch-Partenkirchen (Germany). 17–22 July 1994. P. 53. [https://doi.org/10.1016/S0167-2991\(08\)64096-3](https://doi.org/10.1016/S0167-2991(08)64096-3)

47. *Bagshaw S.A., Prouzet E., Pinnavaia T.J.* Templating of mesoporous molecular sieves by nonionic polyethylene

oxide surfactants // *Science*. 1995. V. 269. No. 522. P. 1242. <https://doi.org/10.1126/science.269.5228.1242>

47. *Tanев P.T., Pinnavaia T.J.* Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies // *Science*. 1996. V. 271. P. 1267.
48. *Kleitz F., Choi S.H., Ryoo R.* Cubic Ia³d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes // *Chem. Commun.* 2003. V. 3. No. 17. P. 2136. <https://doi.org/10.1039/b306504a>
49. *Corma A., Kan Q., Navarro M.T., Pérez-Pariente J., Rey F.* Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics // *Chem. Mater.* 1997. V. 9. P. 2123.
50. *Schmidt-Winkel P., Lukens W.W.; Zhao D.* Mesocellular siliceous foams with uniformly sized cells and windows // *J. Am. Chem. Soc.* 1999. P. 254. <https://doi.org/10.1021/ja983218i>
51. *Dou B., Hu Q., Li J., Qiao S., Hao Z.* Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry // *J. Hazard. Mater.* 2011. Vol. 186. No. 2–3. P. 1615. <https://doi.org/10.1016/j.jhazmat.2010.12.051>
52. *Kim J., Desch R.J., Thiel S.W., Guliants V.V., Pintoet N.G.* Adsorption of biomolecules on mesostructured cellular foam silica: Effect of acid concentration and aging time in synthesis // *Micropor. Mesopor. Mater.* 2012. V. 149. No. 1. P. 60. <https://doi.org/10.1016/j.micromeso.2011.08.031>
53. *Fait F., Steinbach J.C., Kandelbauer A., Mayer H.A.* Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications // *J. Chromatogr. A*. 2023. V. 1705. Article 464190. <https://doi.org/10.1016/j.chroma.2023.464190>
54. *Pusfitasari E.D., Youngren C., Ruiz-Jimenez J., Sirkiä S., Smått J.-H., Hartonen K., Riekola M.-L.* Selective and efficient sampling of nitrogen-containing compounds from air by in-tube extraction devices packed with zinc oxide-modified mesoporous silica microspheres // *J. Chromatogr. Open*. 2023. V. 3. Article 100081. <https://doi.org/10.1016/j.jcoa.2023.100081>
55. *Fajula F., Galarneau. A.* Combining phase separation with pseudomorphic transformation for the control of the pore architecture of functional materials: A review // *Pet. Chem.* 2019. V. 59. No. 8. P. 761. <https://doi.org/10.1134/S0965544119080061>
56. *Martin T., Galarneau A., Di Renzo F., Brunel D., Fajula F., Heinisch S., Crétier G., Rocca J.L.* Improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC // *Chem. Mater.* 2004. V. 16. No. 9. P. 1725. <https://doi.org/10.1021/cm030443c>
57. *Poole C.F., Gunatilleka A.D., Sethuraman R.* Contributions of theory to method development in solid-phase extraction // *J. Chromatogr. A*. 2000. V. 885. P. 17. [https://doi.org/10.1016/s0021-9673\(00\)00224-7](https://doi.org/10.1016/s0021-9673(00)00224-7)
58. *Galarneau A., Iapichella J., Brunel D., Fajula F., Bayram-Hahn Z., Unger K., Puy G., Demesmay C., Rocca J.L.* Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography // *J. Sep. Sci.* 2006. V. 29. No. 6. P. 844. <https://doi.org/10.1002/jssc.200500511>
59. *Karpov S.I., Roessner F., Selemenev V.F.* Studies on functionalized mesoporous materials — Part I: Characterization of silylated mesoporous material of type MCM-41 // *J. Porous Mater.* 2014. V. 21. No. 4. P. 449. <https://doi.org/10.1007/s10934-014-9791-x>
60. *Sukhareva D.A., Gus'kov V. Yu., Karpov S.I., Kudasheva F. Kh., Roessner F., Borodina E.V.* Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography // *Russ. J. Phys. Chem. A*. 2016. V. 90. No. 2. P. 470. <https://doi.org/10.1134/S0036024416020291>
61. *Qin Q., Xu Y.* Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41 // *Micropor. Mesopor. Mater.* 2016. V. 232. P. 143. <https://doi.org/10.1016/j.micromeso.2016.06.018>
62. *Kailasam K., Fels A., Müller K.* Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors — preparation and characterization // *Micropor. Mesopor. Mater.* 2009. V. 117. No. 1–2. P. 136. <https://doi.org/10.1016/j.micromeso.2008.06.014>
63. *Zhao X.S., Lu G.Q., Whittaker A. K., Millar G.J., Zhu H.Y.* Comprehensive study of surface chemistry of MCM-41 using ²⁹Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA // *J. Phys. Chem. B*. 1997. V. 101. P. 6525. <https://doi.org/10.1021/jp971366+>
64. *Trendafilova I., Szegedi A., Mihály J., Momekov G., Lihareva N., Popova M.* Preparation of efficient quercetin delivery system on Zn-modified mesoporous SBA-15 silica carrier // *Mater. Sci. Eng. C*. 2017. V. 73. P. 285. <https://doi.org/10.1016/j.msec.2016.12.063>
65. *Trendafilova I., Lazarova H., Chimshirova R., Trusheva B., Koseva N., Popova M.* Novel kaempferol delivery systems based on Mg-containing MCM-41 mesoporous silicas // *J. Solid State Chem.* 2021. V. 301. Article 122323. <https://doi.org/10.1016/j.jssc.2021.122323>
66. *Zhao X.S., Lu G.Q.* Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study // *J. Phys. Chem. B*. 1998. V. 102. No. 9. P. 1556
67. *Thomé A. G., Schroeter F., Bottke P., Wittayakun J., Roessner F.* Facile determination of the degree of modification of ordered mesoporous silica by liquid phase NMR // *Micropor. Mesopor. Mater.* 2019. V. 274. P. 342. <https://doi.org/10.1016/j.micromeso.2018.08.034>
68. *Li C., Yang J., Shi X., Liu J., Yang Q.* Synthesis of SBA-15 type mesoporous organosilicas with diethylenbenzene in the framework and post-synthetic framework modification // *Micropor. Mesopor. Mater.* 2007. V. 98. No. 1–3. P. 220. <https://doi.org/10.1016/j.micromeso.2006.09.013>
69. *Borodina E., Karpov S.I., Selemenev V.F. E., Schwieger S., Maracke M., Fröba, F. Rößner* Surface and texture properties of mesoporous silica materials modified by silicon-organic compounds containing quaternary amino groups for their application in base-catalyzed reactions // *Micropor. Mesopor. Mater.* 2015. V. 203. P. 224. <https://doi.org/10.1016/j.micromeso.2014.10.009>
70. *Emen F.M., Demirdögen R. E., Avsar G., Kılıç D.* 2-Chlorobenzoylthiourea-modified MCM-41 for drug delivery // *J. Turk. Chem. Soc. A: Chem.* 2019. V. 6. No. 1. P. 29. <https://doi.org/10.18596/jotcsa.467177>
71. *Mello M.R., Phanon D., Silveira G.Q., Llewellyn P.L., Ronconi C.M.* Amine-modified MCM-41 mesoporous silica for carbon dioxide capture // *Micropor. Mesopor. Mater.* 2011. V. 143. No. 1. P. 174. <https://doi.org/10.1016/j.micromeso.2011.02.022>
72. *Zhou Z., Franz A.W., Hartmann M.* Novel organic/inorganic hybrid materials by covalent anchoring of phenothiazines

on MCM-41 // *Chem. Mater.* 2008. V. 20. No. 15. P. 4986. <https://doi.org/10.1021/cm800804t>

73. *Puanngam M., Unob F.* Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg (II) ions // *J. Hazard. Mater.* 2008. V. 154. No. 1–3. P. 578. <https://doi.org/10.1016/j.jhazmat.2007.10.090>

74. *Karpov S.I., Roessner F., Selemenev V.F., Gulbin S.S., Belanova N.A., Borodina E.V., Korabelnikova E.O., Krizhanovskaya O.O., Nedosekina I.V.* Prospects for synthesis and use of ordered mesoporous materials in sorption chromatographic analysis, separation and concentration of physiologically active substances (review) // *Sorption and Chromatographic Processes*. 2013. Vol. 13. No. 2. P. 125.

75. *Sierra I., Pérez-Quintanilla D.* Heavy metal complexation on hybrid mesoporous silicas: An approach to analytical applications // *Chem. Soc. Rev.* 2013. V. 42. No. 9. P. 3792. <https://doi.org/10.1039/c3cs35221d>

76. *Brezoiu A.M., Matei C., Deaconu M., Stanciu A.-M., Trifan A., Gaspar-Pintilieciu A., Berger D.* Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices // *Food Chem. Toxicol.* 2019. V. 133. Article 110787. <https://doi.org/10.1016/j.fct.2019.110787>

77. *Tanimu A., Muhammad S.J. S., Ganiyu S.A., Chowdhury S., Alhooshani K.* Multivariate optimization of chlorinated hydrocarbons» micro-solid-phase extraction from wastewater using germania-decorated mesoporous alumina-silica sorbent and analysis by GC–MS // *Microchem. J.* 2021. V. 160. Article 105674. <https://doi.org/10.1016/j.microc.2020.105674>

78. *Lashgari M., Basheer C., Kee Lee H.* Application of surfactant-templated ordered mesoporous material as sorbent in micro-solid phase extraction followed by liquid chromatography-triple quadrupole mass spectrometry for determination of perfluorinated carboxylic acids in aqueous media // *Talanta*. 2015. V. 141. P. 200. <https://doi.org/10.1016/j.talanta.2015.03.049>

79. *Razmi H., Khosrowshahi E. M., Farrokhzadeh S.* Introduction of coiled solid phase microextraction fiber coated by mesoporous silica/cetyltrimethylammonium bromide for ultra-trace environmental analysis // *J. Chromatogr. A*. 2017. V. 1506. P. 1. <https://doi.org/10.1016/j.chroma.2017.04.010>

80. *Liu J., Ma X., Zhang S., Wu T., Liu H., Xia M., You J.* Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrine-disrupting compounds from the migrants of food contact materials // *Microchem. J.* 2019. V. 145. P. 606. <https://doi.org/10.1016/j.microc.2018.11.013>

81. *Gañán J., Pérez-Quintanilla D., Morante-Zarcero S., Sierra I.* Comparison of different mesoporous silicas for off-line solid phase extraction of 17 β -estradiol from waters and its determination by HPLC–DAD // *J. Hazard. Mater.* 2013. V. 260. P. 609. <https://doi.org/10.1016/j.jhazmat.2013.06.016>

82. *Shen Q., Wang H., Li S., Feng J., Song G., Zhang Y., Jianfeng M., Wang H.* Development of a mesoporous silica based solid-phase extraction and ultra-performance liquid chromatography – MS/MS method for quantifying lignans in *Justicia Procumbens* // *Electrophoresis*. 2020. V. 41. No. 5–6. P. 379. <https://doi.org/10.1002/elps.201900401>

83. *Hafezian S.M., Azizi S.N., Biparva P., Bekhradnia A.* High-efficiency purification of sulforaphane from the broccoli extract by nanostructured SBA-15 silica using solid-phase extraction method // *J. Chromatogr. B*. 2019. V. 1108. P. 1. <https://doi.org/10.1016/j.jchromb.2019.01.007>

84. *Jiang H., Zhang W., Yang J., Xue G., Su S., Li C., Wang Q., Guo W., Xu H.* Miniaturized solid-phase extraction using a mesoporous molecular sieve SBA-15 as sorbent for the determination of triterpenoid saponins from *pulsatilla chinensis* by ultrahigh-performance liquid chromatography-charged aerosol detection // *J. Pharm. Biomed. Anal.* 2021. V. 194. Article 113810. <https://doi.org/10.1016/j.jpba.2020.113810>

85. *Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I.* Environmental chiral analysis of β -blockers: Evaluation of different n-alkyl-modified SBA-15 mesoporous silicas as sorbents in solid-phase extraction // *Environ. Chem.* 2018. V. 15. No. 6. P. 362. <https://doi.org/10.1071/EN18030>

86. *Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I.* Preconcentration of β -blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE // *Electrophoresis*. 2017. V. 38. No. 15. P. 1905. <https://doi.org/10.1002/elps.201600510>

87. *Wang L., Yan H., Yang C., Li Z., Qiao F.* Synthesis of mimic molecularly imprinted ordered mesoporous silica adsorbent by thermally reversible semicovalent approach for pipette-tip solid-phase extraction-liquid chromatography fluorescence determination of estradiol in milk // *J. Chromatogr. A*. 2016. V. 1456. P. 58. <https://doi.org/10.1016/j.chroma.2016.06.010>

88. *Du K., Li J., Gao X., Chang Y.* Ultrasound-enhanced matrix solid-phase dispersion micro-extraction applying mesoporous molecular sieve SBA-15 for the determination of multiple compounds in *fructus psoraleae* // *Sustain. Chem. Pharm.* 2020. V. 15. Article 100198. <https://doi.org/10.1016/j.scp.2019.100198>

89. *Behbahani M., Bagheri S., Omidi F., Amini M.M.* An amino-functionalized mesoporous silica (KIT-6) as a sorbent for dispersive and ultrasonication-assisted micro solid phase extraction of hippuric acid and methylhippuric acid, two biomarkers for toluene and xylene exposure // *Microchim. Acta*. 2018. V. 185. No. 11. P. 505. <https://doi.org/10.1007/s00604-018-3038-5>

90. *Chen M., Lan H., Pan D., Zhang T.* Hydrophobic mesoporous silica-coated solid-phase microextraction arrow system for the determination of six biogenic amines in pork and fish // *Foods*. 2023. V. 12. No. 3. P. 578. <https://doi.org/10.3390/foods12030578>

91. *Chen Y., Yu Y., Wang S., Han J., Fan M., Zhao Y., Qiu J., Yang X., Zhu F., Ouyang G.* Molecularly imprinted polymer sheathed mesoporous silica tube as SPME fiber coating for determination of tobacco-specific nitrosamines in water // *Sci. Environ.* 2024. V. 906. Article 167655. <https://doi.org/10.1016/j.scitotenv.2023.167655>

92. *Lan H., Zhang W., Smått J. H., Koivula R.T., Hartonen K., Riekkola M.-L.* Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction arrow // *Microchim. Acta*. 2019. V. 186. No. 7. P. 412. <https://doi.org/10.1007/s00604-019-3523-5>

93. *Wang X., Rao H., Lu X., Du X.* Application of sol-gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction // *Talanta*. 2013. V. 105. P. 204. <https://doi.org/10.1016/j.talanta.2012.11.074>

94. *Liu Y., Yang F., Yang L., Zuo G., Zhu Y., Liu X., Guo F.* Determination of polycyclic aromatic hydrocarbons by

solid-phase microextraction coupled to HPLC using a fiber with mesoporous silica coating // *J. Anal. Chem.* 2014. V. 69 No. 7. P. 686. <https://doi.org/10.1134/S1061934814070156>

95. *Du X.Z., Wang Y.R., Tao X.J., Deng H.L.* An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction // *Anal. Chim. Acta*. 2005. V. 543. No. 1–2. P. 9. <https://doi.org/10.1016/j.aca.2005.04.018>

96. *Ruiz-Jimenez J., Lan H., Leleev Y., Hartonen K., Riekkola M.L.* Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction arrow and in-tube extraction // *J. Chromatogr. A*. 2020. V. 1616. Article 460825. <https://doi.org/10.1016/j.chroma.2019.460825>

97. *Feng J., Feng J., Loussala H.M., Han S., Ji X., Li C., Sun H., Sun M.* Dendritic mesoporous silica nanospheres@porous carbon for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons in tea beverages // *Food Chem.* 2021. V. 364. Article 130379. <https://doi.org/10.1016/j.foodchem.2021.130379>

98. *Loussala H.M., Han S., Feng J., Sun M., Feng J., Fan J., Pei M.* Mesoporous silica hybridized by ordered mesoporous carbon for in-tube solid-phase microextraction // *J. Sep. Sci.* 2020. V. 43. No. 18. P. 3655. <https://doi.org/10.1002/jssc.202000129>

99. *Shirkhanloo H., Khaligh A., Mousavi H.Z., Rashidi A.* Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples // *Microchem. J.* 2016. V. 124. P. 637. <http://dx.doi.org/10.1016/j.microc.2015.10.008>

100. *Zhu G.T., He X.M., Li X.S., Wang S.-T., Luo Y.-B., Yuan B.-F., Feng Y.-Q.* Preparation of mesoporous silica embedded pipette tips for rapid enrichment of endogenous peptides // *J. Chromatogr. A*. 2013. V. 1316. P. 23. <https://doi.org/10.1016/j.chroma.2013.09.068>

101. *Alhooshani K.* Determination of nitrosamines in skin care cosmetics using Ce-SBA-15 based stir bar-supported micro-solid-phase extraction coupled with gas chromatography mass spectrometry // *Arab. J. Chem.* 2020. V. 13. No. 1. P. 2508. <https://doi.org/10.1016/j.arabjc.2018.06.004>

102. *Tanimu A., Jillani S.M. S., Alluhaidan A.A., Ganiyu S.A., Alhooshani K.* 4-Phenyl-1,2,3-triazole functionalized mesoporous silica SBA-15 as sorbent in an efficient stir bar-supported micro-solid-phase extraction strategy for highly to moderately polar phenols // *Talanta*. 2019. V. 194. P. 377. <https://doi.org/10.1016/j.talanta.2018.10.012>

103. *Tanimu A., Alhooshani K.* n-Sulfonyl-4-hydroxymethyl-1,2,3-triazole functionalized SBA-15: a porous organic-inorganic material for trace-level phenolic compounds extraction from water samples by stir bar-supported micro-solid-phase extraction // *Microchem. J.* 2020. V. 159. Article 105410. <https://doi.org/10.1016/j.microc.2020.105410>

104. *Arthur C.L., Pawliszyn J.* Solid phase microextraction with thermal desorption using fused silica optical fibers // *Anal. Chem.* 1990. V. 62. No. 19. P. 2145. [https://doi.org/0003-2700/90/0362-2145\\$02.50/0](https://doi.org/0003-2700/90/0362-2145$02.50/0)

105. *Sajid M., Khaled N.M., Rutkowska M., Szczepańska N., Namieśnik J., Płotka-Wasylka J.* Solid phase microextraction: apparatus, sorbent materials, and application // *Crit. Rev. Anal. Chem.* 2019. V. 49. No. 3. P. 271. <https://doi.org/10.1080/10408347.2018.1517035>

106. *Sun M., Han S., Maloko L.H., Feng J., Li C., Ji X., Feng J., Sun H.* Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector // *Microchem. J.* 2021. V. 166. Article 106263. <https://doi.org/10.1016/j.microc.2021.106263>

107. *Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerdà V.* Solid-phase extraction of organic compounds: A critical review. Part II. // *Trends Anal. Chem.* 2016. V. 80. P. 655. <https://doi.org/10.1016/j.trac.2015.08.014>

108. *Barker S.A., Long A.R., Short C.R.* Isolation of drug residues from tissues by solid phase dispersion // *J. Chromatogr.* 1989. V. 475. P. 353. [https://doi.org/10.1016/s0021-9673\(01\)89689-8](https://doi.org/10.1016/s0021-9673(01)89689-8)

109. *Barker S.A.* Matrix solid phase dispersion (MSPD) // *J. Biochem. Biophys. Methods.* 2007. V. 70. No. 2. P. 151. <https://doi.org/10.1016/j.jbbm.2006.06.005>

110. *Santos L.F. S., de Jesus R.A., Costa J.A. S., Gouveia L.G. T., de Mesquita M.E., Navickiene S.* Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in Soursop Fruit (Annona Muricata) // *Inorg. Chem. Commun.* 2019. V. 101. P. 45. <https://doi.org/10.1016/j.inoche.2019.01.013>

111. *Cao W., Cao J., Ye L.H., Xu J.J., Hu S.S., Peng L.Q.* Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva // *Electrophoresis.* 2015. V. 36. No. 23. P. 2951. <https://doi.org/10.1002/elps.201500330>

112. *Cao W., Ye L.H., Cao J., Xu J.-J., Peng L.-Q., Zhu Q.-Y., Zhang Q.-Y., Hu S.-S.* Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry // *J. Chromatogr. A*. 2015. V. 1406. P. 68. <https://doi.org/10.1016/j.chroma.2015.06.035>

113. *Cao W., Hu S.S., Ye L.H., Cao J., Pang X.-Q., Xu J.-J.* Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography // *Food Chem.* 2016. V. 190. P. 474. <https://doi.org/10.1016/j.foodchem.2015.05.133>

114. *Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Câmara J. S., Sierra I.* Dispersive solid-phase extraction of polyphenols from juice and smoothie samples using hybrid mesostructured silica followed by ultra-high-performance liquid chromatography-ion-trap tandem mass spectrometry // *J. Agric. Food Chem.* 2019. V. 67. No. 3. P. 955. <https://doi.org/10.1021/acs.jafc.8b05578>

115. *Tsai W.H., Huang T.C., Huang J.J., Hsue Y.H., Chuang H.Y.* Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection // *J. Chromatogr. A*. 2009. V. 1216. No. 12. P. 2263. <https://doi.org/10.1016/j.chroma.2009.01.034>

116. *Scheid C., Mello W., Buchner S., Benvenutti E.V., Deon M., Merib J.* Efficient analysis of polycyclic aromatic hydrocarbons by dispersive- μ -solid-phase extraction using silica-based nanostructured sorbent phases coupled to gas chromatography-mass spectrometry // *Adv. Sample Prep.* 2023. V. 7. P. 10070. <https://doi.org/10.1016/j.sampre.2023.100070>

117. *Izcará S., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I.* Application of a hybrid large pore mesoporous

silica functionalized with β -cyclodextrin as sorbent in dispersive solid-phase extraction. Toward sustainable sample preparation protocols to determine polyphenolic compounds in *Arbutus Unedo* L. fruits by UHPLC–IT-MS/MS // *J. Food Compos. Anal.* 2023. V. 118. Article 105191. <https://doi.org/10.1016/j.jfca.2023.105191>

118. *Yahaya N., Sanagi M.M., Abd Aziz N., Wan Ibrahim W.A., Nur H., Loh S.H., Kamaruzaman S.* Rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids // *Biomed. Chromatogr.* 2017. V. 31. No. 2. P. 3803. <https://doi.org/10.1002/bmc.3803>

119. *Monnier A., Schüth F., Huo Q., Kumar D., Margolese D., Maxwell R.S., Stucky G.D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B.F.* Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures // *Science*. 1993. V. 261. P. 1299. <https://doi.org/10.1126/science.261.5126.1299>

120. *Zhang S., Lu F., Ma X., Yue M., Li Y., Liu J., You J.* Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water // *J. Chromatogr. A*. 2018. V. 1557. P. 1. <https://doi.org/10.1016/j.chroma.2018.05.011>

121. *González-Gómez L., Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I.* Mesostructured silicas as cation-exchange sorbents in packed or dispersive solid phase extraction for the determination of tropane alkaloids in culinary aromatics herbs by HPLC–MS/MS // *Toxins*. 2022. V. 14. No. 3. P. 1. <https://doi.org/10.3390/toxins14030218>

122. *Si R., Han Y., Wu D., Qiao F., Bai L., Wang Z., Yana H.* Ionic liquid-organic-functionalized ordered mesoporous silica-integrated dispersive solid-phase extraction for determination of plant growth regulators in fresh Panax Ginseng // *Talanta*. 2020. V. 207. Article 120274. <https://doi.org/10.1016/j.talanta.2019.120247>

123. *Castiglioni M., Onida B., Rivoira L., Bubba M.D., Ronchetti S., Bruzzoniti M.C.* Amino groups modified SBA-15 for dispersive-solid phase extraction in the analysis of micropollutants by QuEChERS approach // *J. Chromatogr. A*. 2021. V. 1645. Article 462107. <https://doi.org/10.1016/j.chroma.2021.462107>

124. *Izcará, S., Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I.* Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs // *Food Chem.* 2022. V. 380. Article 132189. <https://doi.org/10.1016/j.foodchem.2022.132189>

125. *Terracciano R., Preianò M., Maggisano G., Pelaia C., Savino R.* Hexagonal mesoporous silica as a rapid, efficient and versatile tool for MALDI-TOF MS sample preparation in clinical peptidomics analysis: A pilot study // *Molecules*. 2019. V. 24. No. 12. Article 2311. <https://doi.org/10.3390/molecules24122311>

126. *Zhang M., Yang J., Geng X., Li Y., Zha Z., Cui S., Yang J.* Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples // *J. Chromatogr. A*. 2019. V. 1598. P. 20. <https://doi.org/10.1016/j.chroma.2019.03.048>

127. *Mehdinia A., Bahrami M., Mozaffari S.* A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens // *J. Iran. Chem. Soc.* 2015. V. 12. No. 9. P. 1543. <https://doi.org/10.1007/s13738-015-0626-8>

128. *De Souza K.C., Andrade G.F., Vasconcelos I.* Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma // *Mat. Sci. Eng. C*. 2014. V. 40. P. 275. <https://doi.org/10.1016/j.msec.2014.04.004>

129. *Molaei R., Tajik H., Moradi M.* Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product, Kashk // *Food Control*. 2019. V. 101. P. 1. <https://doi.org/10.1016/j.foodcont.2019.02.011>

130. *Abd Halim W.I. T., Abd Hamid M.A., Aziz M.Y., Din A.T. M., Zain N.N. M., Kamaruzaman S., Nishiyama N., Li X., Hirota Y., Yahaya N.* Performance analysis and green profile assessment of synthesised amino-functionalised magnetic silica nanocomposite for magnetic micro-solid phase extraction of penicillin antibiotics from milk samples // *J. Food Compos. Anal.* 2024. V. 127. Article 105944. <https://doi.org/10.1016/j.jfca.2023.105944>