PREPARATION AND PHOTOCATALYTIC PROPERTIES OF TiO2-MCM-22 COMPOSITE PHOTOCATALYSTS
- Authors: Sadovnikov A.A.1,2, Naranov E.R.1, Novoselova K.N.2, Rodriges Pineda R.A.1, Maximov A.L.1
-
Affiliations:
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 65, No 2 (2025)
- Pages: 147-153
- Section: Articles
- URL: https://ogarev-online.ru/0028-2421/article/view/285778
- DOI: https://doi.org/10.31857/S0028242125020072
- EDN: https://elibrary.ru/KMELKU
- ID: 285778
Cite item
Abstract
Разработан быстрый и простой метод синтеза эффективных фотокатализаторов на основе диоксида титана и мезопористого цеолита MCM-22 из различных прекурсоров титана. Полученные фотокатализаторы были проанализиованы методами рентгенофазового анализа (РФА), низкотемпературной адсорбции азота, растровой электронной микроскопии (РЭМ). Фотокаталитическая активность образцов TiO2-MCM-22 была протестирована в реакциях фотокаталитического разложения красителя кристаллического фиолетового и окисления ацетона. Наибольшую фотокаталитическую активность продемонстрировал образец с соотношением TiO2‑цеолит 1:1, полученный из тетрахлорида титана. Степень деградации кристаллического фиолетового составила 22% при УФ облучении в течение 2 ч, а в реакции разложения ацетона активность составила 642 млн. д. (выход CO2).
Keywords
Full Text

About the authors
Alexey A. Sadovnikov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: sadovnikov@ips.ac.ru
ORCID iD: 0000-0002-3574-0039
научный сотрудник
Russian Federation, Moscow, 119991, Leninsky Prospekt 29с2; Moscow, 119991, Leninsky Prospekt 31Evgeny R. Naranov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: naranov@ips.ac.ru
ORCID iD: 0000-0002-3815-9565
кандидат химических наук, старший научный сотрудник
Russian Federation, Moscow, 119991, Leninsky Prospekt 29с2Kristina N. Novoselova
N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: kristynovoselova65@gmail.com
ORCID iD: 0009-0006-4139-1476
инженер-исследователь
Russian Federation, Moscow, 119991, Leninsky Prospekt 31Ricardo A. Rodriges Pineda
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: rodrigues.pineda@yandex.ru
ORCID iD: 0009-0001-2744-2242
старший лаборант
Russian Federation, Moscow, 119991, Leninsky Prospekt 29с2Anton L. Maximov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Author for correspondence.
Email: max@ips.ac.ru
ORCID iD: 0000-0001-9297-4950
Член-корреспондент РАН, директор ИНХС РАН
Russian Federation, Moscow, 119991, Leninsky Prospekt 29с2References
- Dong H., Zeng G., Tang L., Fan C., Zhang C., He X., He Y. An overview on limitations of TiO₂-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures // Water Res. 2015. V. 79. P. 128–146. https://dx.doi.org/10.1016/j.watres.2015.04.038
- Haghighat Mamaghani A.H., Haghighat F., Lee C.-S. Role of titanium dioxide (TiO₂) structural design/morphology in photocatalytic air purification // Appl. Catal. B: Environ. 2020. V. 269. ID 118735. https://dx.doi.org/10.1016/j.apcatb.2020.118735
- Ao C.H., Lee S.C. Indoor air purification by photocatalyst TiO₂ immobilized on an activated carbon filter installed in an air cleaner // Chem. Eng. Sci. 2005. V. 60, № 1. P. 103–109. https://dx.doi.org/10.1016/j.ces.2004.01.073
- Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment // J. Photochem. Photobiol. A. 2015. V. 303–304. P. 36–43. https://dx.doi.org/10.1016/j.jphotochem.2015.01.010
- Sadovnikov A.A., Naranov E.R., Maksimov A.L., Baranchikov A.E., Ivanov V.K. Photocatalytic activity of fluorinated titanium dioxide in ozone decomposition: 1 // Russ. J. Appl. Chem. 2022. V. 95, № 1. P. 118–125. https://dx.doi.org/10.1134/S1070427222010153
- Rueda-Marquez J.J., Levchuk I., Fernández Ibañez P., Sillanpää M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters // J. Cleaner Prod. 2020. V. 258. ID 120694. https://dx.doi.org/10.1016/j.jclepro.2020.120694
- Shan A.Y., Mohd. Ghazi T.I., Rashid S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review // Appl. Catal. A: Gen. 2010. V. 389, № 1–2. P. 1–8. https://dx.doi.org/10.1016/j.apcata.2010.08.053
- Lin L., Wang H., Xu P. Immobilized TiO₂-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals // Chem. Eng. J. 2017. V. 310, Pt. 2. P. 389–398. https://dx.doi.org/10.1016/j.cej.2016.04.024
- Tran M.L., Fu C.-C., Chiang L.-Y., Hsieh C.-T., Liu S.-H., Juang R.-S. Immobilization of TiO₂ and TiO₂-GO hybrids onto the surface of acrylic acid-grafted polymeric membranes for pollutant removal: Analysis of photocatalytic activity // J. Environ. Chem. Eng. 2020. V. 8, № 5. ID 104422. https://dx.doi.org/10.1016/j.jece.2020.104422
- Gar Alalm M., Tawfik A., Ookawara S. Enhancement of photocatalytic activity of TiO₂ by immobilization on activated carbon for degradation of pharmaceuticals // J. Environ. Chem. Eng. 2016. V. 4, № 2. P. 1929–1937. https://dx.doi.org/10.1016/j.jece.2016.03.023
- Bahrudin N.N. Evaluation of degradation kinetic and photostability of immobilized TiO₂/activated carbon bilayer photocatalyst for phenol removal // Appl. Surf. Sci. Adv. 2022. V. 7. ID 100208. https://dx.doi.org/10.1016/j.apsadv.2021.100208
- Li F., Sun S., Jiang Y., Xia M., Sun M., Xue B. Photodegradation of an azo dye using immobilized nanoparticles of TiO₂ supported by natural porous mineral // J. Hazard. Mater. 2008. V. 152, № 3. P. 1037–1044. https://dx.doi.org/10.1016/j.jhazmat.2007.07.114
- de Oliveira W.V., Morais A.Í.S., Honorio L.M.C., Trigueiro P.A., Almeida L.C., Pena Garcia R.R., Viana B.C., Furtini M.B., Silva-Filho E.C., Osajima J.A. TiO₂ Immobilized on Fibrous Clay as Strategies to Photocatalytic Activity // Mat. Res. 2020. V. 23, № 1. ID e20190463. https://dx.doi.org/10.1590/1980-5373-mr-2019-0463
- Yu J.C., Wang X., Fu X. Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films // Chem. Mater. 2004. V. 16, № 8. P. 1523–1530. https://dx.doi.org/10.1021/cm049955x
- Younis S.A., Amdeha E., El-Salamony R.A. Enhanced removal of p-nitrophenol by β-Ga₂O₃-TiO₂ photocatalyst immobilized onto rice straw-based SiO₂ via factorial optimization of the synergy between adsorption and photocatalysis // J. Environ. Chem. Eng. 2021. V. 9, № 1. ID 104619. https://dx.doi.org/10.1016/j.jece.2020.104619
- Wang B., Zhang G., Sun Z., Zheng S. Synthesis of natural porous minerals supported TiO₂ nanoparticles and their photocatalytic performance towards Rhodamine B degradation // Powder Technol. 2014. V. 262. P. 1–8. https://dx.doi.org/10.1016/j.powtec.2014.04.050
- Jansson I., Suárez S., Garcia-Garcia F.J., Sánchez B. Zeolite–TiO₂ hybrid composites for pollutant degradation in gas phase // Appl. Catal. B: Environ. 2015. V. 178. P. 100–107. https://dx.doi.org/10.1016/j.apcatb.2014.10.022
- Hu G., Yang J., Duan X., Farnood R., Yang C., Yang J., Liu W., Liu Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications // Chem. Eng. J. 2021. V. 417. ID 129209. https://dx.doi.org/10.1016/j.cej.2021.129209
- Kovalevskiy N.S., Lyulyukin M.N., Selishchev D.S., Kozlov D.V. Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO₂/zeolite photocatalyst // J. Hazard. Mater. 2018. V. 358. P. 302–309. https://dx.doi.org/10.1016/j.jhazmat.2018.06.035
- Jiang N., Shang R., Heijman S.G.J., Rietveld L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review // Water Res. 2018. V. 144. P. 145–161. https://dx.doi.org/10.1016/j.watres.2018.07.017
- Corma A., Corell C., Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite // Zeolites. 1995. V. 15, № 1. P. 2–8. https://dx.doi.org/10.1016/0144-2449(94)00013-I
- Sadovnikov A.A., Nechaev E.G., Beltiukov A.N., Gavrilov A.I., Makarevich A.M., Boytsova O.V. Titania mesocrystals: working surface in photocatalytic reactions // Russ. J. Inorg. Chem. 2021. V. 66, № 4. P. 460–467. https://dx.doi.org/10.1134/S0036023621040197
- Садовников А.А., Новоселова К.Н., Судьин В.В., Наранов Е.Р. Влияние аниона аммиачного комплекса серебра на активность сформированных in situ Ag/TiO₂-катализаторов // Нефтехимия. 2024. Т. 64, № 5. С. 491–498. https://dx.doi.org/10.31857/S0028242124050077
Supplementary files
