Study of a Microwave Interference Switch with Distributed Power of the Switched Wave


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present the results of studying a cascade microwave switch capable of stable operation at the power level of a regular waveguide. The cascade stage is formed by connecting several identical H-joints in the side branch of the tee of a conventional microwave interference switch. The connection distributes the power of the switched wave between the joints and varies the level of the switched power. The method of the scattering matrix is used to analyze the properties of such a switch based on H-joints with different matching levels of the side branch. It is shown that the cascade of sufficiently well-matched joints can decrease the level of the switched power by several times and ensure a higher operating power and a better stability of the switching, while the cascade with coupling worse than a certain boundary value can increase the power of the switched mode by several times and ensure switching of a lower-power mode. The numerical criterion of the coupling quality is found, which divides operation of the switch with increased and decreased switched powers. It is also found that in the switch under consideration, the microwave energy is distributed between the cascade elements in the process of the switching, which can affect greatly both the switching process and the characteristics of the switched mode during the process. The results of the analysis are compared with the experimental data at high and low power levels.

作者简介

S. Artemenko

Tomsk Polytechnical University

Email: gsalsc@yandex.ru
俄罗斯联邦, Tomsk

S. Gorev

Tomsk Polytechnical University

编辑信件的主要联系方式.
Email: gsalsc@yandex.ru
俄罗斯联邦, Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018