On antiplane waves localized in the vicinity of the interface of two elastic half-spaces in the framework of lattice dynamics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider antiplane waves that are localised in the vicinity of the interface between two elastic half-spaces. The problem is formulated within the context of the dynamics of a square lattice. Accordingly, the interface region comprises particles with a different mass to the particles in the bulk and with different elastic bonds. For this model, we demonstrate the possibility of two types of wave being localised in the vicinity of the interface. The corresponding dispersion relations are obtained. The results are compared with the Gurtin-Murdoch theory of surface elasticity.

Авторлар туралы

I. Eremeyeva

University of L'Aquila

Email: eremeyeva.inna@gmail.com
L'Aquila, Italy

S. Aizikovich

Don State technical University

Email: saizikovich@gmail.com
Rostov on Don, Russia

Әдебиет тізімі

  1. Gurtin M.E., Murdoch A.I. A continuum theory of elastic material surfaces// Arch. Rat. Mech.&Analysis. 1975. V. 57. № 4. P. 291–323. https://doi.org/10.1007/BF00261375
  2. Gurtin M.E., Murdoch A.I. Surface stress in solids// Int. J. of Solids&Struct. 1978. V. 14. P. 431–440. https://doi.org/10.1016/0020-7683(78)90008-2
  3. Gurtin M.E., Weissmüller J., Larche F. A general theory of curved deformable interfaces in solids at equilibrium// Philos. Mag. A. 1998. V. 78. № 5. P. 1093–1109. https://doi.org/10.1080/01418619808239977
  4. Wang J., Duan H.L., Huang Z.P. et al. A scaling law for properties of nano-structured materials// Proc. Roy. Soc. London. Ser. A. 2006. V. 462. № 2069. P. 1355–1363.
  5. Duan H.L., Wang J., Karihaloo B.L. Theory of elasticity at the nanoscale // Adv. in Appl. Mech. 2008. V. 42. P. 1–63. http://dx.doi.org/10.1016/S0065-2156(08)00001-X
  6. Альтенбах Х., Еремеев В.А., Морозов Н.Ф. Об уравнениях линейной теории оболочек при учете поверхностных напряжений // Механика твердого тела. 2010. № 3. С. 30–44. http://elibrary.ru/item.asp?id=14773884
  7. Устинов К.Б. Об учете поверхностных явлений при изгибе сверхтонких пластин // Механика твердого тела. 2025. № 2. С. 238–266. https://doi.org/10.31857/S1026351925020141
  8. Di Nino S., Rosi G., D’Annibale F. Modeling the mechanical behavior of coated masonry elements using surface stress theory // European J. of Mech.-A/Solids. 2025. V. 115. № 105779. P. 1–12. https://doi.org/10.1016/j.euromechsol.2025.105779
  9. Murdoch A.I. The propagation of surface waves in bodies with material boundaries // J. of the Mech.&Physics of Solids. 1976. V. 24. P. 137–146. http://dx.doi.org/10.1016/0022-5096(76)90023-5
  10. Murdoch A.I. The effect of interfacial stress on the propagation of Stoneley waves //J. of Sound&Vibration. 1977. V. 50. P. 1–11. https://doi.org/10.1016/0022-460X(77)90547-8
  11. Pal P.K., Acharya D., Sengupta P.R. Effect of surface stresses on surface waves in elastic solids // Sadhana. 1997. V. 22. №. 5. P. 659–670. https://doi.org/10.1007/BF02802553
  12. Steigmann D.J., Ogden R.W. Surface waves supported by thin-film/substrate interactions // IMA J. of Appl. Math. 2007. V. 72. P. 730–747. https://doi.org/10.1093/IMAMAT%2FHXM018
  13. Huang Z. Torsional wave and vibration subjected to constraint of surface elasticity // Acta Mechanica. 2018. V. 229. P. 1171–1182. https://doi.org/10.1007/s00707-017-2047-5
  14. Eremeyev V.A., Rosi G., Naili S. Surface/interfacial anti-plane waves in solids with surface energy // Mech. Res. Com. 2016. V. 74. P. 8–13. https://doi.org/10.1016/j.mechrescom.2016.02.018
  15. Eremeyev V.A., Rosi G., Naili S. Transverse surface waves on a cylindrical surface with coating // Int. J. of Engin. Sci. 2020. V. 147. № 103188. https://doi.org/10.1016/j.ijengsci.2019.103188
  16. Mikhasev G.I., Eremeyev V.A. Effects of interfacial sliding on anti-plane waves in an elastic plate imperfectly attached to an elastic half-space // Int. J. of Engin. Sci. 2024. V. 205. № 104158. https://doi.org/10.1016/j.ijengsci.2024.104158
  17. Ru C. Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions // Science China Physics. Mech.&Astronomy. 2010. V. 53. №. 3. P. 536–544. https://doi.org/10.1007/s11433-010-0144-8
  18. Murdoch A.I. Some fundamental aspects of surface modelling // J. of Elasticity. 2005. V. 80. P. 33–52. https://doi.org/10.1007/s10659-005-9024-2
  19. Eremeyev V.A., Sharma B.L. Anti-plane surface waves in media with surface structure: Discrete vs. continuum model // Int. J. of Engin. Sci. 2019. V. 143. P. 33–38. https://doi.org/10.1016/j.ijengsci.2019.06.007
  20. Eremeyev V.A. Anti-plane interfacial waves in a square lattice // Networks&Heterogeneous Media. 2025. V. 20. № 1. P. 52–64. https://doi.org/10.3934/nhm.2025004
  21. Brillouin L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. N.-Y.: Mcgraw Hill Book Company, 1946. 247 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).