УДК

ВОСПРОИЗВОДИМОСТЬ РЕЗУЛЬТАТОВ КОНДУКТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СТЕПЕНИ РАЗБАВЛЕНИЯ МИНЕРАЛЬНОЙ ВОДЫ "ЕССЕНТУКИ-4"

© 2023 г. С. Н. Никулина^{а, *}, Е. И. Смирнова^b, А. Е. Васюков^b, Н. Ю. Фатеева^c, Е. А. Чериканова^c

^аФедеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов", Москва, Россия

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
 "Калужский государственный университет им. К.Э. Циолковского", Калуга, Россия

^c Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (КФ МГТУ им. Н.Э. Баумана), Калуга, Россия

*e-mail: voinsveta579@mail.ru

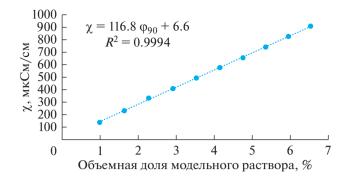
Поступила в редакцию 14.04.2023 г. После доработки 20.05.2023 г. Принята к публикации 05.06.2023 г.

Обоснована расчетами воспроизводимость кондуктометрической методики количественного определения объемной доли добавленной воды к минеральной воде "Ессентуки-4" на основе анализа зависимости удельной электрической проводимости минеральной воды и модельных растворов, приготовленных на основе минеральной воды. Методика полностью соответствует принципам "зеленой" хи-

Ключевые слова: прямая кондуктометрия, разбавление минеральных вод, идентификация, зеленая химия, воспроизводимость

мии, так как "отходами" является минеральная вода, разбавленная дистиллированной водой.

DOI: 10.31857/S0040357123040085, **EDN:** VGLBIZ


ВВЕДЕНИЕ

Разнообразие природных минеральных вод обусловлено как набором неорганических и органических веществ, так и их определенным соотношениям. Как правило, 95-98% минерального состава таких вод приходится на главные ионы: Ca^{2+} , Mg^{2+} , Na^+ , K^+ , Cl^- , HCO_3^- , SO_4^{2-} . Поэтому не случайно при ассортиментной идентификации большое значение отводят анализу постоянства химического состава минеральных вод путем получения данных об общей минерализации и ионном составе. Химический анализ воды на содержание главных ионов характеризуется высокой стоимостью и продолжительностью, поэтому постоянно ведется поиск новых экспресс-методов идентификации. Как правило, для таких целей применяют фотометрию, гравиметрию, титриметрию, пламенную спектрофотоскопию, массспектрометрию с индукционно-связанной плазмой [1, 2]. К сожалению, при проведении исследований указанными методами минерализации природных вод, оценка воспроизводимости полученных результатов очень часто не входит в перечень решаемых задач.

В тоже время при проведении химического анализа объекта аналитического контроля рекомендовано оценивать его воспроизводимость и правильность (точность), т.к. как без этого определение химического состава фактически не имеет смысла; неизвестно, в какой степени можно доверять полученным данным.

Воспроизводимость — это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными операторами, методами и средствами, на разных приборах). Показателем воспроизводимости (сходимости) результатов анализа является относительное стандартное отклонение.

Применение кондуктометрического метода для идентификации минерального состава основано на определении удельной электрической проводимости (х) разбавленных дистиллированной водой в п раз исследуемую минеральную воду

Рис. 1. Зависимость χ от объемной доли в исследуемом растворе модельного раствора № 1.

и расчете коэффициент идентификации химического состава вод, как тангенса угла наклона зависимости обратной χ от степени разбавления, который имеет строго определенное значение для данного минерального состава водного раствора [4-6].

С помощью χ можно характеризовать общую величину ионного состава вод, т. е. минерализацию, и, кроме того, давать приближенное представление о концентрации некоторых компонентов и соотношениях между ними в растворе, что важно для характеристики и классификации природных вод [7].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Измерения χ проводили с помощью двух кондуктометров — анализаторов жидкости лабораторного серии Анион 4100 модель А4155 и модель 4150, которые измеряют χ с разной степенью точности. Проверку работоспособности измерительных каналов проводили согласно руководству по эксплуатации [8] в ходе выполнения текущих определений сличения и анализа результатов измерений χ дистиллированной воды и стандартных растворов КС1.

Стандартные растворы КСІ (ГОСТ 4234-77, х. ч.) готовили из фиксанала. Использовали дистиллированную воду по ГОСТ 6709-72 [10] с χ < 5 мкСм/см.

Объектом исследования была вода минеральная природная питьевая "Ессентуки-4" скважина 49-э и пять модельных растворов: смесь минеральной и дистиллированной воды с объемной долей минеральной воды (раствор № 1-№ 5) 90, 80, 70, 60 и 50%. [9].

Методика исследования включала приготовление пяти модельных растворов (раствор № 1— № 5). Далее проводили измерение χ и температуры дистиллированной воды (150 мл) параллельно на двух кондуктометрах, добавляли 1.5 мл и далее девять раз по 1.0 мл минеральной воды или модельного раствора на основе минеральной воды,

каждый раз измеряя χ после 1 минуты перемешивания на магнитной мешалке. Проводили по три параллельных измерения.

Характеристики погрешности и воспроизводимости определяли в соответствии с требованиями ГОСТ Р 51672-2000 [3].

Результаты статистической обработки зависимости χ дистиллированной воды от объемной доли ($\phi = 0.99-6.54\%$) введенной минеральной воды или модельных растворов для прибора № 1 представлены в табл. 1, а для прибора № 2 в табл. 2.

Как следует из полученных данных значение χ возрастает при увеличении в исследуемом растворе объемной доли минеральной воды. Среднее стандартное отклонение между тремя параллельными измерениями значения χ в большинстве случаев находится в пределах 0.1-2.0%, а наибольшие значения достигают 5-7%. Такая картина характерна как для первого и второго прибора. Это затрудняет проведение оценки воспроизводимости полученных результатов.

Для усреднения значения воспроизводимости полученных результатов χ по всей исследуемой области введенных объемных долей минеральной воды и модельных растворов можно использовать коэффициент идентификации ($K_{\text{иден.}}$) — тангенс угла наклона зависимости χ от объемной доли в исследуемом растворе минеральной воды и модельных растворов.

Указанная зависимость имеет линейный характер (рис. 1), но она не проходит через начало координат, что вероятно связано влиянием ионной силы в исследованной области объемных долей минеральной воды и модельных растворов.

Вычисленные значения $K_{\text{иден.}}$ (n=3) для прибора № 1 и прибора № 2 представленны в табл. 3, а статистически обработанные, в виде усредненных значений и со значениями стандартного отклонения, в табл. 4.

Из данных табл. 4 не сложно подсчитать, что относительное стандартное отклонение определения $K_{\text{иден.}}$ на приборе № 1 колеблется в пределах от 0.3 до 3.1%, а на втором в пределах от 0.2 до 1.8%, что можно объяснить более точным определения χ на приборе № 2.

По полученным значениям относительного стандартного отклонения можно считать, что воспроизводимость кондуктометрического определения $K_{\text{иден.}}$ не превышает 3% и в этом случае диапазоны значений $K_{\text{иден.}}$, полученные на двух приборах, перекрываются. На основании этого можно сделать вывод, что, если по результатам кондуктометрических исследований два значения $K_{\text{иден.}}$, отличаются более, чем на 3%, то есть основания говорить о существенном различии минеральных составов исследованных двух растворов.

Таблица 1. Зависимость χ дистиллированной воды (анализируемого раствора) от объемной доли введенного исследуемого раствора минеральной воды "Ессентуки-4" (прибор № 1, 25°C)

Объемная доля исследуемого раствора (ф. %) и х раствора (мкСм/см)				м/см)						
Аликвата	0.99	1.64	2.28	2.91	3.54	4.15	4.76	5.36	5.96	6.54
			Мин	еральная	<u>।</u> вода №1 q	$b_{\rm Ecc} = 100\%$	<u> </u>			
1	144.5	238.3	328.4	417.0	503.2	586.2	668.1	769.0	848.7	921.4
2	149.8	241.9	331.2	420.5	507.2	591.8	672.9	752.6	854.6	928.4
3	123.4	220.5	343.8	395.2	476.7	557.1	634.3	710.4	785.4	882.6
$\chi_{\rm сред.}$	139.3	233.6	334.4	410.9	495.7	578.3	658.4	744.0	829.6	910.8
S_r	10.6	8.7	6.2	10.4	12.7	14.2	16.1	22.4	29.4	18.8
S_r , %	7.6	3.7	1.9	2.5	2.6	2.4	2.4	3.0	3.5	2.1
				Раствор .	№ 1 φ _{Ecc} =	90%				
1	116.5	191.8	276.3	351.2	427.6	493.7	565.0	631.8	700.7	764.4
2	118.8	195.0	264.7	336.7	405.7	475.4	539.7	597.1	658.9	718.8
3	121.5	199.6	276.5	348.8	420.3	492.0	561.1	629.1	694.7	759.2
χсред.	118.9	195.5	272.5	345.6	417.9	487.0	555.3	619.3	684.8	747.5
S_r	1.7	2.8	5.2	5.9	8.1	7.7	10.4	14.8	17.3	19.1
S_r , %	1.4	1.4	1.9	1.7	1.9	1.6	1.9	2.4	2.5	2.6
Pactbop № 2 φ _{Ecc} = 80%										
1	124.8	193.9	263.9	331.5	395.8	459.1	521.2	580.1	643.2	697.9
2	109.6	179.9	248.8	314.9	380.7	444.1	506.3	570.7	629.6	677.1
3	105.0	172.1	238.5	303.4	366.2	428.6	490.6	550.5	609.2	663.1
$\chi_{\rm сред.}$	113.1	181.9	250.4	316.6	380.9	443.9	506.0	567.1	627.3	679.4
S_r	7.8	7.9	9.0	9.9	9.9	10.2	10.3	11.1	12.1	12.3
S_r , %	6.9	4.4	3.6	3.1	2.6	2.3	2.0	2.0	1.9	1.8
				Раствор.	№ 3 φEcc=	70%				
1	91.0	149.5	206.6	263.4	318.1	372.6	424.2	476.5	527.8	576.8
2	92.0	151.0	208.5	263.3	317.1	369.9	422.1	474.3	523.3	574.4
3	93.0	151.9	209.6	266.3	321.7	375.8	428.0	475.5	528.4	574.9
$\chi_{\rm сред.}$	92.0	150.8	208.2	264.3	318.9	372.7	424.8	475.4	526.5	575.4
S_r	0.7	0.9	1.1	1.3	1.8	2.0	2.1	0.8	2.1	1.0
S_r , %	0.7	0.6	0.5	0.5	0.6	0.5	0.5	0.2	0.4	0.2
Раствор № 4 φ _{Ecc} = 60%										
1	82.5	134.9	185.7	235.8	285.5	332.1	378.7	425.9	467.6	503.4
2	73.7	123.8	179.3	227.9	276.8	324.0	369.9	415.7	461.5	505.2
3	71.9	118.7	164.9	212.2	289.3	330.4	377.2	425.0	471.8	516.6
Хсред.	76.1	125.8	176.6	225.3	283.9	328.8	375.3	422.2	467.0	508.4
S_r	4.3	6.1	7.8	8.7	4.7	3.2	3.6	4.4	3.7	5.5
S_r , %	5.7	4.8	4.4	3.9	1.7	1.0	1.0	1.0	0.8	1.1
Pactbop № 5 φ _{Ecc} = 50%										
1	67.6	111.5	154.2	195.4	236.5	276.1	315.6	354.4	388.6	426.7
2	67.6	111.2	153.7	195.2	236.3	274.0	312.6	350.6	387.5	423.3
3	68.7	113.0	156.7	198.8	240.3	281.5	320.8	359.4	398.4	435.6
$\chi_{\rm сред.}$	68.0	111.9	154.9	196.5	237.7	277.2	316.3	354.8	391.5	428.5
S_r	0.5	0.8	1.2	1.5	1.7	2.9	3.0	3.1	4.6	4.7
S_r , %	0.7	0.7	0.8	0.8	0.7	1.0	0.9	0.9	1.2	1.1

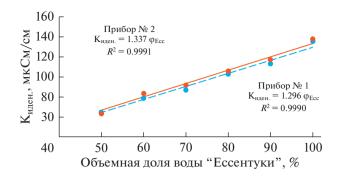
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 4 2023

Таблица 2. Зависимость χ дистиллированной воды (анализируемого раствора) от объемной доли введенного исследуемого раствора минеральной воды "Ессентуки-4" (прибор № 2, 25°C)

едуемого раствора минеральной воды Ессентуки-4 (приоор № 2, 25°С) Объемная доля исследуемого раствора (ф. %) и χ раствора (мкСм/см)										
Аликвата	0.99	1.64	2.28	2.91	3.54	4.15	4.76	5.36	5.96	6.54
Минеральная вода $\phi_{Ecc} = 100\%$										
1	144.5	238.3	328.4	417.0	502.2	586.1	668.1	769.0	848.7	921.2
2	150.2	242.2	331.7	420.2	507.2	591.8	673.1	750.8	843.0	915.6
3	122.4	214.7	289.8	365.2	445.6	548.5	629.9	709.3	787.5	878.1
χсред.	139.0	231.7	316.6	400.8	485.0	575.5	657.0	743.0	826.4	905.0
S_r	11.1	11.3	17.9	23.7	26.3	18.0	18.0	22.5	25.9	17.9
S_r , %	8.0	4.9	5.7	5.9	5.4	3.1	2.7	3.0	3.1	2.0
				Раствор 3	√∘ 1 φ _{Ecc} =	90%				
1	121.3	200.4	277.9	353.4	428.7	500.3	572.7	640.6	709.6	772.1
2	122.2	201.1	278.8	354.3	428.8	501.8	572.7	642.2	710.7	773.9
3	124.1	204.4	282.0	357.3	430.2	502.6	574.0	642.0	711.1	772.1
Хсред.	122.5	201.9	279.6	355.0	429.2	501.6	573.1	641.6	710.4	772.7
S_r	1.0	1.6	1.6	1.5	0.6	0.9	0.6	0.7	0.6	0.8
S_r , %	0.85	0.81	0.58	0.43	0.15	0.17	0.10	0.10	0.08	0.11
Pacтвор № 2 φ _{Ecc} = 80%										
1	128.7	199.7	271.0	339.7	406.2	470.5	533.7	594.7	655.7	712.7
2	112.9	185.4	255.9	323.5	390.4	455.9	520.3	582.5	643.6	700.8
3	109.3	180.0	250.0	319.7	386.9	451.5	518.9	580.9	642.9	698.7
Хсред.	116.9	188.4	259.0	327.7	394.5	459.3	524.3	586.1	647.4	704.1
S_r	7.8	7.6	8.0	8.0	7.8	7.5	6.3	5.8	5.5	5.7
S _r , %	6.7	4.0	3.1	2.4	2.0	1.6	1.2	1.0	0.9	0.8
				Раствор 3	√ 3 φ _{Ecc} =	70%				
1	96.8	159.1	219.7	278.3	336.4	393.2	447.8	502.4	555.9	607.2
2	98.1	160.7	221.4	281.1	338.8	395.5	449.2	503.6	558.0	610.2
3	97.9	160.2	220.4	279.4	336.3	392.6	448.8	502.9	557.0	606.8
$\chi_{\rm сред.}$	97.6	160.0	220.5	279.6	337.2	393.7	448.6	503.0	557.0	608.0
S_r	0.6	0.6	0.6	1.0	1.1	1.2	0.5	0.4	0.7	1.4
S_r , %	0.6	0.4	0.3	0.4	0.3	0.3	0.1	0.1	0.1	0.2
	_				$\sqrt{9} 4 \varphi_{Ecc} =$					
1	86.7	142.4	196.3	249.1	301.0	351.5	400.3	449.7	496.9	533.1
2	76.2	126.6	178.5	239.0	291.5	342.6	393.8	443.9	491.9	536.6
3	74.5	121.9	169.0	215.7	303.1	338.8	389.9	441.0	491.1	538.0
Хсред.	79.1	130.3	181.3	234.6	298.5	344.3	394.6	444.9	493.3	535.9
S_r	5.0	8.1	10.0	12.6	4.7	4.8	3.7	3.2	2.4	1.8
S_r , %	6.3	6.2	5.5	5.4	1.6	1.4	0.9	0.7	0.5	0.3
Pacтвор № 5 φ _{Ecc} = 50%										
1	71.4	117.3	162.2	205.6	248.0	289.9	330.5	370.8	409.3	448.5
2	71.8	118.0	162.6	206.3	249.3	290.5	331.0	371.1	411.2	450.3
3	71.6	117.7	162.8	206.5	249.5	291.3	332.1	372.2	412.3	449.4
$\chi_{cpeд.}$	71.6	117.7	162.5	206.1	248.9	290.6	331.2	371.4	410.9	449.4
S_r	0.1	0.3	0.2	0.4	0.6	0.5	0.6	0.5	1.1	0.6
S_r , %	0.2	0.2	0.1	0.2	0.3	0.2	0.2	0.1	0.3	0.1

Таблица 3. Результаты статистической обработки данных зависимости χ (мкСм/см) исследуемого раствора от объемной доли минеральной воды и модельных растворов

N.G.	Исследуемый раствор	Прибор № 1	Прибор № 2		
№ пп		Уравнение $\chi = K_{\text{иден.}} \times \varphi_{\text{Ecc}} + b$	R^2	Уравнение $\chi = K_{\text{иден.}} \times \varphi_{\text{Ecc}} + b$	R^2
		$\chi = 140.6 \times \varphi_{100} + 6.5$	0.9997	$\chi = 140.6 \times \varphi_{100} + 6.4$	0.9987
1	Минеральная вода	$\chi = 134.0 \times \varphi_{100} + 11.3$	0.9997	$\chi = 137.9 \times \varphi_{100} + 16.6$	0.9997
		$\chi = 131.9 \times \varphi_{100} + 10.0$	0.9969	$\chi = 135.6 \times \varphi_{100} + 18.1$	0.9969
		$\chi = 116.8 \times \varphi_{90} + 6.6$	0.9994	$\chi = 117.6 \times \varphi_{90} + 9.2$	0.9999
2	Раствор № 1	$\chi = 108.0 \times \varphi_{90} + 19.1$	0.9981	$\chi = 117.7 \times \varphi_{90} + 9.6$	0.9989
		$\chi = 114.8 \times \varphi_{90} + 12.6$	0.9998	$\chi = 117.0 \times \varphi_{90} + 13.3$	0.9998
	Раствор № 2	$\chi = 103.3 \times \varphi_{80} + 27$	0.9994	$\chi = 105.9 \times \varphi_{80} + 30$	0.9989
3		$\chi = 103.3 \times \varphi_{80} + 12.7$	0.9981	$\chi = 106.0 \times \varphi_{80} + 13$	0.9983
		$\chi = 100.9 \times \varphi_{80} + 7.9$	0.9998	$\chi = 106.8 \times \varphi_{80} + 6.7$	0.9994
		$\chi = 87.5 \times \varphi_{70} + 6.8$	0.9991	$\chi = 91.9 \times \varphi_{70} + 9.2$	0.9993
4	Раствор № 3	$\chi = 86.6 \times \varphi_{70} + 9.5$	0.9989	$\chi = 92.0 \times \varphi_{70} + 10.8$	0.9989
		$\chi = 86.9 \times \varphi_{70} + 11$	0.9993	$\chi = 91.7 \times \varphi_{70} + 10.3$	0.9978
		$\chi = 76.6 \times \varphi_{60} + 11$	0.9999	$\chi = 81.3 \times \varphi_{60} + 11$	0.9979
5	Раствор № 4	$\chi = 77.7 \times \varphi_{60} + 9.5$	0.9998	$\chi = 84.0 \times \varphi_{60} + 8.1$	0.9999
		$\chi = 81.7 \times \varphi_{60} + 10$	0.9978	$\chi = 85.2 \times \varphi_{60} + 16$	0.9968
6	Раствор № 5	$\chi = 64.8 \times \varphi_{50} + 6.2$	0.9992	$\chi = 67.8 \times \varphi_{50} + 6.8$	0.9996
		$\chi = 64.0 \times \varphi_{50} + 7.2$	0.9992	$\chi = 68.0 \times \varphi_{50} + 7.0$	0.9999
		$\chi = 66.1 \times \varphi_{50} + 5.4$	0.9999	$\chi = 68.1 \times \varphi_{50} + 6.8$	0.9993


Таблица 4. Статистически обработанные средние значения зависимости χ (мкСм/см) от объемной доли минеральной воды и модельных растворов со значениями стандартного отклонения

№ пп	Исследуемый раствор	Прибор № 1	Прибор № 2
1	Минеральная вода	$\chi = (135.5 \pm 3.4) \times \varphi_{100} + (9.3 \pm 1.8)$	$\chi = (138.0 \pm 1.7) \times \varphi_{100} + (14 \pm 5)$
2	Раствор № 1	$\chi = (113.2 \pm 3.5) \times \varphi_{90} + (14 \pm 4)$	$\chi = (117.4 \pm 0.3) \times \varphi_{90} + (11 \pm 2)$
3	Раствор № 2	$\chi = (102.8 \pm 1.1) \times \varphi_{80} + (15 \pm 7)$	$\chi = (106.0 \pm 0.5) \times \varphi_{80} + (17 \pm 9)$
4	Раствор № 3	$\chi = (87.0 \pm 0.3) \times \varphi_{70} + (9.1 \pm 1.5)$	$\chi = (91.9 \pm 0.2) \times \varphi_{70} + (10 \pm 1)$
5	Раствор № 4	$\chi = (78.7 \pm 2.0) \times \varphi_{60} + (7.1 \pm 1.2)$	$\chi = (83.5 \pm 1.5) \times \varphi_{60} + (12 \pm 3)$
6	Раствор № 5	$\chi = (64.9 \pm 0.8) \times \varphi_{50} + (6.3 \pm 0.6)$	$\chi = (63.3 \pm 1.1) \times \varphi_{50} + (6.9 \pm 0.1)$

Рассчитанные значения $K_{\text{иден.}}$ для минеральной воды и модельных растворов дают возможность построить график зависимости $K_{\text{иден.}}$ от степени разбавления минеральной воды или от объемной доли минеральной воды в исследуе-

мом растворе на основе дистиллированной воды (рис. 2).

Зависимость имеет линейных характер. При разбавлении минеральной воды на $10\% \chi$ изменяется на 9%, что дает возможность с учетом 3-x

Рис. 2. Зависимость значения $K_{\text{иден.}}$ от объемной доли минеральной воды в исследуемом растворе на основе дистиллированной воды.

процентной воспроизводимости уже достоверно говорить о 5% разбавлении минеральной воды.

выводы

Результаты статистической обработки данных кондуктометрических исследований на двух приборах зависимости удельной электрической проводимости от объемной доли в исследуемом растворе минеральной воды "Ессентуки-4" показали, что относительное стандартное отклонение (воспроизводимость) кондуктометрических определений не превышает 3%. Данный кондуктометрический метод можно использовать для идентификации содержания главных ионов минеральных вод, который характеризуется относительно невысокой стоимостью по сравнению с существующими общепринятыми методами и достаточно высокой точностью.

ОБОЗНАЧЕНИЯ

C концентрация, мас. %

Р давление, мм рт. ст.

T температура, K

t время, с

СПИСОК ЛИТЕРАТУРЫ

- 1. *Васильев А.Н., Амелин В.Г.* Исследование индикаторных свойств химических элементов, отвечающих особенностям геохимии сред формирования природных минеральных вод // Георесурсы. 2016. Т. 18. № 2. С. 133—137.
- Локтионова Е.Г., Детков Ю.М. Новое в контроле качества вод по общим показателям. Питьевая вода // № 4. 2009. С. 15–19.
- 3. ГОСТ Р 51672-2000 Метрологическое обеспечение испытаний продукции для целей подтверждения соответствия. Основные положения [Электронный ресурс]. Режим доступа: http://gostexpert.ru/gost/gost-51672-2000/download / (дата обращения 05.02.2023).
- 4. Никулина С.Н., Чудакова Т.А., Суринова К.К., Ларионов Е.А., Чериканова Е.А., Васюков А.Е. Экологически чистая кондуктометрическая методика контроля стабильности минерального состава родниковых вод // Экология и промышленность России. 2021. Т. 25. № 4. С. 56—60.
- Vasyukov A.E., A.P. Korzhavyi A.P., Nikulina S.N. Static and dynamic approach to estimation of spring water mineralization stability as a factor of groundwater ecological safety // J. Physics: Conference Series. V. 1399. https://iopscience.iop.org/article/10.1088/1742-6596/ 1399/5/055072/pdf
- Vasyukov A., Loboichenko V., Bushtec S. Identification of bottled natural waters by using direct conductometry // Ecology, Environment and Conservation. 2016. V. 22 (3). S. 1171–1176.
 http://envirobiotechjournals.com/issue_articles.php? iid=215&jid=3
- 7. Воробьев И.И. Применение измерения электропроводности для характеристики химического состава природных вод [Электронный ресурс]: М.: Изд-во АН СССР, 1963. 141 с. URL: http://www.iprbookshop.ru/6113.html (дата обращения 05.05.2020).
- 8. Анализаторы жидкости лабораторные серии Анион 4100. Руководство по эксплуатации ИНФА. 421522.002. РЭ. ООО НПП "Инфраспак-Аналит". Новосибирск, 2011. 86 с.
- 9. Минеральная вода ЕССЕНТУКИ № 4. Показания к применению и противопоказания, состав и рекомендации. [Электронный ресурс]. Режим доступа:https://essentuki.ru/mineralnaya-voda-essentuki/byuvet-istochnika-essentuki-4.php (дата обращения 05.02.2023).
- 10. ГОСТ 6709-72. Вода дистиллированная. Технические условия. Введ. 01.01.1974.