Собственные колебания сочленения упругого тела с тонкими стержнями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучается поведение частот собственных колебаний сочленения анизотропного однородного тела с несколькими тонкими цилиндрическими упругими стержнями, внешние торцы которых жестко защемлены. Установлено, что при утончении стержней в низкочастотном диапазоне спектра пределами нормированных собственных чисел исходной сингулярно возмущенной задачи теории упругости служат собственные числа систем обыкновенных дифференциальных уравнений на осях стержней с условиями Дирихле в концевых точках и алгебраическими соотношениями, объединяющими системы в единую спектральную задачу. В случае изотропного материала предельная задача распадается на задачи Дирихле для дифференциальных операторов четвертого порядка и алгебраической задачи для положительной матрицы размером шесть-на-шесть.

Об авторах

С. А. Назаров

Институт проблем машиноведения РАН

Автор, ответственный за переписку.
Email: srgnazarov@yahoo.co.uk
Санкт-Петербург, Россия

Список литературы

  1. Bertram A. Elasticity and Plasticity of Large Deformations. Berlin: Springer, 2005.
  2. Nazarov S.A. Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates. Novosibirsk: Nauch. kniga, 2002. (in Russian)
  3. Ladyzhenskaya O.A. The Boundary Value Problems of Mathematical Physics. N. Y.: Springer, 1985.
  4. Fichera G. Existence Theorems in Elasticity. Berlin; Heidelberg; N. Y.: Springer, 1972.
  5. Lions J.-L., Magenes E. Problémes aux limites non homogénes et applications. Paris: Dunod, 1968.
  6. Nazarov S.A. Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity // C. R. Acad. Sci. Paris. Sér. 1, 1995, vol. 320, no. 11, pp. 1419–1424. https://doi.org/10.1016/0764-4442(95)90092-6
  7. Kozlov V.A., Maz’ya V. G., Movchan A.B. Asymptotic representation of elastic fields in a multi-structure // Asymptot. Anal., 1995, vol. 11, no. 4, pp. 343–415. https://doi.org/10.3233/ASY-1995-11402
  8. Kozlov V.A., Maz’ya V.G., Movchan A.B. Asymptotic Analysis of Fields in Multi-Structures. Oxford Math. Monogr. Oxford: Clarendon, 1999. https://doi.org/10.1093/oso/9780198514954.001.0001
  9. Kozlov V.A., Maz’ya V. G., Movchan A.B. Fields in non-degenerate 1D–3D elastic multistructures // Quart. J. Mech. Appl. Math. 2001, vol. 54, no. 2, pp. 177–212. https://doi.org/10.1093/qjmam/54.2.177
  10. Nazarov S.A. Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler // Sib. Math. J., 2012, vol. 53, no. 3, pp. 274–290. https://doi.org/10.1134/S0037446612020103
  11. Beale J.T. Scattering frequencies of resonators // Comm. Pure Appl. Math., 1973, vol. 26, no. 4, pp. 549–563. https://doi.org/10.1002/cpa.3160260406
  12. Arsen’ev A.A. The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind // U.S.S.R. Comput. Math. Math. Phys., 1976, vol. 16, no. 3, pp. 171–177.
  13. Gadyl’shin R.R. Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates // Math. Notes, 1993, vol. 54, no. 6, pp. 1192—1199.
  14. Kozlov V.A., Maz’ya V.G, Movchan A.B. Asymptotic analysis of a mixed boundary value problem in a multi-structure // Asymptot. Anal., 1994, vol. 8, no 2, pp. 105–143. https://doi.org/10.3233/ASY-1994-8201
  15. Nazarov S.A. Junctions of singularly degenerating domains with different limit dimensions. 1 // J. Math. Sci., 1996, vol. 80, no. 5, pp. 1989–2034. 27 https://doi.org/10.1007/BF02362511
  16. Nazarov S.A. Asymptotic analysis and modeling of the jointing of a massive body with thin rods // J. Math. Sci., 2005, vol. 127, no 5, pp. 2172–2263. https://doi.org/10.1007/s10958-005-0177-0
  17. Gadyl’shin R.R. On the eigenvalues of a “dumbbell with a thin handle” // Izv. Math., 2005, vol. 69, no. 2, pp. 265–329.
  18. Joly P., Tordeux S. Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion // SIAM Multiscale Model. Simul, 2006, vol. 5, no. 1, pp. 304–336. https://doi.org/10.1137/05064494X
  19. Lin J., Zhang H. Scattering and field enhancement of a perfect conducting narrow slit // SIAM J. on Appl. Math., 2017, vol. 77, no. 3, pp. 951–976. https://doi.org/10.1137/16M1094464
  20. Lin J., Zhang H. Scattering by a periodic array of subwavelength slits I: field enhancement in the diffraction regime // Multiscale Model. Sim., 2018, vol. 16, no. 2, pp. 922–953. https://doi.org/10.1137/17M1133774
  21. Chesnel L., Nazarov S.A. Design of an acoustic energy distributor using thin resonant slits // Proc. Royal Soiety, 2021, vol. 477, no. 2247. https://doi.org/10.1098/rspa.2020.0896
  22. Sanchez-Hubert J., Sanchez-Palencia É. Couplage flexion-torsion-traction dans les poutres anisotropes a section heterogene // C. R. Acad. Sci. Paris. Ser. 2, 1991, vol. 312, no. 4, pp. 337–344.
  23. Nazarov S.A. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates // J. Math. Sci. 1999, vol. 97, no. 4, pp. 4245–4279. https://doi.org/10.1007/BF02365044
  24. Sanchez-Hubert J., Sanchez-Palencia É. Coques elastiques mines. Proprietes asymptotiques. Paris: Masson, 1997.
  25. Yeliseyev V.V, Orlov I.S. Asymptotic splitting in the three-dimensional problem of linear elasticity for elongated bodies with a structure // J. AMM, 1999, vol. 63, no. 1, pp. 85–92. https://doi.org/10.1016/S0021-8928(99)00013-1
  26. Panassenko G. Multi-Scale Modelling for Structures and Composites // Dordrecht: Springer, 2005. https://doi.org/10.1007/1-4020-2982-9
  27. Nazarov S.A. Korn’s inequality for an elastic junction of a body with a rod // Problem of Mech. of Solids, 2002, pp. 234–240. (in Russian)
  28. Nazarov S.A. Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods // Russ. Math. Surveys, 2008, vol. 63, no. 1, pp. 35–107.
  29. Nazarov S.A. A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains // St. Petersburg Math. J., 1996, vol. 7, no. 5, pp. 681–748.
  30. Panassenko G.P. Asymptotic analysis of bar systems. 1. // Russian J. Math. Pis., 1994, vol. 2, no. 3, pp. 325–352; 2. // ibid. 1996, vol. 4, no. 1, pp. 87–116.
  31. Korn A. Solution générale du probléme d’équilibre dans la théorie l’élasticité dans le cas où les efforts sont donnés à la surface // Ann. Université Toulouse, 1908, pp. 165–269.
  32. Cioranescu D., Oleinik O.A., Tronel G. On Korn’s inequalities for frame type structures and junctions // C. R. Acad. Sci. Paris Sér. 1 Math. 1989, vol. 309, no. 9, pp. 591–596.
  33. Nazarov S.A. Korn’s inequalities for junctions of spatial bodies and thin rods // Math. Methods Appl. Sci., 1997, vol. 20, no. 3, pp. 219–243.
  34. Duvaut G., Lions J.-L. Les inèquations en mêcanique et en physique, Paris: Dunod, 1972.
  35. Kondrat’ev V.A., Oleinik O.A. Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities // Russ. Math. Surveys, 1988, vol. 43, no. 5, pp. 65–119.
  36. Nazarov S.A. The Korn inequalities which are asymptotically sharp for thin domains // Vestn. St.Petersburg Univ. Math., 1992, vol. 25, no. 2, рр. 18–22.
  37. Rabotnov Yu.N. Mechanics of a Deformable Solid. Moscow: Nauka, 1988.
  38. Nazarov S.A. The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes // Russ. Math. Surveys, 1999, vol. 54, no. 5, pp. 947–1014.
  39. Kondrat’ev V.A. Boundary problems for elliptic equations in domains with conical or angular points // Trans. Moscow Math. Soc., 1967, vol. 16, pp. 227–313.
  40. Nazarov S.A., Plamenevsky B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin; N. Y.: Walter de Gruyter, 1994.
  41. Kozlov V.A., Maz’ya V.G., Rossmann J. Elliptic Boundary Value Problems in Domains with Point Singularities. Providence: Amer. Math. Soc., 1997.
  42. Van-Dyke M.D. Perturbation Methods in Fkuid Mechanics. N.-Y.; L.: Acad. Press., 1964.
  43. Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence, Rhode Island: Americal Math. Soc., 1992.
  44. Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1 & 2. Basel: Birkhäuser Verlag, 2000). https://doi.org/10.1002/zamm.19930730312
  45. Birman M.S., Solomyak M.Z. Spectral Theory and Selfadjoint Operators in Hilbert Space. Dordrecht: Reidel, 1987.
  46. Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter // Transl., Ser. 2, Am. Math. Soc., 1962, vol. 20, pp. 239–364.
  47. Rzhanitsin A.R. Construction Mechanics. Moscow: High school, 1982. (in Russian)
  48. Svetlitskii V.A. Mechanics of Rods. Vol. 1 & 2. Moscow: High school, 1987. (in Russian)
  49. Tutek Z., Aganovich I. A justification of the one-dimensional model of an elastic beam // Math. Methods in Appl. Sci., 1986, vol. 8, pp. 1–14.
  50. Nazarov S.A. Oscillations of elastic solids with small heavy inclusions (concentrated masses) // J. AMM (submitted)
  51. Panasenko G.P. Averaging of processes in strongly inhomogeneous structures // Dokl. Math., 1988, vol. 33, no. 1, pp. 20–22.
  52. Panasenko G.P. Multicomponent homogenization for processes in essentially nonhomogeneous structures // Math. USSR-Sb., 1991, vol. 69, no. 1, pp. 143–153.
  53. Argatov I.I., Nazarov S.A. Equilibrium of an elastic body pierced by horizontal thin elastic rods // J. of Appl. Math. Techn. Physics, 1999, vol. 40, no. 4, pp. 763–768.
  54. Cioranescu D., Oleinik O.A., Tronel G. Korn’s inequalities for frame type structures and junctions with sharp estimates for the constants // Asymptot. Anal., 1994, vol. 8, no. 1, pp. 1–14. https://doi.org/10.3233/ASY-1994-8101

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).