Chaotic Dynamics and Multistability in the Nonholonomic Model of a Celtic Stone


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study dynamic properties of a Celtic stone moving along a plane. We consider two-parameter families of the corresponding nonholonomic models in which bifurcations leading to changing the types of stable motions of the stone, as well as the chaotic-dynamics onset are analyzed. It shown that the multistability phenomena are observed in such models when stable regimes various types (regular and chaotic) can coexist in the phase space of the system. We also show that chaotic dynamics of the nonholonomic model of a Celtic stone can be rather diverse. In this model, in the corresponding parameter regions, one can observe both spiral strange attractors various types, including the so-called discrete Shilnikov attractors, and mixed dynamics, when an attractor and a repeller intersect and almost coincide. A new scenario of instantaneous transition to the mixed dynamics as a result of the reversible bifurcation of merging of the stable and unstable limit cycles is found.

作者简介

A. Gonchenko

N. I. Lobachevsky State University of Nizhny Novgorod

Email: kazakovdz@yandex.ru
俄罗斯联邦, Nizhnij Novgorod, 603022

S. Gonchenko

N. I. Lobachevsky State University of Nizhny Novgorod

Email: kazakovdz@yandex.ru
俄罗斯联邦, Nizhnij Novgorod, 603022

A. Kazakov

N. I. Lobachevsky State University of Nizhny Novgorod; Higher School of Economics

编辑信件的主要联系方式.
Email: kazakovdz@yandex.ru
俄罗斯联邦, Nizhnij Novgorod, 603022; Nizhny Novgorod

E. Samylina

N. I. Lobachevsky State University of Nizhny Novgorod; Higher School of Economics

Email: kazakovdz@yandex.ru
俄罗斯联邦, Nizhnij Novgorod, 603022; Nizhny Novgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019