A Nonlinear Relaxation Mechanism of the Filtering Noise Generation in Porous Media


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a model that explains the microscopic origin of the nonstationarity and related filtering noise generation in porous media. The noise is not determined by hydrodynamic sources, and the transition to a turbulent flow regime in pores is not required for its occurrence. The physical mechanism of a nonstationary flow is connected with the development of instability at contacts inside cracks or grains, as well as with the presence of relaxation phenomena in voids and channels always available in rocks. It has been shown that the structural elements in rocks provide a self-excited oscillation regime. The proposed model is in good agreement with known experimental data.

作者简介

A. Lebedev

Institute of Applied Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: swan@appl.sci-nnov.ru
俄罗斯联邦, Nizhny Novgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018