— ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВ —

УЛК 536.71

АНАЛИЗ ЛИНИИ ФАЗОВОГО РАВНОВЕСИЯ SF₆ HA OCHOBE МАСШТАБНОЙ ТЕОРИИ И УРАВНЕНИЯ КЛАПЕЙРОНА—КЛАУЗИУСА

© 2023 г. И. В. Кудрявцева¹, С. В. Рыков², *, В. А. Рыков¹, Е. Е. Устюжанин³

¹Университет ИТМО, Санкт-Петербург, Россия

²Военный институт (инженерно-технический) Военной академии материально-технического обеспечения имени генерала армии А.В. Хрулёва, Санкт-Петербург, Россия ³Национальный исследовательский университет "МЭИ", Москва, Россия

*E-mail: togg1@yandex.ru

Поступила в редакцию 02.07.2022 г. После доработки 16.09.2022 г. Принята к публикации 13.10.2022 г.

Предложена система взаимосогласованных уравнений, описывающая давление p_s , плотность пара ρ^- и плотность жидкости ρ^+ на линии фазового равновесия технически важных веществ в диапазоне от тройной точки и до критической точки. На этапе разработки этой системы учитываются: а) особенности поведения ряда свойств (ρ^- , ρ^+ , p_s , d_f — средний диаметр линии насыщения, d_s — параметр порядка) в критической области; б) некоторые положения масштабной теории критических явлений и теории ренормгруппы, которая адаптирована L. Wang и др. (2013) для веществ с заданной молекулярной структурой, включая SF₆; в) уравнение Клапейрона—Клаузиуса, в котором вместо теплоты

парообразования r использована "кажущаяся" теплота парообразования, $r^* = r \left(1 - \rho^-/\rho^+\right)^{-1}$. На этапе апробации данной системы уравнений предложена методика вычисления регулируемых коэффициентов, входящих в указанную систему на примере SF_6 , для которой имеются прецизионные данные о термических свойствах, в том числе экспериментальные (p_s, ρ^-, ρ^+, T) -данные. С помощью предлагаемой методики определены коэффициенты системы уравнений с использованием прецизионных данных для SF_6 и получены расчетные значения свойств SF_6 в заданном интервале температур. Выполнен статистический анализ неопределенности расчетных данных, в том числе найдены средние квадратические отклонения экспериментальных (p_s, ρ^-, ρ^+, T) -данных от соответствующих уравнений. Показано, что предложенная система описывает перечисленные свойства с меньшей неопределенностью, чем неопределенность соответствующих свойств, отвечающих оригинальным уравнениям М. Funke и др. (2001). Температурная зависимость $d_f(T)$ предложенной модели удовлетворительно согласуется с моделью $d_f(T)$, которая разработана L. Wang и др. (2013) для

DOI: 10.31857/S0040364423030158

критической области SF₆.

ВВЕДЕНИЕ

В данной работе рассматривается группа термодинамических свойств индивидуального вещества, в том числе свойств (давление, p_s , плотность пара ρ^- , плотность жидкости ρ^+ , средний диаметр d_f , параметр порядка d_s) на линии насыщения в диапазоне от тройной до критической точки. Свойства d_f , d_s определяются уравнениями

$$d_f = \frac{\rho^+ + \rho^-}{2\rho_c} - 1 = \frac{\Delta \rho^+ + \Delta \rho^-}{2},\tag{1}$$

$$d_{s} = \frac{\rho^{+} - \rho^{-}}{2\rho_{s}} = \frac{\Delta \rho^{+} - \Delta \rho^{-}}{2},$$
 (2)

где $\Delta \rho^+ = (\rho^+ - \rho_c)/\rho_c$, $\Delta \rho^- = (\rho^- - \rho_c)/\rho_c$ — относительные плотности, нижний индекс c — критические величины.

Исследуются температурные зависимости свойств $p_s(T)$, $\rho^-(T)$, $\rho^+(T)$, которые включены в систему взаимосогласованных уравнений. Уделяется внимание зависимостям $d_f(T)$ и $d_s(T)$, что объясняется, во-первых, их связью с уравнениями $\rho^-(T)$ и $\rho^+(T)$. Во-вторых, структура функций

 $d_f(T)$ и $d_s(T)$ отвечает требованиям масштабной теории критических явлений (МТ); эти функции рассматриваются в многочисленных работах, включая [1—4]. Так, поведение $d_f(T)$ в асимптотической окрестности T_c (0 < τ < 0.001, τ = 1 – T/T_c) привлекает пристальное внимание теплофизиков до сих пор. В-третьих, анализ показывает, что численые данные, которые отвечают зависимости $d_f(T)$, разработанной одними авторами, существенно отличаются от соответствующих значений, которые получены по зависимости $d_f(T)$, рекомендованной другими авторами. Это обусловлено следующими факторами.

- 1. В критической области данные о ρ^- и ρ^+ имеют значительные абсолютные неопределенности Δ_{ρ^-} и Δ_{ρ^+} .
- 2. Данные неопределенности растут по мере приближения к критической температуре, где сильно развиты флуктуации параметра порядка [3].
- 3. Неопределенности Δ_{ρ^-} , Δ_{ρ^+} существенно влияют на относительные неопределенности среднего диаметра δd_f и параметра порядка δd_s .

С учетом перечисленных причин представляет интерес оценить неопределенности δd_f , δd_s , которые записываются в виде

$$\delta d_f = \sqrt{\frac{\left(\Delta_{\rho^-}\right)^2 + \left(\Delta_{\rho^+}\right)^2 + \left(\Delta_{\rho_c}\right)^2}{\left(\rho^- + \rho^+ - 2\rho_c\right)^2} + \frac{\left(\Delta_{\rho_c}\right)^2}{\rho_c^2}},$$
 (3)

$$\delta d_s = \sqrt{\frac{\left(\Delta_{\rho^-}\right)^2 + \left(\Delta_{\rho^+}\right)^2}{\left(\rho^+ - \rho^-\right)^2} + \frac{\left(\Delta_{\rho_c}\right)^2}{\rho_c^2}},\tag{4}$$

где $\Delta_{\rho_c} = 0.4 \text{ кг/м}^3 - \text{абсолютная неопределен-}$ ность критической плотности ρ_c [5].

При численном анализе неопределенностей (δd_f , δd_s , Δ_{ρ^+} , Δ_{ρ^-} , ...) предусматриваются некоторые условия, в том числе:

- а) свойства d_f , d_s вычисляются с помощью (1), (2);
- б) в качестве исходной информации, которая необходима для получения оценок (3), (4), выбираются экспериментальные (ρ^- , ρ^+ , T)-данные для SF₆ [5];
- в) в соответствии с МТ и подходом [3] в асимптотической окрестности T_c зависимости $d_f(T)$ и $d_s(T)$ представляются в виде

$$d_f = D_{2\beta} \tau^{2\beta} + D_{1-\alpha} \tau^{1-\alpha} + D_{\tau} \tau + o(\tau), \qquad (5)$$

$$d_s = D_1 \tau^{\beta} + D_2 \tau^{\beta + \Delta} + o(\tau), \qquad (6)$$

где D_1 , D_2 , $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} — постоянные коэффициенты; α , β , Δ — критические индексы;

г) при $T \to T_c$ выполняются предельные переходы $\delta d_f \to \infty$ и $\delta d_s \to \infty$.

Разработанный в настоящей работе подход предназначен для описания линии фазового равновесия технически важных веществ, в том числе веществ, исследованных в [3—11]. Выбор SF_6 для апробации предложенного подхода обусловлен тем, что для этого вещества имеется массив высокоточных (ρ^- , ρ^+ , p_s , T)-данных [5] в диапазоне температур от $T_0 = 224$ до $T_1 = 318.69$ К. Данный температурный интервал включает ближайшие окрестности как тройной точки, так и критической точки SF_6 .

Значение $D_{2\beta}$, а также отношения $D_{2\beta}/D_{1-\alpha}$ и $D_{2\beta}/D_{\tau}$ рассчитаны в [3] на основе теории ренормгруппы (РГ) для ряда веществ, включая и SF₆.

Анализ отобранной информации позволил сформулировать цель данной работы: разработать систему уравнений (СУ), в которую внесены зависимости $p_s(T)$, $\rho^-(T)$, $\rho^+(T)$. Данные уравнения должны отвечать ряду граничных условий, в том числе:

- I) в диапазоне $[T_0, T_1]$ расчетные свойства, построенные с помощью СУ, удовлетворительно согласуются с исходными (ρ^-, ρ^+, p_s, T) -данными;
- II) уравнения компоненты СУ взаимно согласуются между собой по критическим индексам и критическим параметрам;
- III) расчетные (d_f, d_s, T) -данные, отвечающие СУ, удовлетворительно согласуются с зависимостями (5), (6) в заданном интервале температур.

Выбраны следующие температурные границы:

- а) для $p_s(T)$ значения T_0 и T_1 отвечают равенствам $T_0=1.00199T_{\rm tr},\ T_1=0.999937T_c$ (здесь $T_{\rm tr}=223.555\ {\rm K}$ температура тройной точки ${\rm SF}_6$ [5]);
- б) для $\rho^-(T)$, $\rho^+(T)$ значения T_0 и T_1 отвечают равенствам $T_0 = 1.00199T_{\rm tr}$, $T_1 = 0.99981T_c$.

МОДЕЛЬ ЛИНИИ НАСЫШЕНИЯ

При формировании СУ выбираются $p_s(T)$ в форме [6]:

$$p_{s} = p_{c} e^{-\frac{a_{0}}{t}\tau^{2}} \times$$

$$\times \left(1 + a_{1}\tau + a_{2}\tau^{2-\alpha} + a_{3}\tau^{2-\alpha+\Delta} + a_{4}\tau^{3} + a_{5}\tau^{4} + a_{6}\tau^{7}\right),$$
где $t = T/T_{c}, \quad \tau = 1 - T/T_{c}, \quad T_{c} = 318.71 \quad \mathrm{K}, \quad p_{c} = 3.754 \, \mathrm{M}\Pi a, \quad \alpha = 0.11, \quad \Delta = 0.51.$

Уравнение (7) адаптировано для SF_6 и удовлетворяет требованиям MT. Наряду с этими услови-

ями уравнение (7) в области низких давлений удовлетворяет следующей зависимости [7]:

$$\ln \pi_s = -\frac{a_0}{t},$$

где $\pi_s = p_s/p_c$.

При формировании зависимости $\rho^-(T)$ выполняются следующие этапы.

1. Выбирается форма, которая связана с уравнением Клапейрона—Клаузиуса и имеет форму [8]:

$$\rho^{-}(T) = \frac{T}{r^{*}(T)} \frac{dp_{s}}{dT},\tag{8}$$

где $r^*(T)$ — "кажущаяся" теплота парообразования [8].

Функция $r^*(T)$ и теплота парообразования r связаны формулой

$$r = r^* \left(T \right) \left(1 - \frac{\rho^-}{\rho^+} \right).$$

Исходный вариант скейлинговой части $r^*(T)$ для SF_6 выбирается в виде ряда [8]

$$r^* (T) = \frac{p_c}{\rho_c} (-d_0 + d_1 \tau^{\beta} + d_2 \tau^{2\beta} + d_3 \tau^{1-\alpha} + d_4 \tau^{3\beta} + d_5 \tau + d_6 \tau^{\beta+\Delta}),$$
(9)

где $\rho_c = 742.26 \text{ кг/м}^3$, $\beta = 0.325$, $d_0 = a_1$.

2. На данном этапе в уравнение (8) вносится скейлинговая часть производной dp_s/dT от (7) и включаются компоненты с коэффициентами a_0 , a_1 , a_2 , a_3 . Записывается скейлинговая часть $1/r^*(T)$, входящая в (8), как

$$1/r^*(T) = \rho_c/(-a_1p_c) \left[1 + (d_1/a_1)\tau^{\beta} + (d_2/a_1)\tau^{2\beta} + \dots \right]$$

при условии $\tau \to 0$. В (8) вносится скейлинговая часть $1/r^*(T)$, и $\rho^-(T)$ представляется в форме

$$\rho^{-}(T) = \rho_{c} \left(1 - D_{1} \tau^{\beta} - D_{2} \tau^{\beta + \Delta} + D_{2\beta} \tau^{2\beta} + D_{1-\alpha} \tau^{1-\alpha} + D_{3\beta} \tau^{3\beta} + D_{\tau} \tau + \sum_{n=7}^{14} D_{n}^{*} \tau^{\chi_{n}} + o(\tau^{\chi_{14}}) \right),$$
(10)

где D_1 , D_2 , $D_{2\beta}$, $D_{1-\alpha}$, $D_{3\beta}$, D_{τ} , $(D_n^*, n = 7-14)$ — постоянные коэффициенты, o — символ Ландау.

Записываются коэффициенты D_1 , D_2 , $D_{2\beta}$, $D_{1-\alpha}$, $D_{3\beta}$, D_{τ} , входящие в (10), в виде

$$D_{1} = -\frac{d_{1}}{a_{1}}, \quad D_{2} = -\frac{d_{6}}{a_{1}},$$

$$D_{2\beta} = \frac{d_{1}^{2}}{a_{1}^{2}} + \frac{d_{2}}{a_{1}}, \quad D_{1-\alpha} = \frac{d_{3}}{a_{1}} + (2-\alpha)\frac{a_{2}}{a_{1}},$$
(11)

$$D_{\tau} = -\left(1 - \frac{d_5}{a_1} + 2\frac{a_0}{a_1}\right),$$

$$D_{3\beta} = \left(\frac{d_1}{a_1}\right)^3 - 2\frac{d_1}{a_1}\frac{d_2}{a_1} + \frac{d_4}{a_1}.$$
(12)

Постоянные показатели степени χ_n , входящие в (10), находятся как результат перемножения скейлинговой части производной dp_s/dT и скейлинговой части $1/r^*(T)$ при условии $\tau \to 0$. В результате получены следующие значения:

$$\chi_7 = 1 + \beta - \alpha, \quad \chi_8 = 4\beta, \quad \chi_9 = 1 + \beta,$$

$$\chi_{10} = 1 - \alpha + \Delta, \quad \chi_{11} = 1 + 2\beta - \alpha, \quad \chi_{12} = 1 + 2\beta,$$

$$\chi_{13} = 1 + 3\beta - \alpha, \quad \chi_{14} = 1 + 3\beta.$$
(13)

3. На следующем этапе на коэффициент $D_{3\beta}$ (12) накладывается условие

$$d_4 = a_1 \left[2 \frac{d_1}{a_1} \frac{d_2}{a_1} - \left(\frac{d_1}{a_1} \right)^3 \right].$$

В этом случае компонент $D_{3\beta} | \tau |^{3\beta}$ принимает нулевое значение, т.е. тем самым этот компонент исключается из (10) и модель среднего диаметра теперь удовлетворяет (5).

4. На этом этапе $r^*(T)$ представляется в виде конечного ряда

$$r^{*}(T) = \frac{p_{c}}{\rho_{c}} \left(-d_{0} + d_{1}\tau^{\beta} + d_{2}\tau^{2\beta} + d_{3}\tau^{1-\alpha} + d_{4}\tau^{3\beta} + d_{5}\tau + d_{6}\tau^{\beta+\Delta} + \sum_{n=3}^{14} d_{n}\tau^{\chi_{n}} \right),$$
(15)

где показатели степени χ_n заданы в виде (13), (14). Включение в $r^*(T)$ в виде (15) компонентов $d_7 \tau^{\chi_7}$, $d_8 \tau^{\chi_8}$, ..., $d_{14} \tau^{\chi_{14}}$ позволяет существенно повысить точность описания СУ (ρ^- , ρ^+ , p_s , d_f , d_s , T)-данных [5] по сравнению с СУ, в которую включена $r^*(T)$ (9).

5. Записывается окончательное выражение для $\rho^-(T)$ (8) с использованием (7), (15):

$$\rho^{-}(T) = \frac{\rho_{c} T p_{s}(T) y(T)}{T_{c} p_{c} \left(-d_{0} + d_{1} \tau^{\beta} + d_{2} \tau^{2\beta} + d_{3} \tau^{1-\alpha} + d_{4} \tau^{3\beta} + d_{5} \tau + d_{6} \tau^{\beta+\Delta} + \sum_{n=7}^{14} d_{n} \tau^{\chi_{n}}\right)},$$
(16)

Модель	T_c , K	p_c , МПа	ρ_c , кг/м ³
[9]	318.7232	3.754983	742.3
[5], уравнение линии упругости	318.723	3.7550	
[5], уравнение паровой и жидкостной ветвей линии насыщения	318.706		742.26
[10]	318.709		742.255
[6]	318.71	3.754	742.26
[12]	318.7095		741.61
Данная работа, (7), (8), (16)	318.71	3.754	742.26

Таблица 1. Критические параметры моделей линии насыщения SF₆

где

$$y(T) = \frac{a_0 \tau^2}{t^2} + \frac{2a_0 \tau}{t} - \frac{a_1 + (2 - \alpha) a_2 \tau^{1-\alpha} + (2 - \alpha + \Delta) a_3 \tau^{1-\alpha+\Delta} + 3a_4 \tau^2 + 4a_5 \tau^3 + 7a_6 \tau^6}{1 + a_1 \tau + a_2 \tau^{2-\alpha} + a_3 \tau^{2-\alpha+\Delta} + a_4 \tau^3 + a_5 \tau^4 + a_6 \tau^7}.$$

Анализ показывает, что регулируемые коэффициенты D_1 , D_2 , $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} , $(D_n^*, n = 7-14)$ можно вычислять на основе аппроксимации экспериментальных данных ρ^- , T [5].

При формировании $\rho^+(T)$ учитывается уравнение (10) таким образом, чтобы новые зависимости $d_f(T)$ и $d_s(T)$, опирающиеся на $\rho^+(T)$ и $\rho^-(T)$ (8), согласовывались с (5), (6) в асимптотической окрестности критической точки. В итоге $\rho^+(T)$, согласно (10), записывается в форме

$$\rho^{+}(T) = \rho_{c} \left(1 + D_{1} \tau^{\beta} + D_{2} \tau^{\beta + \Delta} + D_{3} \tau^{2\beta} + D_{4} \tau^{1-\alpha} + D_{5} \tau^{3\beta} + D_{6} \tau + \sum_{n=7}^{14} D_{n} \tau^{\chi_{n}} \right),$$
(17)

где D_1 , D_2 , $D_3 = D_{2\beta}$, $D_4 = D_{1-\alpha}$, $D_5 = D_{3\beta} = 0$, $D_6 = D_{\tau}$ — коэффициенты, совпадающие с аналогичными коэффициентами (10)—(12); D_n , n = 7—14 — коэффициенты, которые вычисляются на основе аппроксимации экспериментальных (ρ^+ , T)-данных [5].

Значения T_c , p_c , ρ_c для SF_6 представлены в большом числе работ (табл. 1) и имеют существенный разброс между собой. При этом в ряде работ значение T_c , которое используется в функциях $\rho^+(T)$ и $\rho^-(T)$, существенно расходится со значением T_c , которое применяется в функции $p_s(T)$. Например, в [5] в функциях $\rho^+(T)$, $\rho^-(T)$ использовано значение $T_c = 318.723$ K, а в функции $p_s(T)$ применено значение $T_c = 318.706$ K. В рамках предлагаемого подхода значения T_c , p_c , ρ_c

в (7), (16), (17) должны иметь одни и те же значения. В результате для T_c , p_c , ρ_c использовались значения, рекомендованные в работе [6] и приведенные в табл. 1.

В [3] на основе РГ предложена модель d_f (5), которая ориентирована на вещества с заданной молекулярной структурой и имеет следующие коэффициенты применительно к SF_6 :

$$D_{2\beta} = 0.064$$
, $D_{2\beta}/D_{1-\alpha} = -0.21$, $D_{2\beta}/D_{\tau} = 0.14$. (18)

В модели (5) [3] приняты критические индексы в виде $\beta = 0.326$ и $\delta = 4.8$. Применительно к СУ выбраны значения $\beta = 0.325$, $\alpha = 0.11$, $\Delta = 0.51$, которые соответствуют рекомендациям МТ и являются близкими к упомянутым значениям [3]. Коэффициенты и параметры уравнений (7), (16), (17) находятся на основе экспериментальных данных [5] путем поиска минимума функционалов F_x , который записывается в виде

$$F_{x} = \sum_{i=1}^{N} \left[Q_{x_{,i}} \left(x_{i}^{(e)} - x_{j}^{(r)} \right) \right]^{2}, \tag{19}$$

где x — соответствующее свойство $(p_s, \rho^-, \rho^+); Q_{x_{,j}}$ — "вес" j-й экспериментальной $x_j^{(e)}$ -точки; $x_j^{(r)}$ — j-я точка, соответствующая точке $x_j^{(e)}$ и рассчитанная по одному из уравнений (7), (16) или (17).

В данной работе рассмотрены два варианта СУ — уравнения (7), (16), (17), которые отличаются между собой значениями $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} . При этом в обоих вариантах используется уравнение (7) с одними и теми же коэффициентами [6], приведенными в табл. 2.

В варианте I вычисляются (d_f, T) -данные, полученные на основе (ρ^-, ρ^+, T) -данных [5]. Значе-

ния $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} определяются совместно с другими коэффициентами СУ с помощью метода наименьших квадратов (МНК), который реализован на основе программы SVD [13]. Данный МНК обеспечивает минимизацию F_{ρ^-} , F_{ρ^+} (19) и среднего квадратического отклонения S_{df} , которое включает локальные отклонения ($d_f^{[5]}$, T)-данных от функции $d_f(\tau)$ (1). Здесь $d_f^{[5]}$, T получены на основе (ρ^- , ρ^+ , T)-данных [5] по формуле (1).

В результате определены следующие значения коэффициентов $D_{2\beta}, D_{1-\alpha}, D_{\tau}$ и их отношения:

$$D_{2\beta} = 0.20423571, \quad D_{1-\alpha} = -1.1799758,$$
 $D_{\tau} = 1.66230357,$ (20)

$$\frac{D_{2\beta}}{D_{1-\alpha}} = -0.173084659, \quad \frac{D_{2\beta}}{D_{\tau}} = 0.122863064. \quad (21)$$

Оптимальные значения остальных коэффициентов в (7), (16), (17) приведены в табл. 3, 4.

Статистические оценки неопределенности в виде отклонений (S, AAD, BIAS, SDV, RMS) [11], которые относятся к экспериментальным данным [1, 5, 9, 14—24], от результатов расчетов по уравнениям (7), (16), (17) представлены в табл. 5—7. Здесь согласно [11]:

$$S = \sqrt{\sum (\delta r_i)^2 / [N(N-1)]}, \%,$$

$$AAD = 1/N \sum |\delta r_i|, \%, \quad BIAS = 1/N \sum \delta r_i, \%,$$
(22)

$$SDV = \sqrt{\sum (\delta r_i - BIAS)^2 / (N - 1)}, \%,$$

$$RMS = \sqrt{\sum (\delta r_i)^2 / N}, \%,$$
(23)

где $\delta r_i = (r_{i, \rm exp} - r_{i, \rm calc})/r_{i, \rm exp} \times 100$, %; $r_{i, \rm exp}$, $r_{i, \rm calc}$ — соответственно значения экспериментальных данных [5] и рассчитанных на основе СУ $(r = p_s, r = \rho^-, r = \rho^+)$; N — число экспериментальных точек.

СУ воспроизводит экспериментальные данные [5] в пределах экспериментальной неопределенности этих данных (рис. 1—3). При этом точность описания экспериментальных (ρ^- , ρ^+ , T)-данных [5] с помощью (16), (17) существенно выше, чем точность оригинальных уравнений, предложенных в [5] и описывающих указанные результаты. Например, с помощью уравнений (16), (17) получены следующие отклонения данных [5]: $RMS_{\rho^-} = 0.0589$, $RMS_{\rho^+} = 0.00504$; для уравнений Funke и др. [5] такие же оценки составляют $RMS_{\rho^-} = 0.126$, $RMS_{\rho^+} = 0.00947$.

Таблица 2. Коэффициенты уравнения $p_s(T)$ (7)

i	a_i	i	a_i
0	6.0	4	-8.8487306
1	-7.0611045	5	15.215161
2	22.909936	6	-18.964624
3	-17.714252		

Таблица 3. Коэффициенты d_n уравнения $\rho^-(T)$ (16)

i	d_i	i	d_i
1	10.216797	8	48342.462
2	13.340676	9	21503.014
3	-34.967846	10	-55232.97
4	17.21615	11	-22774.357
5	-6.7988038	12	50246.705
6	254.58897	13	-31555.108
7	-23778.786	14	13027.463

Таблица 4. Коэффициенты (10), (11) и D_n уравнения $\rho^+(T)$ (17)

1 (/ (/			
i	D_i	i	D_i
1	1.446912	8	18430.057
2	36.05512	9	-852.83946
3	0.20423581	10	-20482.532
4	-1.1799759	11	11 370.367
5	0	12	-1614.9636
6	1.6623036	13	-2644.6475
7	-5634.2658	14	1394.4598

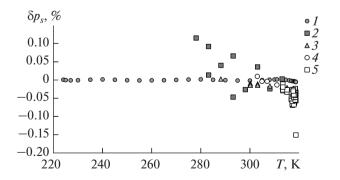


Рис. 1. Относительные отклонения давления насыщения $(p_{s, \exp} - p_{s, \text{calc}})/p_{s, \exp} \times 100, \%$, рассчитанные по (7), от экспериментальных данных: I - [5], 2 - [14], 3 - [9], 4 - [16], 5 - [17].

3.16

		(F 3) = / / (31	F3(-)	()
Источник	N	S	AAD	BIAS	SDV	RMS
[5]	32	0.000395	0.00163	-0.000846	0.00206	0.0022
[14]	10	0.019	0.0463	0.0267	0.0532	0.0571
[9]	9	0.00508	0.0134	-0.0129	0.00674	0.0144
[15]	23	0.155	0.707	0.707	0.174	0.727
[16]	14	0.0102	0.0321	-0.0307	0.0209	0.0367
[17]	54	0.00646	0.0427	-0.0427	0.0199	0.047
[18]	21	0.0936	0.273	0.0586	0.425	0.419
[19]	10	0.221	0.441	0.441	0.52	0.662
[20]	13	0.808	2.36	2.1	1.92	2.8

3.15

3.15

0.317

Таблица 5. Отклонения экспериментальных (p_s , T)-данных от результатов по уравнению $p_s(T)$ (7)

Таблица 6. Отклонения экспериментальных (ρ^- , T)-данных от результатов по уравнению $\rho^-(T)$ (16)

1.82

Источник	N	S	AAD	BIAS	SDV	RMS
[4]	4	0.0432	0.0715	-0.0235	0.082	0.0748
[5]	32	0.0106	0.0167	-0.0113	0.0587	0.0589
[9]	5	0.0149	0.0219	-0.0219	0.0225	0.0297
[16]	6	0.222	0.389	-0.354	0.381	0.496
[1]*	33	0.2	1.05	-1.04	0.459	1.13
[1]**	33	0.0888	0.33	0.166	0.482	0.502
[22]	13	2.08	5.94	-5.48	4.89	7.21
[19]	8	0.753	0.938	0.721	1.99	1.99
[23]	6	1.73	3.79	3.79	0.82	3.86
[20]	12	2.3	6.08	-2.12	7.64	7.61

[21]

4

Таблица 7. Отклонения экспериментальных (ρ^+ , T)-данных от результатов по уравнению $\rho^+(T)$ (17)

Источник	N	S	AAD	BIAS	SDV	RMS
[4]	4	0.0297	0.0496	-0.0188	0.0554	0.0515
[5]	31	0.000921	0.00353	0.00058	0.00509	0.00504
[9]	13	0.00808	0.0157	0.0148	0.0247	0.028
[16]	8	2.1	2.72	-1.69	5.67	5.56
[1]*	33	0.17	0.962	-0.962	0.0521	0.964
[1]**	33	0.0606	0.338	0.338	0.0585	0.343
[22]	13	0.86	2.24	-2.19	2.1	2.98
[19]	9	0.0339	0.0736	-0.0232	0.0986	0.0958
[24]	16	0.0439	0.134	-0.0529	0.167	0.17
[19]	8	1.13	1.93	-1.93	2.42	2.98
[23]	7	0.729	1.63	-1.63	0.795	1.78
[20]	12	1.14	2.26	-1.83	3.46	3.78

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 61 № 4 2023

^{*} $T_c=318.707~{
m K},$ $ho_c=733~{
m kг/m}^3$ [2]. ** $T_c=318.71~{
m K},$ $ho_c=742.26~{
m kг/m}^3$ данной работы.

^{*} $T_c=318.707~{
m K},$ $ho_c=733~{
m kg/m}^3$ [2]. ** $T_c=318.71~{
m K},$ $\rho_c=742.26~{
m kg/m}^3$ данной работы.

В варианте II выбираются следующие значения $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} в соответствии с рекомендациями [3]:

$$D_{2\beta} = 0.06261481,$$

$$\frac{D_{2\beta}}{D_{1-\alpha}} = -0.21383431, \quad \frac{D_{2\beta}}{D_{\tau}} = 0.14080154.$$
(24)

Такой выбор также позволил на основе (7), (16), (17) описать данные о p_s , ρ^- , ρ^+ [5] в пределах экспериментальной неопределенности этих результатов. Однако в точности описания среднего диаметра вариант II существенно уступает варианту I, что отражается в отклонениях (S, AAD, BIAS, SDV, RMS), показанных в табл. 8 (вычисления выполнены по (22), (23), где $r = d_f$).

С целью проверки компьютерного кода в табл. 9 приведены p_s , ρ^- , ρ^+ , T, рассчитанные по (7), (16), (17).

ПРИКЛАДНЫЕ РЕЗУЛЬТАТЫ

Значения d_f , которые рассчитаны на основе данных о ρ^- , ρ^+ [4], полученные на основе анализа экспериментальной информации [1], в отличие от значений d_f , основанных на данных [2, 3], при $\tau \leq 0.00041$ находятся в пределах экспериментальной неопределенности $d_f^{[5]}$ (рис. 4а, символы δ). Модели d_f на основе (5) с привлечением (18), (20) (линии d_f на рис. 4) уже при d_f за пределы экспериментальной неопределенности $d_f^{[5]}$. В то же время расчеты по модели (5) с привлечением (24) (линия d_f на рис. 4) согласуются с данными $d_f^{[5]}$ до d_f до d_f с 0.006.

Вариант зависимости $d_f(T)$, который рассчитан на основе взаимосогласованных уравнений (16), (17) и включает коэффициенты $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} , отвечающие (20) и (21), описывает экспериментальные $(d_f^{[5]},\ T)$ -данные с высокой точностью (табл. 8, рис. 4, 5, линия I).

Из графической информации (рис. 46, линия 9) также видно, что второй вариант зависимости $d_f(T)$, который рассчитан на основе уравнений (16), (17) и с коэффициентами $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} из (24), отвечающими (18), согласуется с экспериментальными ($d_f^{[5]}$, T)-данными в пределах неопределенности, которая относится к этим значениям ($d_f^{[5]}$, T). Анализ показывает, что во втором варианте отклонения (S, AAD, BIAS, SDV, RMS) существенно увеличиваются (табл. 8, рис. 46) по сравнению с критериями, полученными в первом варианте. Интересно отметить, что во втором

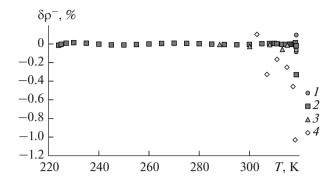


Рис. 2. Относительные отклонения плотности пара на линии насыщения $(\rho_{\rm exp}^- - \rho_{\rm calc}^-)/\rho_{\rm exp}^- \times 100$, %, рассчитанные по (16), от экспериментальных данных: 1 - [4], 2 - [5], 3 - [9], 4 - [16].

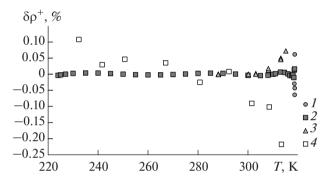


Рис. 3. Относительные отклонения плотности жидкости на линии насыщения $(\rho_{\rm exp}^+ - \rho_{\rm calc}^+)/\rho_{\rm exp}^+ \times 100, \%$, рассчитанные по (17), от экспериментальных данных: 1 - [4], 2 - [5], 3 - [9], 4 - [18].

варианте коэффициенты $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (24) практически совпадают со значениями $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (18), рассчитанными на основе теории РГ [3].

Данные $(d_f^{[2]}, T)$, которые получены на основе (5) и моделированием экспериментальных данных [2] (линия 2 на рис. 4), выходят за пределы экспериментальной неопределенности $d_f^{[5]}$ (линии 12, 13, рис. 4) уже при значениях $|\tau| \ge 0.0004$.

Данные $(d_f^{[1]}, T)$, рассчитанные на основе экспериментальных результатов ρ^- , ρ^+ , T [1], выходят за пределы экспериментальной неопределенности $d_f^{[5]}$ в асимптотической окрестности T_c (рис. 4, точки II). Результаты [1] использованы в ряде работ, в том числе в [2, 3]. Так, в [2] приведены экспериментальные результаты [1] при $T_c = 318.707$ K, использованные при построении $d_f^{[1]}(T)$ на рис. 4. Также в [2] предложена собственная зависимость $d_f^{[2]}(T)$, показанная на рис. 4 (точки f).

0.66

0.91

3.6

Вариант AAD, % BIAS, % RMS, % Источник S, % 0.093 31 0.22 -0.170.51 [5]

Таблица 8. Отклонения экспериментальных $d_f^{[5]}$ -данных от $d_{f,\text{calc}}$

31

Таблица 9. Свойства SF₆ на линии фазового равновесия

[5]

II

Свойство	Формула	T, K			
	Формула	224	318.65	318.69	
$p_s(T)$, M Π a	(7)	0.23581247	3.7490167	3.7523375	
$\rho^{-}(T)$, $\kappa \Gamma/M^3$	(16)	19.913225	668.86769	692.25280	
$\rho^+(T)$, $\kappa \Gamma/M^3$	(17)	1842.9246	815.94870	792.42228	

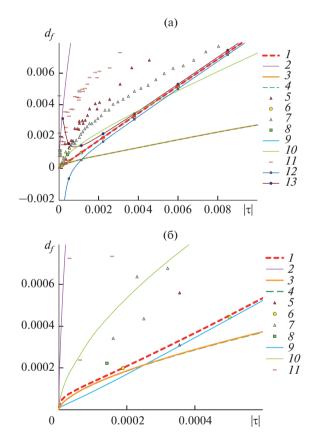


Рис. 4. Модели среднего диаметра $d_{f}(\tau)$: 1 — рассчитанная по (16), (17) при $D_{2\beta},\ D_{l-\alpha},\ D_{\tau}$ (20); 2- (5), $D_{2eta}=0.88,\; D_{\mathrm{l}-lpha}=D_{2eta}/(-0.14)$ и $D_{\mathrm{t}}=D_{2eta}/0.12$ определены в [3] моделированием экспериментальных данных [2]; 3-(5), $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (22) определены в [3] методом ренормгруппы; 4-(5), $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (20); 5на основе экспериментальных данных [2]; 6 - [5]; 7 расчет в [1] методом РГ; 8 – расчет на основе данных [4]; 9 — (16), (17) при $D_{2\beta},\,D_{\mathrm{l}-\alpha},\,D_{\mathrm{t}}$ (24), аналогичных (18) [3]; 10 - (5) с коэффициентами (24); 11 - расчет на основе экспериментальных данных [1]; 12, 13 - границы экспериментальной неопределенности среднего диаметра, рассчитанного на основе экспериментальных данных [5] по (3).

Таким образом, СУ с наименьшей неопределенностью описывает не только (ρ^-, ρ^+, T) -данные [5], но и значения среднего диаметра $d_f^{[5]}$, рассчитанные на основе этих экспериментальных данных.

0.53

Система уравнений (7), (16), (17) позволяет рассчитать параметр порядка d_s в пределах экспериментальной относительной неопределенности $E_s = \pm \delta d_s^{[5]} \times 100\%$, где $\delta d_s^{[5]}$ — неопределенность, рассчитанная на основе (5) и данных [5] во всем интервале температур данных [5] (рис. 5). Заметим, что на рис. 5 приведена информация о ε_s и $\epsilon_d = \delta d_d^{[5]} \times 100\%$, где $\delta d_f^{[5]}$ рассчитана на основе (4) и данных [5] для всех экспериментальных данных ρ^{+} и ρ^{-} [5] за исключением значения $\epsilon_{d} = -2.14\%$ при T = 318.55 K.

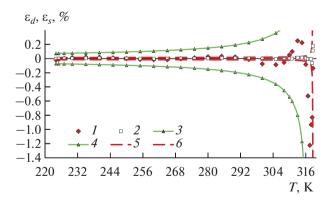


Рис. 5. Зависимости относительных неопределенностей $\varepsilon_d = \left(d_f^{[5]} - d_{f, {
m calc}}\right)/d_f^{[5]} imes 100, \%,$ и $\varepsilon_s =$ $=(d_s^{[5]}-d_{s,calc})/d_s^{[5]}\times 100, \%$, от температуры: $I-\varepsilon_d$; $2 - \varepsilon_s$; 3, 4 — границы $E_d = \pm \delta d_f^{[5]} \times 100$, %, экспериментальной неопределенности данных $d_f^{[5]}$; 5, 6 – границы $E_s = \pm \delta d_s^{[5]} \times 100, \%, d_s^{[5]}$.

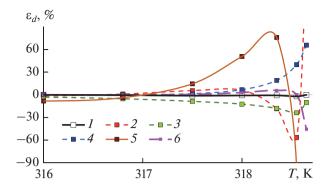


Рис. 6. Относительные отклонения $\varepsilon_d = \left(d_f^{[5]} - d_{f,\text{calc}}\right)/d_f^{[5]} \times 100$, %, значений среднего диаметра $d_f^{[5]}$, рассчитанных на основе экспериментальных данных [5], от среднего диаметра $d_{f,\text{calc}}$, рассчитанного по уравнениям различных работ: I – расчет по уравнениям (16), (17) при $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (20) и (18); 2-[8]; 3-[10]; 4-[4]; 5-[6]; 6-[5].

Анализ показал, что предложенная система уравнений с существенно более высокой точностью описывает экспериментальные данные d_s и d_f [5] по сравнению с моделями линии фазового равновесия [4, 6, 8, 10, 12], в рамках которых имеет место предельный переход $d_f|_{\tau \to 0} \to D_{2\beta} \tau^{2\beta}$ (рис. 6, 7).

Авторы [5] предложили для описания своих экспериментальных данных уравнения линии упругости и уравнения паровой и жидкостной линии насыщения. Данные уравнения, в отличие от уравнений (7), (16), (17), не удовлетворяют требованиям РГ [3, 25]. В отличие от модели линии фазового равновесия данной работы, критическая температура принята авторами [5] существенно разной для линии упругости и на линии насыщения

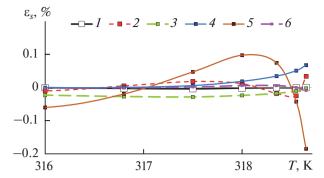


Рис. 7. Относительные отклонения $\varepsilon_s = \left(d_s^{[5]} - d_{s \text{ calc}}\right)/d_s^{[5]} \times 100$, %, значений параметра порядка $d_s^{[5]}$, рассчитанных на основе экспериментальных данных [5], от параметра порядка $d_{s,\text{calc}}$, рассчитанного по уравнениям других работ: I – расчет по уравнениям (16), (17) при $D_{2\beta}$, $D_{1-\alpha}$, D_{τ} (18); 2-[8]; 3-[10]; 4-[4]; 5-[6]; 6-[5].

(табл. 1). Из рис. 6 следует, что локальные уравнения паровой и жидкостной линий насыщения [5] с большей неопределенностью (достигающей 40%) описывают экспериментальные данные $d_f^{[5]}$, чем уравнения (16), (17). Действительно, в случае (16), (17) (вариант I) максимальное абсолютное отклонение $\max |\varepsilon_f| < 2.1\%$. В табл. 9 представлены статистические характеристики, показывающие точность описания экспериментальных данных [5] различными моделями линии насыщения. По целому ряду статистических характеристик модель линии насыщения (16), (17) превосходит по точности модели [5, 12, 26], в том числе модель линии насыщения, разработанную сотрудниками NIST [27] (табл. 10).

Таблица 10. Статистические характеристики моделей линии насыщения при описании данных [5]

				•		, ,	·
Модель	Свойство	N	S, %	AAD,%	BIAS, %	SDV, %	RMS, %
[5]	ρ	32	0.023	0.0387	-0.0101	0.128	0.126
[12]	ρ-	32	0.016	0.0663	-0.0029	0.093	0.0912
[26]	ρ-	32	0.0197	0.0692	-0.0187	0.11	0.11
[27]	$ ho^-$	32	0.0131	0.0217	0.021	0.0708	0.0728
(16), (17)	ρ-	32	0.0099	0.015	-0.0097	0.055	0.056
[5]	ρ^+	31	0.0017	0.0027	0.0015	0.0095	0.0094
[12]	ρ^+	31	0.0049	0.0162	0.0105	0.0255	0.0272
[26]	ρ^+	31	0.00284	0.0113	-0.0015	0.0157	0.0156
[27]	ρ^+	31	0.0227	0.0343	-0.0338	0.121	0.124
(16), (17)	ρ^{+}	31	0.0011	0.0033	-0.0004	0.0062	0.0061

ЗАКЛЮЧЕНИЕ

На основе уравнения (16), которое структурно включает "кажущуюся" теплоту парообразования, получены (ρ^- , T)-данные SF₆, а также разработано выражение (17), описывающее (ρ^+ , T)-данные SF₆ в широком интервале температур. Выполненный анализ новых (ρ^- , ρ^+ , d_f , T)-данных показывает следующее.

- 1. Неопределенности $d_f^{[5]}$ -данных [5] (рис. 4а, линии 12, 13) не позволяют сделать однозначного вывода о знаке среднего диаметра d_f в асимптотической окрестности T_c (рис. 4а, линия 12).
- 2. Уравнения (16), (17) успешно использованы для расчета среднего диаметра и параметра порядка в широком интервале температур (рис. 5). В критической области новые расчетные (d_f, T) -данные отвечают условию $d_f > 0$ и удовлетворительно согласуются с величинами, полученными на основе (5), (6) и отвечающими РГ. Все показатели степени компонентов линии насыщения рассчитаны на основе МТ и уравнения Клапейрона—Клаузиуса.
- 3. Сформирована система, которая содержит взаимосогласованные уравнения (7), (16), (17) и удовлетворяет требованиям МТ.
- 4. В пределах неопределенности экспериментальных данных СУ позволяет описать (p_s , ρ^- , ρ^+ , T)-данные [5] в диапазоне от температуры тройной точки до критической температуры.

Комплекс представленных уравнений (7), (16), (17) в силу его универсальности может быть использован при описании линии фазового равновесия не только SF_6 , но и других технически важных веществ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Weiner J., Langley K.H., Ford Jr. N.C. Experimental Evidence for a Departure from the Law of the Rectilinear Diameter // Phys. Rev. Lett. 1974. V. 32. P. 879.
- Pestak M.W., Goldstein R.E., Chan M.H.W., de Bruyn J.R., Balzarini D.A., Ashcroft N.W. Three-body Interactions, Scaling Variables, and Singular Diameters in the Coexistence Curves of Fluids // Phys. Rev. B. 1987. V. 36. P. 599.
- 3. Wang L., Zhao W., Wu L., Li L., Cai J. Improved Renormalization Group Theory for Critical Asymmetry of Fluids // J. Chem. Phys. 2013. V. 139. 124103.
- 4. Воробьев В.С., Устюжанин Е.Е., Очков В.Ф., Шишаков В.В., Тун Аунг Ту Ра, Рыков В.А., Рыков С.В. Исследование границы фазового перехода для C_6F_6 и SF_6 в условиях микрогравитации // ТВТ. 2020. Т. 58. № 3. С. 355.
- 5. Funke M., Kleinrahm R., Wagner W. Measurement and Correlation of the (p, ρ, T) Relation of Sulphur Hexafluo-

- ride (SF₆). II. Saturated-liquid and Saturated-vapour Densities and Vapour Pressures Along the Entire Coexistence Curve // J. Chem. Thermodyn. 2001. V. 34. P. 735.
- 6. *Kudryavtseva I.V., Rykov V.A., Rykov S.V., Ustyuzh-anin E.E.* A Model System of the Liquid Density, the Gas Density and the Pressure on the Saturation Line of SF₆ // J. Phys.: Conf. Ser. 2019. V. 1385. 012010.
- 7. Wagner W. New Vapour Pressure Measurements for Argon and Nitrogen and a New Method for Establishing Rational Vapour Pressure Equations // Cryogenics. 1973. V. 13. P. 470.
- 8. *Rykov S.V., Kudryavtseva I.V., Rykov V.A., Ustyuzh-anin E.E., Ochkov V.F.* Analysis of the Saturation Line on the Basis of Clapeyron—Clausius and Gibbs—Duhem Equations // J. Phys.: Conf. Ser. 2019. V. 1147. 012017.
- 9. Gilgen R., Kleinrahm R., Wagner W. Measurements of the (Pressure, Density, Temperature) Relation of Sulphur Hexafluoride (SF₆) in the Homogeneous Region at Temperatures from 321.15 K to 333.15 K and at Pressures up to 8 MPa and on the Coexistence Curve at Temperatures from 288.15 K to 315.15 K // J. Chem. Thermodyn. 1992. V. 24. P. 953.
- 10. *Vorob'ev V.S.*, *Rykov V.A.*, *Ustyuzhanin E.E.*, *Shishakov V.V.*, *Popov P.V.*, *Rykov S.V.* Comparison of the Scaling Models for Substance Densities Along Saturation Line // J. Phys.: Conf. Ser. 2016. V. 774. 012017.
- Kolobaev V.A., Popov P.V., Kozlov A.D., Rykov S.V., Kudryavtseva I.V., Rykov V.A., Sverdlov A.V., Ustyuzhanin E.E.
 Methodology for Constructing the Equation of State and Thermodynamic Tables for a New Generation Refrigerant // Meas. Tech. 2021. V. 64. P. 109.
- 12. Vorobev V.S., Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Pokholchenko V.A. Development of Combined Scaling Models for Liquid and Gas Densities at the Saturation Line: Structures and Numerical Data for SF₆ // J. Phys.: Conf. Ser. 2019. V. 1147. 012016.
- 13. Форсайт Дж., Малькольм Н., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. 280 с.
- 14. *Hurly J.J., Defibaugh D.R., Moldover M.R.* Thermodynamic Properties of Sulfur Hexafluoride // Int. J. Thermophys. 2000. V. 21. P. 739.
- 15. *Berg J., Wagner Z.* Vapour—Liquid Equilibrium in the Sulphur Hexafluoride—*n*-pentane System at High Pressure // Fluid Phase Equilib. 1990. V. 54. P. 35.
- 16. *Biswas S.N., Ten Seldam C.A.* Determination of the Coexistence Curve of Sulfur Hexafluoride from Isochoric Intercepts // Fluid Phase Equilib. 1989. V. 47. P. 67.
- 17. Biswas S.N., Trappeniers N.J., Hoogland J.H.B. PVT Properties of Sulfur—Hexafluoride in the Gas—Liquid Critical Region // Physica A. 1984. V. 126. P. 384.
- 18. *Mears W.H., Rosenthal E., Sinka J.V.* Physical Properties and Virial Coefficients of Sulfur Hexafluoride // J. Phys. Chem. 1969. V. 73. P. 2254.
- 19. Clegg H.P., Rowlinson J.S., Sutton J.R. The Physical Properties of Some Fluorine Compounds and Their Solutions // Trans. Faraday Soc. 1955. V. 51. P. 1327.

- Miller H.C., Verdelli L.S., Gall J.F. Some Physical Properties of Sulfur Hexafluoride // Ind. Eng. Chem. 1951. V. 43. P. 1126.
- 21. *Schumb W.C.*, *Gamble E.L*. The Preparation of Sulfur Hexafluoride and Some of Its Physical Properties // J. Am. Chem. Soc. 1930. V. 52. P. 4302.
- Tison J.K., Hunt E.R. Self-diffusion, Spin-lattice Relaxation, and Density of SF₆ near the Critical Point // J. Chem. Phys. 1971. V. 54. P. 1526.
- Atack D., Schneider W.G. The Coexistence Curve of Sulfur Hexafluoride in the Critical Region // J. Phys. Chem. 1951. V. 55. P. 532.
- 24. *Otto J., Thomas W.* Thermische Zustandsgrößen von Schwefelhexafluorid // Zeitschrift für Physikalische Chemie. 1960. Bd. 23. S. 84.

- 25. Zhou Z., Cai J., Hu Y. A Self-consistent Renormalisation Group Theory for Critical Asymmetry of One-component Fluids // Molecular Physics. 2022. V. 120. P. e1987541.
- 26. *Ustyuzhanin E.E.*, *Shishakov V.V.*, *Abdulagatov I.M.*, *Popov P.V.*, *Rykov V.A.*, *Frenkel M.L.* Scaling Models of Thermodynamic Properties on the Coexistence Curve: Problems and Some Solutions // Russ. J. Phys. Chem. B. 2012. V. 6. № 8. P. 912.
- 27. *Guder C., Wagner W.* A Reference Equation of State for the Thermodynamic Properties of Sulfur Hexafluoride (SF₆) for Temperatures from the Melting Line to 625 K and Pressures up to 150 MPa // J. Phys. Chem. Ref. Data. 2009. V. 38. P. 33.