Photonics approaches to the implementation of neuromorphic computing
- Autores: Musorin A.I.1, Shorokhov A.S.1, Chezhegov A.A.1, Baluyan T.G.1, Safronov K.R.1, Chetvertukhin A.V.1, Grunin A.A.1, Fedyanin A.A.1
-
Afiliações:
- Lomonosov Moscow State University, Faculty of Physics
- Edição: Volume 193, Nº 12 (2023)
- Páginas: 1284-1297
- Seção: Reviews of topical problems
- URL: https://ogarev-online.ru/0042-1294/article/view/256646
- DOI: https://doi.org/10.3367/UFNr.2023.07.039505
- ID: 256646
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Alexander Musorin
Lomonosov Moscow State University, Faculty of PhysicsCandidate of physico-mathematical sciences, no status
Aleksandr Shorokhov
Lomonosov Moscow State University, Faculty of Physics
Email: shorokhov@nanolab.phys.msu.ru
Scopus Author ID: 56311591400
Researcher ID: H-5523-2015
Alexander Chezhegov
Lomonosov Moscow State University, Faculty of Physics
Tigran Baluyan
Lomonosov Moscow State University, Faculty of Physics
Kirill Safronov
Lomonosov Moscow State University, Faculty of Physics
Email: safronov@nanolab.phys.msu.ru
Artem Chetvertukhin
Lomonosov Moscow State University, Faculty of Physics
ORCID ID: 0000-0002-0819-6525
Scopus Author ID: 55055469300
Researcher ID: A-8885-2010
Candidate of physico-mathematical sciences
Andrey Grunin
Lomonosov Moscow State University, Faculty of Physics
Andrei Fedyanin
Lomonosov Moscow State University, Faculty of Physics
Email: fedyanin@nanolab.phys.msu.ru
ORCID ID: 0000-0003-4708-6895
Scopus Author ID: 7005109296
Researcher ID: G-1803-2010
Doctor of physico-mathematical sciences, Professor
Bibliografia
- Xu R. et al., Opt. Laser Technol., 136 (2021), 106787
- Markovic D. et al., Nat. Rev. Phys., 2 (2020), 499
- Xu M. et al., Adv. Funct. Mater., 30 (2020), 2003419
- Zhang J. et al., Adv. Intell. Syst., 2 (2020), 1900136
- Sunny F. P. et al., ACM J. Emerg. Technol. Comput. Syst., 17:4 (2021), 61
- Yao K., Unni R., Zheng Y., Nanophotonics, 8 (2019), 339
- Ferreira de Lima Th. et al., Nanophotonics, 6 (2017), 577
- Goodman J. W., Dias A. R., Woody L. M., Opt. Lett., 2 (1978), 1
- Zuo Y. et al., Optica, 6 (2019), 1132
- Liu J. et al., PhotoniX, 2 (2021), 5
- Shastri B. J. et al., Nat. Photon., 15 (2021), 102
- Silicon Photonics. From Technologies to Markets, Market and Technology Report 2021. Yole Group
- Silicon Photonics 2022, Market and Technology Trends. Yole Group
- GlobalFoundries Announces Next Generation in Silicon Photonics Solutions and Collaborates with Industry Leaders to Advance a New Era of More in the Data Center, March 7, 2022. GlobalFoundries Press Releases
- Huang C. et al., Adv. Phys. X, 7 (2022), 1981155
- Kirtas M. et al., “Early detection of DDoS attacks using photonic neural networks”, 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), IEEE, Piscataway, NJ, 2022
- Clements W. R. et al., Optica, 3 (2016), 1460
- Al-Qadasi M. A. et al., APL Photon., 7 (2022), 020902
- Shen Y. et al., Nat. Photon., 11 (2017), 441
- Bandyopadhyay S., Hamerly R., Englund D., Optica, 8 (2021), 1247
- Envise. Lightmatter
- High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator, Grant US-11281068-B2
- Feng Y. et al., Opt. Express, 28 (2020), 38206
- Baghdadi R. et al., Opt. Express, 29 (2021), 19113
- Jacob B. et al., Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (Salt Lake City, UT, USA, June 18-22, 2018), IEEE, Piscataway, NJ, 2018, 2704
- Machupalli R., Hossain M., Mandal M., Microprocess. Microsyst., 89 (2022), 104441
- Lightelligence
- Lightelligence. PACE: Photonic Arithmetic Computing Engine
- Qu Y. et al., Sci. Bull., 65 (2020), 1177
- Chao C.-Y., Fung W., Guo L. J., IEEE J. Sel. Top. Quantum Electron., 12 (2006), 134
- Feldmann J. et al., Nature, 589 (2021), 52
- Burr G. W. et al., IEEE J. Emerg. Sel. Top. Circuits Syst., 6 (2016), 146
- Wu C. et al., Nat. Commun., 12 (2021), 96
- Prabhu M. et al., Optica, 7 (2020), 551
- Lucas A., Front. Phys., 2 (2014), 5
- Ахманов С. А., Никитин С. Ю., Физическая оптика, 2-е изд., Изд-во Московского ун-та, М., 2004
- Goodman J. W., Introduction to Fourier Optics, Roberts and Co., Englewood, CO, 2005
- Lin X. et al., Science, 361 (2018), 1004
- Yann LeCun's Home Page
- Qian C. et al., Light Sci. Appl., 9 (2020), 59
- Luo Y. et al., Light Sci. Appl., 8 (2019), 112
- Mengu D. et al., IEEE J. Sel. Top. Quantum Electron., 26 (2020), 3700114
- Papers with Code. Fashion-MNIST
- Papers with Code. Residual Network
- He K. et al., “Deep residual learning for image recognition”, Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (Las Vegas, NV, USA, 27-30 June 2016), IEEE, Piscataway, NJ, 2016, 770
- Kulce O. et al., Light Sci. Appl., 10 (2021), 25
- Luo X. et al., Light Sci. Appl., 11 (2022), 158
- Miscuglio M. et al., Optica, 7 (2020), 1812
- The CIFAR-10 dataset
- Colburn S. et al., Appl. Opt., 58 (2019), 3179
- Krizhevsky A., Sutskever I., Hinton G. E., Advances in Neural Information Processing Systems, v. 25, F. Pereira et al., Curran Associates Inc., Red Hook, NY, 2012, 1097
- Kaggle. Datasets. Cats-vs-Dogs: image dataset for binary classification
- Yan T. et al., Phys. Rev. Lett., 123 (2019), 023901
Arquivos suplementares
