The Structure of Radiative Tunnel Recombination Sites in Emulsion Microcrystals of AgBr(I)


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To identify the structure of emissive tunnel recombination sites in the emulsion microcrystals of silver bromide AgBr(I) with iodine contaminations and to determine the role of an emulsion medium in their formation, the temperature dependence of the luminescence spectra in the range from 77 to 120 K, the kinetics of the growth of the maximum luminescence intensity value at λ ≈ 560 nm, and the luminescence flash spectrum stimulated by the infrared light are investigated. Two types of the AgBr1 – x(Ix) (x = 0.03) microcrystals—namely, obtained in an aqueous solution and on a gelatin substrate—are used in the studies. It is established that the emissive tunnel recombination sites with a luminescence maximum at λ ≈ 560 nm in AgBr1 – x(Ix) (x = 0.03) are the {(Ia-Ia-)Agi+} donor–acceptor complexes with the Ia- iodine ions located in neighbor anionic sites of the AgBr(I) crystal lattice, next to which the Agi+ interstitial silver ion is positioned. With an increase in the temperature, the {(Ia-Ia-)Agi+} sites undergo structural transformation into the {(Ia-Ia-)Agin+} sites, where n = 2, 3, …. Moreover, the {(Ia-Ia-)Agin+} sites (n = 2) after the capture of an electron and hole also provide the tunnel recombination with a luminescence maximum at λ ≈ 720 nm. The influence of an emulsion medium consists in that gelatin interacts with the surface electron-localization sites, i.e., the interstitial silver ions Agin+, n = 1, 2, and forms the complexes {Agin0 G+} (n = 1, 2) with them. The latter are deeper electron traps with a small capture cross section as compared to the Agin+ sites (n = 1, 2) and that manifest themselves in that the kinetics of the luminescence growth in AgBr(I) to a stationary level at λ ≈ 560 nm is characterized by the presence of “flash firing.” At the same time, the luminescence flash stimulated by IR light, for which the Agin+(n = 1, 2) electron-localization sites are responsible, is absent. It is supposed that the electrons localized on the {Agin+G+} complexes (n = 2) retain the capability for emissive tunnel recombination with holes localized on paired iodine sites with a luminescence maximum at λ ≈ 750 nm.

Sobre autores

A. Tyurin

Research Institute of Physics

Email: zhukov@onu.edu.ua
Ucrânia, Odessa, 65082

S. Zhukov

Research Institute of Physics

Autor responsável pela correspondência
Email: zhukov@onu.edu.ua
Ucrânia, Odessa, 65082

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018