Testing Adsorption Properties of the NiMo/Al2O3 Catalyst of the Protective Layer during Hydrotreatment of Diesel Fuel with a High Silicon Content

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Experiments with a duration of 60 and 200 hours are carried out at different contact times of 0.33, 0.66, and 1.33 hours (the specific volumetric rate is 3.0, 1.5, and 0.75 h-1, and the pressure is 4.0 MPa) during hydrotreatment of diesel fuel with a high silicon content. Experiments with a run time of 200 hours showed that the silicon concentration in the front layer of the NiMo/Al2O3 catalyst does not change as the contact time grows, indicating that the maximum capacity value of ~5 wt. % is reached. The absence of the influence of external mass transfer on the adsorption of silicon, as well as on the conversion of sulfur during testing of the catalyst in a laboratory setup, is experimentally studied and theoretically substantiated. The values of linear feed rates of raw materials are determined, showing no influence of external mass transfer on both the process of silicon adsorption and sulfur conversion.

Авторлар туралы

R. Petrov

G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: petrov@catalysis.ru
Novosibirsk, Russian Federation

S. Reshetnikov

G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russian Federation

P. Dik

G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russian Federation

I. Golubev

G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russian Federation

A. Noskov

G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russian Federation

Әдебиет тізімі

  1. Chainei F., Le Meur L., Lienemann C.P., Ponthus J., Courtiade M., Donard O.F.X. Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 1 – Gas samples analysis by gas chromatography-time of flight mass spectrometry // Fuel. 2013. V. 111. P. 519.
  2. Chainei F., Lienemann C.P., Courtiade M., Ponthus J., Donard O.F.X. Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: A review // J. Anal. At. Spectrom. 2011. V. 26. № 1. P. 30.
  3. Kressmann S., Morel F., Harlé V., Kasztelan S. Recent developments in fixed-bed catalytic residue upgrading // Catal. Today. 1998. V. 43. № 3–4. P. 203.
  4. Zeuthen P., Schmidt M.T., Rasmussen H.W., Moyse B.M. The benefits of cat feed hydrotreating and the impact of feed nitrogen on catalyst stability // NPRA Annu. Meet. Tech. Pap. 2010. V. 2. № August. P. 818.
  5. Nadeina K.A., Kazakov M.O., Kovalskaya A.A., Danilevich V.V., Klimov O.V., Danilova I.G., Khabibulin D.F., Gerasimov E.Y., Prosvirin I.P., Ushakov V.A., Fedotov K.V., Kondrashev D.O., Kleimenov A.V., Noskov A.S. Guard bed catalysts for silicon removal during hydrotreating of middle distillates // Catal. Today. 2019. V. 329. P. 53.
  6. Bolduhevskii R.E., Guseva A.I., Vinogradova N.Y., Naranov E.R., Maksimov A.L., Nikul’shin P.A. Evaluation of the hydrodesulfurization activity in development of catalysts for demetallization of heavy petroleum feedstock // Russ. J. Appl. Chem. 2018. V. 91. № 12. 2046.
  7. Meshalkin V.P., Orekhov V.A., Bykov A.A., Bobkov V.I., Shinkevich A.I. Theory of a solid-liquid heterogeneous reaction to form a gas phase // Theor. Found. Chem. Eng. 2023. V. 57. № 5. P. 828.
  8. Golubev I.S., Dik P.P., Petrov R.V., Mik I.A., Bessonova N.V., Reshetnikov S.I., Noskov A.S. Dynamics of Silicon Sorption on the NiMo/Al2O3 Guard Bed Catalyst During Hydrotreating of Diesel // Petroleum Chemistry. 2023. V. 63. № 10. P. 1203.
  9. Aleksandrov P.V., Bukhtiyarova G.A., Reshetnikov S.I. Study of the influence exerted by addition of coker gas oil to straight-run gas oil on the process of hydrotreating in the presence of CoMo/Al2O3 catalyst // Russ. J. Appl. Chem. 2019. V. 92. № 8. 1077.
  10. Bej S.K., Dalai A.K., Maity S.K. Effect of diluent size on the performance of a microscale fixed bed multiphase reactor in up flow and down flow modes of operation // Catal. Today. 2001. V. 64. № 3–4. P. 333.
  11. Petrov R.V., Reshetnikov S.I., Dick P.P., Golubev I.S., Noskov A.S. Influence of diesel fraction feed rate on silicon removal by the protective layer catalyst // Theor. Found. Chem. Eng. 2025. V. 59. № 1. P. 65.
  12. Kam E.K.T., Al-Shamali M., Juraidan M., Qabazard H. A hydroprocessing multicaltyst detection and reactor performance model-pilot-plant life test applications // Energy and Fuels. 2005. V. 19. № 3. P. 753.
  13. Rodríguez E., Félix G., Ancheyta J., Trejo F. Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons // Fuel. 2018. V. 225. P. 118.
  14. Cotta R.M., Wolf Maciel M.R., Maciel Filho R. Kinetic and reactor models for HDT of middle distillates // Comput. Chem. Eng. 1999. V. 23. P. 791.
  15. Kouzu M., Uchida K., Kuriki Y., Ikazaki F. Micro-crystalline molybdenum sulfide prepared by mechanical milling as an unsupported model catalyst for the hydrodesulfurization of diesel fuel // Appl. Catal. A Gen. 2004. V. 276. № 1–2. P. 241.
  16. Andari M.K., Abu-Seedo F., Stanislaus A., Qabazard H.M. Kinetics of individual sulfur compounds in deep hydrodesulfurization of Kuwait diesel oil // Fuel. 1996. V. 75. № 14. P. 1664.
  17. Takatsuka T., Inoue S., Wada Y. Deep hydrodesulfurization process for diesel oil // Catal. Today. 1997. V. 39. № 1–2. P. 69.
  18. Novaes L.R., Pacheco M.E., Salim V.M.M., Resende N.S. Accelerated deactivation studies of hydrotreating catalysts in pilot unit // Appl. Catal. A Gen. 2017. V. 548. P. 114.
  19. Templis C., Vonortas A., Sebos I., Papayannakos N. Vegetable oil effect on gasoil HDS in their catalytic co-hydroprocessing // Appl. Catal. B Environ. 2011. V. 104. № 3–4. P. 324.
  20. Deng Z., Wang T., Wang Z. Hydrodesulfurization of diesel in a slurry reactor // Chem. Eng. Sci. 2010. V. 65. № 1. P. 480.
  21. Macias M.J., Ancheyta J. Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes // Catal. Today. 2004. V. 98. № 1–2. P. 243.
  22. Tyn M.T., Calus W.F. Estimating Liquid Molal Volume // Processing. 1975. V. 21. № 5. P. 16.
  23. Glaso O. Generalized Pressure-Volume-Temperature Correlations // J. Pet. Technol. 1980. V. 32. № 5. P. 785.
  24. Ancheyta J., Munoz J.A.D., Macias M.J. Experimental and theoretical determination of the particle size of hydrotreating catalysts of different shapes // Catal. Today. 2005. V. 109. № 1–4. P. 120.
  25. Tyn M.T., Calus W.F. Diffusion Coefficients in Dilute Binary Liquid Mixtures // J. Chem. Eng. Data. 1975. V. 20. № 1. P. 106.
  26. Tirado A., Ancheyta J. Modeling of a bench-scale fixed-bed reactor for catalytic hydrotreating of vegetable oil // Renew. Energy. 2020. V. 148. P. 790.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).