East meets West again in order to tackle the global energy crises
- Авторлар: Tajima T.1, Necas A.2, Massard T.3, Gales S.4
-
Мекемелер:
- University of California, Irvine
- Tri Alpha Energy Technologies, Inc.
- Stanford University
- Université Paris-Saclay
- Шығарылым: Том 192, № 11 (2022)
- Беттер: 1280-1292
- Бөлім: Conferences and symposia. Forum "Uspekhi-2021": climate change and global energy issues
- URL: https://ogarev-online.ru/0042-1294/article/view/256694
- DOI: https://doi.org/10.3367/UFNr.2021.07.039052
- ID: 256694
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Toshiki Tajima
University of California, Irvine
Email: ttajima@uci.edu
A. Necas
Tri Alpha Energy Technologies, Inc.
Thierry Massard
Stanford University
Email: massard.thierry@gmail.com
Sydney Gales
Université Paris-Saclay
Email: gales@ipno.in2p3.fr
Әдебиет тізімі
- Geneva Summit (1955), Wikipedia. Accessed March 5, 2021
- Veksler V. I., “Coherent principle of acceleration of charged particles”, Proc. of the CERN Symp. Accelerators and Pion Physics, v. 1, CERN, Geneva, 1956, 80
- Semiletov I, in Forum "USPEKHI-2021": Climate Change and Global Energy Problems
- Риньо Э., УФН, 192 (2022), 1203
- Дробински Ф., Танте А., УФН, 192 (2022), 1191
- Steinbach J., Holmstrand H., Shcherbakova K., Kosmach D., Brüchert V., Shakhova N., Salyuk A., Sapart C. J., Chernykh D., Semiletov I., Gustafsso Ö, “Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf”, Proc. Natl. Acad. Sci. USA, 118 (2021), e2019672118
- Binderbauer, in Forum "USPEKHI-2021": Climate Change and Global Energy Problems
- Rostoker N., Maglich B. C., “Self-colliding systems for aneutronic fusion”, Comments Plasma Phys. Controlled Fusion, 15:2 (1992), 105–120
- Binderbauer M. W., Tajima T., Steinhauer L. C., Garate E., Tuszewski M., Schmitz L., Guo H. Y. et al., “High performance field-reversed configuration”, Phys. Plasmas, 22 (2015), 056110
- Tajima T., Binderbauer M., “Preface: Norman Rostoker Memorial Symposium”, AIP Conf. Proc., 1721 (2016), 010001
- Parish T. A., Davidson J. W., “Reduction in the Toxicity of Fission Product Wastes through Transmutation with Deuterium-Tritium Fusion Neutrons”, Nucl. Technol., 47:2 (1980), 324–342
- S. Galès, Nuclear Energy and Waste Transmutation with High Power Accelerator and Laser Systems, 2018
- Tajima T., Necas A., Mourou G., Gales S., Leroy M., “Spent Nuclear Fuel Incineration by Fusion-Driven Liquid Transmutator Operated in Real Time by Laser”, Fusion Sci. Technol., 77 (2021), 251–265
- Rubbia C., Rubio J. A., Buono S., Carminati F., Fietier N.,Galvez J., Geles C. et al., “Conceptual design of a fast neutron operated high power energy amplifier”, CERN-AT-95-44-ET, CERN, Geneva, 1995, 187–312
- Abderrahim H. A., Kupschus P., Malambu E., Benoit Ph., Van Tichelen K., Arien B., Vermeersch F. et al., “MYRRHA: A Multipurpose Accelerator Driven System for Research and Development”, Nucl. Instrum. Meth. Phys. Res. A, 463:3 (2001), 487–494
- Nifenecker H., Meplan O., David S., Accelerator Driven Subcritical Reactors, CRC Press, Boca Raton, FL, 2003
- Doligez X., Heuer D., Merle-Lucotte E., Allibert M., Ghetta V., “Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit”, Ann. Nucl. Energy, 64 (2014), 430–440
- Yan X. Q., Tajima T., Hegelich M., Yin L., Habs D., “Theory of laser ion acceleration from a foil target of nanometer thickness”, Appl. Phys. B, 98:4 (2010), 711–721
- Weeks A, in Forum "USPEKHI-2021": Climate Change and Global Energy Problems
- Ли Н., УФН, 192 (2022), 1231
- Tajima T., Dawson J. M., “Laser Electron Accelerator”, Phys. Rev. Lett., 43 (1979), 267
- Tajima T., Yan X. Q., Ebisuzaki T., “Wakefield acceleration”, Rev. Mod. Plasma Phys., 4 (2020), 7
- Nakajima K., Kawakubo T., Nakanishi H., Ogata A., Kato Y., Kitagawa Y., Kodama R. et al., “A proof-of-principle experiment of laser wakefield acceleration”, Phys. Scr., 1994:T52 (1994), 61
- Wang X., Zgadzaj R., Fazel N., Li Z., Yi S. A., Zhang X., Watson H., “Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV”, Nat. Commun., 4 (2013), 1988
- Leemans W., Gonsalves A. J., Mao H.-S., Nakamura K., Benedetti C., Schroeder C. B., Cs Toth P. et al., “Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime”, Phys. Rev. Lett., 113 (2014), 245002
- Downer M. C., Zgadzaj R., Debus A., Schramm U., Kaluza M. C., “Diagnostics for plasma-based electron accelerators”, Rev. Mod. Phys., 90 (2018), 035002
- Nicks B. S., Tajima T., Roa D., Necheck {text c}as A., Mourou G., “Laser-wakefield application to oncology”, Int. J. Mod. Phys. A, 34:34 (2019), 1943016
- Ibrahim F., Obert J., Bajeat O., Buhour J. M., Carminati S. et al., “Photofission for the production of radioactive beams: Experimental data from an on-line measurement”, Eur. Phys. J. A, 15 (2002), 357–360
- Gales S., Tanaka K. A., Balabanski D. L., Negoita F., Stutman D., Tesileanu O., Ur C. A. et al., “The extreme light infrastructure?nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams”, Rep. Prog. Phys., 81 (2018), 094301
- Necas A., Gales S., Private communication, 2020
- Tanner J., Necas A., Gales S., Tajima T., “Study of Neutronic Transmutation of Transuranics in a Molten Salt”, Ann. Nucl. Energy, submitted
- Robertson R. C., Msre Design and Operations Report. Pt. I. Description of Reactor Design, 1965
- Kloosterman J. L., “MSR Concepts”, Proc. TU Delft, TUDelft, Delft, 2017
- Mourou G., Brocklesby B., Tajima T., Limpert J., “The future is fibre accelerators”, Nat. Photon., 7:4 (2013), 258–261
- Quiter B., Laplace T., Ludewigt B. A., Ambers S. D., Goldblum B. L., Korbly S., Hicks C., Wilson C., “Nuclear resonance fluorescence in $ ^{240}$Pu”, Phys. Rev. C, 86 (2012), 034307
- Gauld I., Francis M., “Investigation of Passive Gamma Spectroscopy to Verify Spent Nuclear Fuel Content”, 51st Annual Meeting of the Institute of Nuclear Materials Management
- Moulin C., Decambox P., Mauchien P., “Analytical Applications of Time-Resolved Laser-Induced Fluorescence in the Nuclear Fuel Cycle”, J. Physique IV, 1:C7 (1991), C7–677
- Kloosterman J. L., Molten Salt Reactors and Thorium Energy, Ed. T. J. Dolan, Elsevier, Amsterdam, 2017, 565
- Chetal S. C., Balasubramaniyan V., Chellapandi P., Mohanakrishnan P., Puthiyavinayagam P., Pillai C. P., Raghupathy S., Shanmugham T. K., Sivathanu Pillai C., “The design of the Prototype Fast Breeder Reactor”, Nucl. Eng. Design, 236 (2006), 852
- Sheu R. J., Chang C. H., Chao C. C., Liu Y.-W. H, “Depletion Analysis on Long-Term Operation of the Conceptual Molten Salt Actinide Recycler Transmuter (MOSART) by Using a Special Sequence Based on SCALE6/TRITON”, Ann. Nucl. Energy, 53 (2013), 1
- Zhang D., Liu L., Liu M., Xu R., Gong C., Qiu S., “Neutronics/Thermal-hydraulics Coupling Analysis for the Liquid-Fuel MOSART Concept”, Energy Procedia, 127 (2017), 343
- Gulik V., Tkaczyk A. H., “Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems”, Nucl. Eng. Design, 270 (2014), 133
- Anikeev A. V., “Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes”, AIP Conf. Proc., 1442 (2012), 153
- Rostoker N., Private communication, 2002
- Pascal Y. (Ed.), Structural Materials for Generation IV Nuclear Reactors, Woodhead Publ., Waltham, MA, 2016
- Cress C. D., Schauerman C. M., Landi B. J., Messenger S. R., Raffaelle R. P., Walters R. J., “Radiation effects in single-walled carbon nanotube papers”, J. Appl. Phys., 107 (2010), 014316
- Iijima S., “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58
- Thostenson E. T., ZRen Z., Chou T.-W., “Advances in the science and technology of carbon nanotubes and their composites: a review”, Compos. Sci. Technol., 61 (2001), 1899–1912
- Iijima S., “Carbon nanotubes: past, present, and future”, Physica B, 323:1–4 (2002), 1–5
- Lazarowich R. J., Taborek P., Yoo B.-Y., Myung N. V., “Fabrication of porous alumina on quartz crystal microbalances”, J. Appl. Phys., 101 (2007), 104909
- Myung N. V., Lim J., Fleurial J.-P., Yun M., West W., Choi D. , Nanotechnology, 15 (2004), 833
- Navarro M., Private communication, 2019
- Shokrieh M. M., Rafiee R., “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites”, Mech. Compos. Mater., 46 (2010), 155
- Novoselov K. S., Geim A. K., Morozov S. V., Dubonos S. V., Zhang Y., Jiang D., “Room-temperature electric field effect and carrier-type inversion in graphene films”
- Mertens R., The Graphene Handbook, 2019 ed., Lulu Press, Morrisville, NC, 2020
- Smalley R. E., “Discovering the fullerenes”, Rev. Mod. Phys., 69 (1997), 723
- Klimchitskaya G. L., Mostepanenko V. M., “Conductivity of pure graphene: Theoretical approach using the polarization tensor”, Phys. Rev. B, 93 (2016), 245419
- Penicaud A., Graphene for a Sustainable World, 2018
- Chesneau A., Private communication, 2021
- Johnson R. W., Hultqvist A., Bent S. F., “A brief review of atomic layer deposition: from fundamentals to applications”, Mater. Today, 17:5 (2014), 236
- Sobel N., Hess C., Lukas M., Spende A., Stühn B., Toimil-Molares M. E., Trautmann C., “Conformal SiO$^{2}$ coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition”, Beilstein J. Nanotechnol., 6 (2015), 472
- Musfeldt J., Yoshihiro I., Reshef T., “Nanotubes from layered transition metal dichalcogenides”, Phys. Today, 73:8 (2020), 42–48
- Sackmann E., Bruinsma R., Physics of Bio-Molecules and Cells, Les Houches Session LXXV (2-27 July 2001), Les Houches - Ecole d'Ete de Physique Theorique, 75, eds. eds. F. Flyvbjer, Springer, Berlin, 2002, 285–309
- Li X., Xue Y., Huiling H., “Electrocapillary Rise in Nanoporous Media”, Procedia IUTAM, 21 (2017), 71–77
- Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., Geim A. K., “Unimpeded Permeation of Water through Helium-Leak-Tight Graphene-Based Membranes”, Science, 335 (2012), 442
- Kumaravel V., Bartlet J., Pillai S. C., “Photoelectrochemical Conversion of Carbon Dioxide (CO$ ^2$) into Fuels and Value-Added Products”, ACS Energy Lett., 5:2 (2020), 486–519
- Udorn J., Hatta A., Furuta H., “Carbon Nanotube (CNT) Honeycomb Cell Area-Dependent Optical Reflectance”, Nanomaterials, 6:11 (2016), 202
- Fujikawa S., Selyanchyn R., Kunitake T., “A new strategy for membrane-based direct air capture”, Polymer J., 53 (2021), 111–119
- Hone J., Dekker Encyclopedia of Nanoscience and Nanotechnology, v. 3, J. A. Schwarz, C. I. Contescu, K. Putyera, M. Dekker, New York, 2004, 603
- Liu F., Wagterveld R. M., Gebben B., Otto M. J., Biesheuvel P. M., Hamelers H. V. M., “Carbon nanotube yarns as strong flexible conductive capacitive electrodes”, Colloid Interface Sci. Commun., 3 (2014), 9–12
- Haubenreich P. N., Engel J. R., “Experience with the Molten-Salt Reactor Experiment”, Nucl. Appl. Technol., 8:2 (1970), 118
Қосымша файлдар
