Влияние ультрафиолета на уровень постоянного электрического потенциала кожи человека

Обложка

Цитировать

Полный текст

Аннотация

Цель. Исследование влияния загара на уровень постоянного электрического потенциала кожи для разработки гипотезы об участии меланоцитов в формировании электрической активности кожи. Материал и методы. В обследовании участвовали 11 мужчин и 11 женщин, находившихся на летнем отдыхе. Изучали связь между уровнем постоянного электрического потенциала кожи и коэффициентом отражения. Постоянные электрические потенциалы регистрировали в виде разности электрических потенциалов между двумя областями кожи посредством Orion 261S pH meter и жидкостных Ag/AgCl электродов той же фирмы. Для измерения коэффициента отражения использовали спектрорадиометр Li-1800 фирмы LI-COR, входящий в комплектацию интегрирующей сферы 1800-12, покрытой сульфатом бария. Диаметр отверстия 1,45 см. Коэффициент отражения измеряли в диапазоне длин волн 375-800 нм с шагом сканирования 1 нм. Результаты. Между величинами разности электрических потенциалов и разности коэффициентов отражения загорелой и не подвергавшейся действию солнца области кожи в диапазоне длин волн 620-720 нм существует математическая зависимость, которая может быть аппроксимирована линейным уравнением. Коэффициент корреляции Спирмена между этими показателями равен -0,43 (р = 0,045), между величиной разности электрических потенциалов и величиной коэффициента отражения загорелой кожи r = -0,52 (р = 0,01), между величиной разности электрических потенциалов и величиной коэффициента отражения области кожи, не подвергавшейся действию солнца, r = -0,28 (р = 0,2). На основании результатов проведенного исследования и анализа данных литературы следует, что между уровнем постоянных электрических потенциалов кожи и количеством меланосом, наполненных меланином, существует положительная корреляция. Заключение. Предполагается, что меланоциты участвуют в формировании электрической активности кожи посредством меланосом, наполненных меланином. При этом вклад меланоцитов в электрическую активность кожи не является определяющим.

Об авторах

А. О. Лазарев

ФГБУН Государственный научный центр Российской Федерации - Институт медико-биологических проблем РАН

Автор, ответственный за переписку.
Email: abtava@mail.ru
Россия

Список литературы

  1. Boucsein W. Electrodermal Activity. 2nd ed. Germany: Springer 2012.
  2. Barker A. T., Jaffe L. E., Vanable J. W. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol 1982; (242): R358-R366.
  3. Denda M., Ashida Y., Inoue K., Kumazawa N. Skin Surface Electric Potential Induced by Ion-Flux through Epidermal Cell Layers. Biochemical and Biophysical Research Communications 2001; (284): 112-117.
  4. Mostov K. E., Verges M., Altschuler Y. Membrane traffic in polarized epithelial cells. Current opinion in cell biology 2000; 12: 483-490.
  5. Ando H., Niki Y., Ito M. et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J invest dermatol 2012; (132): 1222-1229.
  6. Michael M. S. Marks M. S., Seabra M. C. The melanosome: membrane dynamics in black and white. Molecular cell biology 2001; (2): 1-11.
  7. Simon J. D., Hong L., Peles D. N. Insights into melanosomes and melanin from some interesting spatial and temporal properties. J Phys Chem 2008; (112): 13201-13217.
  8. Kollias N., Baqer A. On the assessment of melanin in human skin in vivo. Photochemistry und Photobiology 1986; 43: (1): 49-54.
  9. Lister T., Wright P. A., Chappell P. H. Optical properties of human skin. Journal of biomedical optics 2012; 17: (9): 090901/1-090901/15.
  10. Nielsen K. P., Zhao L., Jakob J. et al. The optics of human skin: Aspects important for human health. In: ed.by. Bjertness E. Solar Radiation and Human Health. Oslo; The Norwegian Academy of Science and Letters 2008; 35-46.
  11. Rosdahl I., Rosman H. An estimate melanocyte mass in humans. J invest dermatol 1983; (81): 278-281.
  12. Stamatas G. N., Zmudzka B. Z., Kollias N. et al. Non-invasive measurements of skin pigmentation in situ. Pigment cell res 2004; (17): 618-626.
  13. Toyonobu Yamashita T., Kuwahara T., Gonza S., Takahashi M. Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy. J invest dermatol 2005; (124): 235- 240.
  14. Zhang R., Verkruysse W., Choi B. et al. Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms. J biomed optics 2005; 10: (2): 024030-1-024030-11.
  15. Rosdahl I., Rosman H. An estimate melanocyte mass in humans. J invest dermatol 1983; (81): 278-281.
  16. Kopola H., Lahti A., Myllyla R., Hannuksela M. Two-channel fiber optic skin erythema meter. Optical Engineering 1993; 32: (2): 222-226.
  17. Tupker R. A., Pinnagoda J. Measurement of transepidermal water loss by semiopen systems. In: Serup J, Jemec G B E, Grove G L, eds. Handbook of Non-Invasive Methods and the Skin, 2nd ed. Boca Raton, FL, USA: CRC Press 2006; 383-392.
  18. Barbara A. G., Frederik B. B., Georg S. Effect of aging and chronic sun exposure on melanocytes in human skin. J invest dermatol 1979; 73:141-143.
  19. Quedo W. C., Szabo G., Influence of age and ultraviolet light on population of “dopa-positive” melanocytes in human skin. J Anat 1968; 103: 387-388.
  20. Michael S., Marks M. S., Seabra M. C. The melanosome membrane dynamics in black and white. Molecular cell biology 2001; (2): 1-11.
  21. Simon J. D., Hong L., Peles D. N. Insights into melanosomes and melanin from some interesting spatial and temporal properties. J Phys Chem 2008; (112): 13201-13217.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Лазарев А.О., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».