Pleiotropic Effects of Knockout Mutations in the TPS1 and TPS2 Genes Encoding Trehalose Biosynthesis Enzymes of Saccharomyces cerevisiae
- 作者: Kulakovskaya E.V.1, Torgov V.I.2, Nifantiev N.E.2, Rekstina V.V.3, Kalebina T.S.3
-
隶属关系:
- FRC “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Biology, Department of Molecular Biology
- 期: 卷 94, 编号 6 (2025)
- 页面: 573–581
- 栏目: EXPERIMENTAL ARTICLES
- URL: https://ogarev-online.ru/0026-3656/article/view/358315
- DOI: https://doi.org/10.7868/S3034546425060077
- ID: 358315
如何引用文章
详细
作者简介
E. Kulakovskaya
FRC “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms
Email: e.kulakovskya@ibpm.ru
Pushchino, Russia
V. Torgov
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscow, Russia
N. Nifantiev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscow, Russia
V. Rekstina
Lomonosov Moscow State University, Faculty of Biology, Department of Molecular BiologyMoscow, Russia
T. Kalebina
Lomonosov Moscow State University, Faculty of Biology, Department of Molecular BiologyMoscow, Russia
参考
- Трилисенко Л.В., Валиахметов А.Я., Кулаковская Т.В. Физиологические особенности Saccharomyces cerevisiae при сверхэкспрессии полифосфатазы Pрх1 // Микробиология. 2023. Т. 92. С. 396–403.
- Trilisenko L.V., Valiakhmetov A.Ya., Kulakovskaya T.V. Physiological characteristics of Saccharomyces cerevisiae strain overexpressing polyphosphatase Ppx1 // Microbiology (Moscow). 2023. V. 92. P. 545‒551.
- Трилисенко Л.В., Ледова Л.А., Рязанова Л.П., Кулаковская Е.В., Томашевский А.А., Кулаковская Т.В. Полифосфаты, полифосфатазная активность и устойчивость к стрессам нокаут-мутантов генов Saccharomyces cerevisiae, кодирующих полифосфатазы Ppn1 и Ppn2 // Biologia et Biotechnologia. 2024. Т. 1. С. 2‒11.
- Trilisenko L.V., Ledova L.A., Ryazanova L.P., Kulakovskaya E.V., Tomashevsky A.A., Kulakovskaya T.V. Polyphosphates, polyphosphatase activity and stress resistance of knockout mutants in the PPN1 and PPN2 genes of Saccharomyces cerevisiae Ppn1 and Ppn2 // Biologia et Biotechnologia. 2024. V. 1. Art. 4. http://dx.doi.org/10.21203/rs.3.rs-3845419/v1
- Феофилова Е.П., Усов А.И., Мысякина И.С., Кочкина Г.А. Трегалоза: особенности химического строения, биологические функции и практическое значение // Микробиология. 2014. Т. 83. С. 271–283.
- Feofilova E.P., Usov A.I., Mysyakina I.S., Kochkina G.A. Trehalose: chemical structure, biological functions and practical application // Microbiology (Moscow). 2014. V. 83. P. 184–194. https://doi.org/10.1134/S0026261714020064
- Andreeva N., Ledova L., Ryazanova L., Tomashevsky A., Kulakovskaya T., Eldarov M. Ppn2 endopolyphosphatase overexpressed in Saccharomyces cerevisiae: comparison with Ppn1, Ppx1, and Ddp1 polyphosphatases // Biochimie. 2019. V. 163. P. 101‒107.
- Cervantes-Chavez J.A., Valdes-Santiago L., Bakkeren G., Hurtado-Santiago E., León-Ramírez C.G., Esquivel-Naranjo E.U., Landeros-Jaime F., Rodríguez-Aza Y., Herrera J.R. Trehalose is required for stress resistance and virulence of the Basidiomycota plant pathogen Ustilago maydis // Microbiology (Reading). 2016. V. 162. P. 1009–1022.
- Chen A., Smith J.R., Tapia H., Gibney P.A. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae // G3 (Bethesda). 2022. V. 12. Art. 196.
- Divate N.R., Chen G.H., Wang P.M., Ou B.R., Chung Y.C. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose // Bioengineered. 2016. V. 7. P. 445–458. https://doi.org/10.1080/21655979.2016.1207019
- Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast // FEMS Microbiol. Rev. 2000. V. 24. P. 469‒486.
- Gomes A.M.V., Orlandi A.C.A.L., Parachin N.S. Deletion of the trehalose tps1 gene in Kluyveromyces lactis does not impair growth in glucose // FEMS Microbiol. Lett. 2020. V. 367. Art. 072.
- Goughenour K., Creech A., Xu J., He X., Hissong R., Giamberardino C., Tenor J., Toffaletti D., Perfect J., Olszewski M. Cryptococcus neoformans trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses // Front. Cell Infect. Microbiol. 2024. V. 14. Art. 1392015.
- Guirao-Abad J.P., Pujante V., Sanchez-Fresneda R., Yague G., Arguelles J.C. Sensitivity of the Candida albicans trehalose-deficient mutants tps1Δ and tps2Δ to amphotericin B and micafungin // J. Med. Microbiol. 2019. V. 68. P. 1479–1488.
- Jiang H., Liu G.L., Chi Z., Hu Z., Chi Z.M. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments // Curr. Genet. 2018. V. 64. P. 479‒491.
- Kalebina T.S., Laurinavichiute D.K., Packeiser A.N., Morenkov O.S., Ter-Avanesyan M.D., Kulaev I.S. Correct GPI-anchor synthesis is required for the incorporation of endoglucanase/glucanosyltransferase Bgl2p into the Saccharomyces cerevisiae cell wall // FEMS Microbiol. Lett. 2002. V. 210. P. 81‒85.
- Kalebina T.S., Plotnikova T.A., Gorkovskii A.A., Selyakh I.O., Galzitskaya O.V., Bezsonov E.E., Gellissen G., Kulaev I.S. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences // Prion. 2008. V. 2. P. 91‒96.
- Kandror O., Bretschneider N., Kreydin E., Cavalieri D., Goldberg A.L. Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones // Mol. Cell. 2004. V. 13. P. 771–781.
- Kawahata M., Masaki K., Fujii T., Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated byAft1p // FEMS Yeast Res. 2006. V. 6. P. 924–936.
- Kim B., Lee Y., Choi H., Huh W.K. The trehalose-6-phosphate phosphatase Tps2 regulates ATG8 transcription and autophagy in Saccharomyces cerevisiae // Autophagy. 2021. V. 17. P. 1013–1027.
- Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms // World J. Microbiol. Biotechnol. 2018. V. 34. Art. 139. https://doi.org/10.1007/s11274-018-2523-7
- Kwon H.B., Yeo E.T., Hahn S.E., Bae S.C., Kim D.Y., Byun M.O. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii // FEMS Yeast Res. 2003. V. 3. P. 433‒440.
- Mahmud S.A., Nagahisa K., Hirasawa T., Yoshikawa K., Ashitani K., Shimizu H. Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae // Yeast. 2009. V. 26. P. 17‒30.
- Mahmud S.A., Hirasawa T., Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses // J. Biosci. Bioeng. 2010. V. 109. P. 262‒266.
- Martinez-Esparza M., Martinez-Vicente E., Gonzalez-Parraga P., Ros J.M., Garcia-Penarrubia P., Arguelles J.C. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans // Int. J. Med. Microbiol. 2009. V. 299. P. 453‒464.
- McMillan S.D., Oberlie N.R., Hardtke H.A., Montes M.M., Brown D.W., McQuade K.L. A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides // Fungal Biol. 2023. V. 127. P. 918‒926.
- Motorin N.A., Makarov G.I., Rekstina V.V., Evtushenko E.G., Sabirzyanov F.A., Ziganshin R.H., Shaytan A.K., Kalebina T.S. Yeast glucan remodeling protein Bgl2p: amyloid properties and the mode of attachment in cell wall // Int. J. Mol. Sci. 2024. V. 25. Art. 13703. https://doi.org/10.3390/ijms252413703
- Pereira M.D., Eleutherio E.C.A., Panek A.D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae // BMC Microbiol. 2001. V. 1. Art. 11. https://doi.org/10.1186/1471-2180-1-11
- Rekstina V.V., Sabirzyanova T.A., Sabirzyanov F.A., Adzhubei A.A., Tkachev Y.V., Kudryashova I.B., Snalina N.E., Bykova A.A., Alessenko A.V., Ziganshin R.H., Kuznetsov S.A., Kalebina T.S. The post-translational modifications, localization, and mode of attachment of non-covalently bound glucanosyltransglycosylases of yeast cell wall as a key to understanding their functioning // Int. J. Mol. Sci. 2020. V. 21. Art. 8304.
- Schmidt M., Akasaka K., Messerly J.T., Boyer M.P. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae // Microbiology (Reading). 2012. V. 158. P. 2667–2678.
- Serra-Cardona A., Canadell D., Arino J. Coordinate responses to alkaline pH stress in budding yeast // Microb. Cell Graz Austria. 2015. V. 2. P. 182–196.
- Stambuk B.U., De Araujo P.S., Panek A.D., Serrano R. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae // Eur. J. Biochem. 1996. V. 237. P. 876‒881.
- Tan H., Dong J., Wang G., Xu H., Zhang C., Xiao D. Enhanced freeze tolerance of baker’s yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough // J. Ind. Microbiol. Biotechnol. 2014. V. 41. P. 1275–1285.
- Vagabov V.M., Trilisenko L.V., Kulakovskaya T.V., Kulaev I.S. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae // FEMS Yeast Res. 2008. V. 8. P. 877‒882.
- Yoshikawa Y., Matsumoto K., Nagata K., Sato T. Extraction of trehalose from thermally-treated bakers’ yeast // Biosci. Biotech. Biochem. 1994. V. 58. P. 1226‒1230.
- Yuan B., Wang W.B., Wang Y.T., Zhao X.Q. Regulatory mechanisms underlying yeast chemical stress response and development of robust strains for bioproduction // Curr. Opin. Biotechnol. 2024. V. 86. Art. 103072.
- Zaragoza O., Blazquez M.A., Gancedo C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity // J. Bacteriol. 1998. V. 180. P. 3809–3815.

