БИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ, СОСТОЯНИЕ ГОНАД И УЛЬТРАСТРУКТУРА ГАМЕТ КРАСНОБРЮХОЙ КОЗОБОРОДКИ UPENEUS JAPONICUS (MULLIDAE) ЗАЛИВА НЯЧАНГ (ЦЕНТРАЛЬНЫЙ ВЬЕТНАМ)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приведены данные о биологических показателях рыб, состоянии гонад, ультраструктуре сперматозоидов и оболочек ооцитов краснобрюхой козобородки Upeneus japonicus зал. Нячанг. Самки крупнее самцов, зависимости их массы тела от длины значимо различаются. Размерный состав ооцитов самок в преднерестовом состоянии свидетельствует о непрерывном типе оогенеза. Порционная плодовитость составляет в среднем 3301 шт. Половой зрелости 50% самок достигают при длине тела по Смитту 104 мм. Яйцевая оболочка представлена однослойной zona radiata и узким хорионом. В овулировавших ооцитах толщина этих структур составляет соответственно 2.0—2.5 и 0.1—0.3 мкм. Головка сперматозоида имеет изгиб на апикальном заострённом конце. Среди остальных исследованных видов семейства Mullidae подобное строение сперматозоидов обнаружено у чернополосой козобородки U. tragula и U. heterospinus.

Об авторах

Н. Г. Емельянова

Московский государственный университет

Москва, Россия

Д. А. Павлов

Московский государственный университет

Email: dimi-pavlov@yandex.ru
Москва, Россия

Й. Х. Т. Динь

Приморское отделение Совместного российско-вьетнамского тропического научно- исследовательского и технологического центра

Ничанг, Вьетнам

Список литературы

  1. Емельянова Н.Г., Павлов Д.А. 2014. Ультраструктура гамет двух видов рода Upeneus (Mullidae) Южно-Китайского моря // Вопр. ихтиологии. Т. 54. № 3. С. 352–358. https://doi.org/10.7868/S0042875214030023
  2. Емельянова Н.Г., Павлов Д.А. 2020. Морфология сперматозоидов рыб семейства Mullidae: Upeneus sulphureus // Вопр. ихтиологии. Т. 60. № 1. С. 74–81. https://doi.org/10.31857/S004287522001004X
  3. Емельянова Н.Г., Павлов Д.А., Дин Тхи Хай Йен. 2024. Репродуктивные показатели и ультраструктура половых клеток Parupeneus heptacanthus (Mullidae) прибрежной зоны г. Нячанг (Вьетнам) // Вопр. ихтиологии. Т. 64. № 4. С. 480–490. https://doi.org/10.31857/S0042875224040111
  4. Макеева А.П. 1992. Эмбриология рыб. М.: Изд-во МГУ, 216 с.
  5. Маркевич А.И., Баланов А.А. 2012. Описание редкой для российских вод краснобрюхой козобородки Upeneus japonicus (Mullidae) // Вопр. ихтиологии. Т. 52. № 6. С. 718–722.
  6. Овен Л.С. 2004. Специфика развития половых клеток морских рыб в период размножения как показатель типа нереста и реакции на условия среды обитания. М.: Изд-во ВНИРО, 186 с.
  7. Павлов Д.А., Емельянова Н.Г. 2016. Особенности размножения Upeneus margarethae (Mullidae) — вида, впервые обнаруженного в прибрежной зоне Вьетнама // Вопр. ихтиологии. Т. 56. № 4. С. 474–486. https://doi.org/10.7868/S0042875216040135
  8. Промысловые рыбы России. 2006. Т. 1. М.: Изд-во ВНИРО, 656 с.
  9. Роскин Г.И., Левинсон Л.Б. 1957. Микроскопическая техника. М.: Сов. наука, 467 с.
  10. Соколовский А.С., Соколовская Т.Г., Яковлев Ю.М. 2011. Рыбы залива Петра Великого. Владивосток: Дальнаука, 431 с.
  11. Уикли Б. 1975. Электронная микроскопия для начинающих. М.: Мир, 324 с.
  12. Berois N., Arezo M.J., Papa N.G. 2011. Gamete interactions in teleost fish: the egg envelope. Basic studies and perspectives as environmental biomonitor // Biol. Res. V. 44. № 2. P. 119–124. https://doi.org/10.4067/S0716-97602011000200002
  13. Chen C.H., Wu C.C., Shao K.T., Yang J.S. 2007. Chorion microstructure for identifying five fish eggs of Apogonidae // J. Fish Biol. V. 71. № 3. P. 913–919. https://doi.org/10.1111/j.1095-8649.2007.01527.x
  14. Chen L.-C., Hu C.-W., Weng J.-S. et al. 2024. Variations in the abundance, biodiversity, and assemblage structure of larval fish in the restricted waters of the Wang-an light fishery off Penghu, Taiwan // J. Mar. Sci. Eng. V. 12. № 8. Article 1434. https://doi.org/10.3390/jmse12081434
  15. Cherif M., Zarrad R., Gharbi H. et al. 2007. Some biological parameters of the red mullet, Mullus barbatus L., 1758, from the Gulf of Tunis // Acta Adriat. V. 48. № 2. P. 131–144.
  16. Choi S.J., Yun S.W., Park J.Y. 2023. Comparative morphology of the zona radiata in oocytes of Korean bitterlings from the genera Rhodeus, and Acheilognathus (Cyprinidae) // J. Ichthyol. V. 63. № 4. P. 781–787. https://doi.org/10.1134/S0032945223040021
  17. Echreshavi S., Esmaeili H.R., Al Jufaili S.M. 2022. Goatfishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Mullidae) // Fish Taxa. V. 23. P. 1–29.
  18. Fahmy A.F., El-Greisy Z.A., Moharram S.G. 2020. Impact of hormonal manipulation on egg quality of Diplodus sargus: comparative ultrastructural changes // AACL Bioflux. V. 13. № 5. P. 2664–2675.
  19. Froese R., Pauly D. (Еds.). 2024. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 10/2024).
  20. Götting K.J. 1961. Beitrage zur Kenntnis der Grundlagen der Fortpflanzung und zur Fruchtbarkeits-bestimmung bei marinen Teleosteern // Helgoländ. Wiss. Meer. V. 8. № 1. P. 1–41. https://doi.org/10.1007/BF01609945
  21. Horikawa H., Kishida K. 1986. Reproductive cycle, growth and migration of red mullet, Upeneus bensasi in Tosa Bay, South-Western Japan // Bull. Nansei Reg. Fish. Res. Lab. № 20. P. 39–57.
  22. Hou G., Zhang H., Wang J. et al. 2021. Stock assessment of 19 Perciformes in the Beibu Gulf, China, using a length-based Bayesian biomass method // Front. Mar. Sci. V. 8. Article 731837. https://doi.org/10.3389/fmars.2021.731837
  23. Ikeda T., Mito S. 1988. Pelagic fish eggs // An atlas of the early stage fishes in Japan. Tokyo: Tokai Univ. Press. P. 999–1083.
  24. İşmen A. 2006. Growth and reproduction of Por’s goatfish (Upeneus pori Ben-Tuvia & Golani, 1989) in İskenderun Bay, the eastern Mediterranean // Turk. J. Zool. V. 30. № 1. P. 91–98.
  25. Jin Y., Liu Z.-l., Yan L.-p. et al. 2020. Maturity of hairtail varies with latitude and environment in the East China Sea // Mar. Coast. Fish. V. 12. № 6. P. 395–403. https://doi.org/10.1002/mcf2.10132
  26. Li Y.H., Wu C.C., Yang J.S. 2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes // J. Fish Biol. V. 56. № 3. P. 615–621. https://doi.org/10.1006/jfbi.1999.1178
  27. Luo Z., Yi M., Yang X. et al. 2024. Mitochondrial genome analysis reveals phylogenetic insights and gene rearrangements in Parupeneus (Syngnathiformes: Mullidae) // Front. Mar. Sci. V. 11. Article 1395579. https://doi.org/10.3389/fmars.2024.1395579
  28. Nash C.M., Lungstrom L.L., Hughes L.C., Westneat M.W. 2022. Phylogenomics and body shape morphometrics reveal recent diversification in the goatfishes (Syngnatharia: Mullidae) // Mol. Phylogenet. Evol. V. 177. Article 107616. https://doi.org/10.1016/j.ympev.2022.107616
  29. Pavlov D.A., Emel’yanova N.G., Luong Thi Bich Thuan, Vo Thi Ha. 2014. Reproduction of freckled goatfish Upeneus tragula (Mullidae) in the coastal zone of Vietnam // J. Ichthyol. V. 54. № 10. P. 893–904. https://doi.org/10.1134/S0032945214100129
  30. Pauly D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators // ICLARM Stud. Rev. V. 8. 325 p.
  31. Ramadan M.A., El-Halfawy M.M. 2014. Ovarian maturation and spawning season of Por’s goatfish Upeneus pori (Mullidae) from Mediterranean Sea, Egypt // J. Ichthyol. V. 54. № 10. P. 905–912. https://doi.org/10.1134/S0032945214100154
  32. Randall J.E., Bauchot M.L., Guézé P. 1993. Upeneus japonicus (Houttuyn), a senior synonym of the japanese goatfish U. bensasi (Temminck et Schlegel) // Jpn. J. Ichthyol. V. 40. № 3. P. 301–305. https://doi.org/10.11369/jji1950.40.301
  33. Rochet M.-J., Marty L. 2016. Effects of fishing on the population // Fish reproductive biology: implications for assessment and management. Oxford: Blackwell Publ. P. 188–225. https://doi.org/10.1002/9781118752739.ch4
  34. Sabrah M.M. 2006. Population dynamics Upeneus japonicus (Houttuyn, 1782), family: Mullidae, from the Gulf of Suez, Red Sea, Egypt // Egypt. J. Aquat. Res. V. 32. № 1. P. 334–345.
  35. Sabrah M.M. 2007. Some biological aspects of the red mullet, Upeneus japonicus (Houttuyn, 1782), from the Gulf of Suez, Red Sea, Egypt // Egypt. J. Aquat. Res. V. 33. № 2. P. 222–234.
  36. Sabrah M.M., Heneish R.A., Alwany M.E. et al. 2017. Sexual maturity, spawning activity, sex ratio and fecundity of two Mullidae species dwelling the Gulf of Suez, Red Sea // Egypt. J. Aquat. Res. V. 43. № 1. P. 83–91. https://doi.org/10.1016/j.ejar.2016.04.007
  37. Sparre P., Venema C.S. 1998. Introduction to tropical fish stock assessment. Pt. I: Manual // FAO Fish. Tech. Pap. Rev. № 306/1. Rev. 2. 407 p.
  38. Takeuchi A., Higuchi T., Watanabe S. et al. 2021. Several possible spawning sites of the Japanese eel determined from collections of their eggs and preleptocephali // Fish. Sci. V. 87. № 3. P. 339–352. https://doi.org/10.1007/s12562-021-01519-4
  39. Uiblein F., Gledhill D.C. 2015. A new goatfish of the genus Upeneus (Mullidae) from Australia and Vanuatu, with interand intraspecific comparisons // Mar. Biol. Res. V. 11. № 5. P. 475–491. https://doi.org/10.1080/17451000.2014.958088
  40. Uiblein F., Heemstra P.C. 2010. A taxonomic review of the Western Indian goatfishes of the genus Upeneus (Family Mullidae), with descriptions of four new species // Smithiana Bull. V. 11. P. 35–71.
  41. Uiblein F., Gledhill D.C., Pavlov D.A. et al. 2019. Three new goatfishes of the genus Upeneus (Mullidae) from the Indo-Pacific, with a redescription of colour patterns in U. margarethae // Zootaxa. V. 4683. № 2. P. 151–196. https://doi.org/10.11646/zootaxa.4683.2.1
  42. Uiblein F., Gouws G., Lisher M., Malauene B.S. 2020. Upeneus floros, a new goatfish from South Africa and Mozambique, with updated taxonomic accounts for U. guttatus and U. pori and a key to Western Indian Ocean Upeneus species (Mullidae) // Zootaxa. V. 4834. № 4. P. 523–555. https://doi.org/10.11646/zootaxa.4834.4.3
  43. Uiblein F., Williams J.T., Bailly N. et al. 2024. Four new goatfishes (Upeneus, Mullidae, Mulliformes) from the Asian Indo-Pacific with a list of valid goatfish species and remarks on goatfish diversity // Cybium. V. 48. № 2. P. 135–160. https://doi.org/10.26028/cybium/2024-001
  44. Wang X.H., Qiu Y.S., Zhu G.P. et al. 2011. Length-weight relationships of 69 fishes in the Beibu Gulf, northern South China Sea // J. Appl. Ichthyol. V. 27. № 3. P. 959–961. https://doi.org/10.1111/j.1439-0426.2010.01624.x
  45. Weatherley A.H., Gill H.S. 1987. The biology of fish growth. London: Acad. Press, 443 p.
  46. Xu M., Liu Z., Wang Y. et al. 2022. Larval spatiotemporal distribution of six fish species: implications for sustainable fisheries management in the East China Sea // Sustainability. V. 14. № 22. Article 14826. https://doi.org/10.3390/su142214826
  47. Yagi M., Yamada M., Shimoda M. et al. 2015. Length–weight relationships of 22 fish species from the East China Sea // J. Appl. Ichthyol. № 31. № 1. P. 252–254. https://doi.org/10.1111/jai.12648

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).