Light absorption by ordered planar structure of crystalline silicon particles: Simulation as applied to enhancement of the solar cell performance


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Light absorption by a single spherical crystalline silicon (c-Si) particle and by monolayers of submicron c-Si particles arranged in triangular lattice is examined within the wavelength range from 0.28 to 1.12 μm. Data for spectral and integrated (over the terrestrial solar spectral irradiance “Global tilt” ASTM G173-03) absorption coefficients of monolayer demonstrating the possibility to enhance light absorption by a particulate active layer of crystalline silicon are presented. They are calculated in the quasicrystalline approximation of the theory of multiple scattering of waves. It is shown that in the narrow wavelength intervals (up to 10 nm) the spectral absorption coefficient of monolayer can be more than 100 times larger than the one of the plane-parallel plate of equal volume of material. Some results on the transmittance and reflectance of partially ordered monolayer are presented as well. The potentialities of light absorption enhancement in a single monolayer and three-monolayer system are considered.

作者简介

V. Loiko

Institute of Physics of the National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: loiko@ifanbel.bas-net.by
白俄罗斯, Minsk, 220072

A. Miskevich

Institute of Physics of the National Academy of Sciences of Belarus

Email: loiko@ifanbel.bas-net.by
白俄罗斯, Minsk, 220072

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017