Влияние спонтанного излучения на автоколебания в волоконных лазерах с микрооптомеханическими резонансными структурами

Обложка

Цитировать

Полный текст

Аннотация

В рамках балансного приближения волоконных лазеров (ВЛ), рассматриваемых как распределенные системы, построена уточненная математическая модель, описывающая низкочастотную динамику ВЛ с зеркалами на основе оптомеханических микроосцилляторов (МО) с учетом влияния спонтанного излучения (СИ), локализованного в оболочечных модах активного световода (АС). Выявлены механизмы влияния СИ на режимы синхронных автоколебаний (СА) в лазерной системе ВЛ–МО: дополнительное снятие инверсии в АС благодаря конечной длине пробега фотонов СИ оболочечных мод в активной среде ВЛ; нарушение условия внутреннего резонанса в лазерной системе; возмущение колебаний МО фотоиндуцированной силой, обусловленной СИ. С помощью численного моделирования СА в эрбий-иттербиевом ВЛ с микроосциллятором и экспериментальных исследований установлена зависимость частоты СА от геометрооптических параметров АС и отражательной способности границы раздела АС–окружающая среда, которые могут быть использованы для повышения стабильности частоты лазерных импульсов в волоконных источниках импульсного излучения и создания нового класса резонансных волоконно-оптических датчиков.

Об авторах

Ф. А. Егоров

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН

Email: egorov-fedor@mail.ru
Российская Федерация, 141190, Московской обл., Фрязино, пл. Введенского, 1

В. В. Никитин

Московский государственный университет им. М.В. Ломоносова

Email: egorov-fedor@mail.ru
Российская Федерация, 119991, Москва, Ленинские горы, 1, стр. 2

В. Т. Потапов

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН

Автор, ответственный за переписку.
Email: egorov-fedor@mail.ru
Российская Федерация, 141190, Московской обл., Фрязино, пл. Введенского, 1

Список литературы

  1. Aspelmeyer M., Kippenberg T.J., Marquardt F. Cavity Optomechanics, Nano- and Micromechanical Resonators Interacting with Light. Heidelberg: Springer, 2014.
  2. Гуляев Ю.В., Бугаев А.С., Быстров Р.П., Никитов С.А., Черепенин В.А. Микро- и наноэлектроника в системах радиолокации. М.: Радиотехника, 2013.
  3. Bowen W.P., Milburn G.J. Quantum Optomechanics. Boca Raton: CRC Press, 2016.
  4. Yang W., Gerke S.A., Ng K.W. et al. // Sci. Rep. 2015. V. 5. P. 13700. https://doi.org/10.1038/srep13700
  5. Fabert M., Desfarges-Berthelmot A., Kermene V. et al. // Opt. Express. 2012. V. 20. № 20. P. 22895.
  6. Егоров Ф.А., Потапов В.Т. // Квантов. электрон. 2012. Т. 42. № 9. С. 808.
  7. Егоров Ф.А., Потапов В.Т., Мелькумов М.А. и др. // Письма в ЖТФ. 2014. Т. 40. № 8. С. 30.
  8. Егоров Ф.А., Потапов В.Т. // Квантов. электрон. 2020. Т. 42. № 9. С. 808.
  9. Princepe D., Wiederhecker G.S., Favero I. et al. // IEEE Photonics J. 2018. V. 10. № 3. P. 4500610.
  10. Foley J.M., Ganesan A.V., Lawall J.R. et al. // Technical Dig. Conf. “Frontiers in Optics” Washington. 10–16 Oct. 2018. Washington: Opt. Soc. Amer, 2018. paper LW6F.1. https://doi.org/10.1364/LS.2018.LW6F.1
  11. Xiang X., Jingwen M., Xiankai S. // Phys. Rev. A. 2019. V. 99. № 5. P. 053837.
  12. Егоров Ф.А., Потапов В.Т. // Фотон–Экспресс. 2018. № 7. С. 4.
  13. Buks E., Martin I. // Phys. Rev. E 2019. V. 100. № 3. P. 032202. https://doi.org/10.1103/PhysRevE.100.032202
  14. Бурков В.Д., Егоров Ф.А., Потапов В.Т. и др. // РЭ. 2000. Т. 45. № 7. С. 880.
  15. Егоров Ф.А., Неугодников А.П., Никитин В.В. и др. // Вестн. МГУ. Сер. 3. Физика. Астрономия. 2009. № 6. С. 45.
  16. Pavlova S., Tunckol E., Pavlov I. // Opt. Express. 2020. V. 28. № 12. P. 18368.
  17. Stewart G. Vijazaghavan K., Whitenett G. et al. // J. Lightwave Technol. 2007. V. 25. № 7. P. 1786.
  18. Bogdanovich M.V., Grigor’ev A.V., Kabanov V.V. et al. // Lithuanian J. Phys. 2010. V. 50. № 4. P. 413.
  19. Ханин Я.И. Основы динамики лазеров. М.: Наука, 1999.
  20. Ter-Mikirtychev V. V. Fundamentals of Fiber Lasers and Fiber Amplifiers. Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-02338-0-9
  21. Самсон А.М., Котомцева Л.А., Лойко Н.А. Автоколебания в лазерах. Минск: Навука i тэхнiка, 1990.
  22. Красильников В.Н. Параметрические волновые явления в классической электродинамике. СПб.: Изд-во СПбГУ, 1996.
  23. Ladaci A., Girard S., Mescia L. et al. // Proc. SPIE. 2018. V. 10524. P. 1052410. https://doi.org/10.1117/12.2290381
  24. Галаган Б.И., Денкер Б.И., Егорова О.Н. и др. // Квантов. электрон. 2018. Т. 48. № 6. С. 550.
  25. Hyo Y., Cheo P.K., King G.G. // IEEE J. Quantum Electron. 2005. V. 41. № 4. P.573.
  26. Agrawal G.P. Nonlinear Fiber Optics. Waltham: Academic Press, 2012.
  27. Хандохин П.А. Низкочастотная динамика лазеров с инерционной активной средой. Дис. … докт. физ.-мат. наук. Н. Новгород: Институт прикладной физики РАН, 2007. 301 с.
  28. Ахманов С.А., Гусев В.Э. // Успехи физ. наук. 1992. Т. 162. № 3. С. 3.
  29. Бабицкий В.И., Крупенин В.Л. Колебания в сильно нелинейных системах. М.: Наука, 1985.
  30. Дмитриев А.К., Коновалов А.Н., Ульянов В.А. // Квантов. электрон. 2014. Т. 44. № 4. С. 309.
  31. Ратнер А.М. Квантовые генераторы света с большим угловым расхождением. Киев: Наукова думка, 1970.
  32. Раззахи Д., Хаджесмаилбаджи Ф., Рузбехани М. // Квантов. электрон. 2012. Т. 42. № 8. С. 671.
  33. Barmenkov Y.O, Kiryanov A.V., Cruz J.L. et al. // IEEE J. Selected Topics in Quantum Electronics. 2014. V. 20. № 5. P. 1. https://doi.org/10.1109/JSTQE.2014.2304423
  34. Кизель В.А. Отражение света. М.: Наука, 1973.

Дополнительные файлы


© Ф.А. Егоров, В.В. Никитин, В.Т. Потапов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».