СОВМЕСТИМЫЙ ПРЕКУРСОР ДЛЯ ЗОЛЬ–ГЕЛЬ МИНЕРАЛИЗАЦИИ КОЛЛОИДНЫХ СИСТЕМ. МИНИ-ОБЗОР

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Коллоидные системы, используемые в качестве темплата в золь–гель синтезе, представляют большой интерес благодаря структурному разнообразию, однако, они весьма чувствительны к условиям проведения эксперимента. Введение прекурсора, выделение органического растворителя при гидролизе, введение каталитических добавок – кислоты или щелочи, нагрев приводят к перестройке и фазовым переходам. Поэтому окончательное состояние оказывается существенно измененным по сравнению с исходным, что не определяется a priori. Обзор посвящен прекурсорам с остатками этиленгликоля, которые в отличие от тетраэтоксисилана, используемого в традиционном золь–гель синтезе, гидрофильны, растворимы в воде, гидролизуются в нейтральных водных растворах, не требуют добавления катализатора и нагрева. Кроме того, в отличие от этанола этиленгликоль в тех количествах, в которых выделяется при гидролизе, не приводит к трансформации коллоидных систем. В обзоре рассматривается получение прекурсоров, вопросы золь–гель химии и примеры формирования разнообразных функциональных материалов, которые синтезируются по более простому протоколу в одну стадию в условиях, определяемых минерализуемым темплатом, а не золь–гель процессом. Многие из них можно синтезировать только с помощью этиленгликоль-содержащих силанов.

Об авторах

Ю. А Щипунов

Институт химии ДВО РАН

Email: yas@ich.dvo.ru
Владивосток, Россия

Список литературы

  1. Максимов А.И., Мошников В.А., Таиров Ю.М., Шилова О.А. Основы золь-гель-технологии нанокомпозитов. СПб.: Изд-во СПбГЭТУ “ЛЭТИ”. 2007.
  2. Ariga K., Hill J.P., Lee M.V., Vinu A., Charvet R., Acharya S. Challenges and breakthroughs in recent research on self-assembly // Sci. Technol. Adv. Mater. 2008. V. 9. № 1. P. 1–96. https://doi.org/10.1088/1468-6996/9/1/014109
  3. Lu A.H., Zhao D., Wan Y. Nanocasting. A versatile strategy for creating nanostructured porous materials. Cambridge: The Royal Society of Chemistry. 2010.
  4. Ariga K., Vinu A., Yamauchi Y., Ji Q., Hill J.P. Nanoarchitectonics for mesoporous materials // Bull. Chem. Soc. Jpn. 2012. V. 85. № 1. P. 1–32. https://doi.org/10.1246/bcsj.20110162
  5. Van Der Voort P., Esquivel D., De Canck E., Goethals F., Van Driessche I., Romero-Salguero F.J. Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3913–3955. https://doi.org/10.1039/C2CS35222B
  6. Duan L., Wang C., Zhang W., Ma B., Deng Y., Li W., Zhao D. Interfacial assembly and applications of functional mesoporous materials // Chem. Rev. 2021. V. 121. № 23. P. 14349–14429. https://doi.org/doi: 10.1021/acs.chemrev.1c00236
  7. Bockstaller M.R., Mickiewicz R.A., Thomas E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials // Adv. Mater. 2005. V. 17. № 11. P. 1331–1349. https://doi.org/10.1002/adma.200500167
  8. Yang X.Y., Li Y., Lemaire A., Yu J.G., Su B.L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks // Pure Appl. Chem. 2009. V. 81. № 12. P. 2265–2307. https://doi.org/10.1351/PAC-CON-09-05-06
  9. Han L., Che S. Anionic surfactant templated mesoporous silicas (AMSs) // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3740–3752. https://doi.org/10.1039/C2CS35297D
  10. Zhao D., Wan Y., Zhou W. Ordered Mesoporous Materials. Weinheim: Wiley-VCH. 2013.
  11. Yang X.Y., Chen L.H., Li Y., Rooke J.C., Sanches C., Su B.L. Hierarchically porous materials: Synthesis strategies and structure design // Chem. Soc. Rev. 2017. V. 46. № 2. P. 481–558. https://doi.org/10.1039/c6cs00829a
  12. Edler K.J. Formation of ordered mesoporous thin films through templating // Handbook of Sol–gel Science and Technology: Processing, Characterization and Applications / Ed. by Klein L., Aparicio M., Jitianu A. Cham: Springer, 2018. P. 917–983.
  13. Pierre A.C. Introduction to Sol–gel Processing. Boston : Kluwer. 2020.
  14. Schwuger M. J., Stickdorn K., Schomacker R. Microemulsions in technical processes // Chem. Rev. 1995. V. 95. № 4. P. 849–864.
  15. Mayer D. Surfaces, Interfaces, and Colloids: Principles and Applications. New York: Wiley-VCH. 1999.
  16. Jonsson B., Lindman B., Holmberg K., Kronberg B. Surfactants and polymers in aqueous solutions. Chichester: John Wiley. 2002.
  17. Birdi K.S. Surface and Colloid Chemistry. Principles and Applications. Boca Raton, FL: CRC Press. 2010.
  18. Goodwin J.W. Colloids and interfaces with surfactants and polymers – An Introduction. Chichester: Wiley. 2004.
  19. Davies J.T., Rideal E.K. Interfacial phenomena. New York: Academic Press. 1961.
  20. Hadjichristidis N., Pispas S., Floudas G. Block copolymers. Synthetic strategies, physical properties, and applications. Hoboken, NJ: Wiley. 2003.
  21. Kim J.K., Yang S.Y., Lee Y., Kim Y. Functional nanomaterials based on block copolymer self-assembly // Prog. Polym. Sci. 2010. V. 35. № 11. P. 1325–1349. https://doi.org/10.1016/j.progpolymsci.2010.06.002
  22. Pashley R.M., Karaman M.E. Applied colloid and surface chemistry. Hoboken, NJ: Wiley. 2021.
  23. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // Nature. 1992. V. 359 . P. 710–712. https://doi.org/10.1038/359710a0
  24. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., Mccullen S.B., Higgins J.B., Schlenker J.L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates // J. Am. Chem. Soc. 1992. V. 114. № 27. P. 10834–10843. https://doi.org/10.1021/ja00053a020
  25. Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores // Science. 1998. V. 279. № 5350. P. 548–552. https://doi.org/10.1126/science.279.5350.548
  26. Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024–6036. https://doi.org/doi: 10.1021/ja974025i
  27. Ruthstein S., Schmidt J., Kesselman E., Talmon Y., Goldfarb D. Resolving intermediate solution structures during the formation of mesoporous SBA-15 // J. Am. Chem. Soc. 2006. V. 128. № 10. P. 3366–3374. https://doi.org/10.1021/ja0559911
  28. Sattler K., Gradzielski M., Mortensen K., Hoffmann H. Influence of surfactant on the gelation of novel ethylene glycol esters of silicic acid // Ber. Bunsenges. Phys. Chem. 1998. V. 102. № 11. P. 1544–1547.
  29. Hartmann S., Brandhuber D., Husing N. Glycol-modified silanes: Novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials // Acc. Chem. Res. 2007. V. 40. № 9. P. 885–894. https://doi.org/10.1021/ar6000318
  30. Shchipunov Y.A. Entrapment of biopolymers into sol–gel-derived silica nanocomposites // Bio-inorganic hybrid nanomaterials / Ed. by Ruiz-Hitzky E., Ariga K., Lvov Y. Weinheim. Wiley-VCH Verlag, 2008. P. 75–117.
  31. Shchipunov Y. Biomimetic sol–gel chemistry to tailor structure, properties, and functionality of bionanocomposites by biopolymers and cells // Mater. 2024. V. 17. № 1. P. 224. https://doi.org/10.3390/ma17010224
  32. Ebelmen J.J. Untersuchungen über die verbindungen der borsäure und kieselsäure mit aether // Liebigs. Ann. Chem. 1846. V. 57. № 3. P. 319–355. https://doi.org/10.1002/JLAC.18460570303
  33. Clark S.G., Holt P.F., Went C.W. The interaction of silicic acid with insulin, albumin and nylon monolayers // Trans. Faraday Soc. 1957. V. 53. № 0. P. 1500–1508. https://doi.org/10.1039/TF9575301500
  34. Brinker C.J., Scherer G.W. Sol–gel science. The physics and chemistry of sol–gel processing. Boston: Academic Press. 1990.
  35. Hench L.L. Sol–gel silica. Properties, processing and technology transfer. Westwood, NJ: Noyes Publications. 1998.
  36. Esposito S. Sol–gel synthesis strategies for tailored catalytic materials. Cham : Springer. 2023.
  37. Johnson P., Whateley T.L. On the use of polymerizing silica gel systems for the immobilization of trypsin // J. Colloid Interface Sci. 1971. V. 37. № 3. P. 557–563.
  38. Hench L.L., West J.K. The sol–gel process // Chem. Rev. 1990. V. 90. № 1. P. 33–72. https://doi.org/10.1021/cr00099a003
  39. Sui X.H., Cruz-Aguado J.A., Chen Y., Zhang Z., Brook M.A., Brennan J.D. Properties of human serum albumin entrapped in sol–gel-derived silica bearing covalently tethered sugars // Chem. Mater. 2005. V. 17. № 5. P. 1174–1182. https://doi.org/10.1021/cm048166c
  40. Wyman J. The dielectric constant of mixtures of ethyl alcohol and water from –5 to 40° // J. Am. Chem. Soc. 1931. V. 53. № 9. P. 3292–3301. https://doi.org/10.1021/ja01360a012
  41. Tanford C. The hydrophobic effect: Formation of micelles and biological membranes. New York: Wiley-Interscience. 1980.
  42. Zana R. Aqueous surfactant-alcohol systems: A review // Adv. Colloid Interface Sci. 1995. V. 57. P. 1–64. https://doi.org/10.1016/0001-8686(95)00235-i
  43. Alexandridis P., Ivanova R., Lindman B. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 2. Glycol location in the microstructure // Langmuir. 2000. V. 16. № 8. P. 3676–3689. https://doi.org/doi: 10.1021/la9912343
  44. Sattler K., Hoffmann H. A novel glycol silicate and its interaction with surfactant for the synthesis of mesoporous silicate // Prog. Colloid Polym. Sci. 1999. V. 112. P. 40–44. https://doi.org/10.1007/3-540-48953-3_9
  45. Brook M. A., Chen Y., Guo K., Zhang Z., Brennan J. D. Sugar-modified silanes: Precursors for silica monoliths // J. Mater. Chem. 2004. V. 14. № 9. P. 1469–1479. https://doi.org/10.1039/B401278J
  46. Wong M.S., Knowles M.V. Surfactant-templated mesostructured materials: Synthesis and compositional control // Nanoporous materials. Science and Technology / Ed. by Lu G. Q., Zhao X. S. London. Imperial College Press, 2004. P. 125–164.
  47. Brandhuber D., Torma V., Raab C., Peterlik H., Kulak A., Husing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity // Chem. Mater. 2005. V. 17. № 16. P. 4262–4271. https://doi.org/10.1021/cm048483j
  48. Husing N., Brandhuber D., Kaiser P. Glycol-modified organosilanes in the synthesis of inorganic-organic silsesquioxane and silica monoliths // J. Sol-Gel Sci. Techn. 2006. V. 40. № 2–3. P. 131–139. https://doi.org/10.1007/s10971-006-8802-z
  49. Takahashi S., Ikkai Y., Rodriguez-Abreu C., Aramaki K., Ohsuna T., Sakamoto K. Application of a water soluble alkoxysilane for the formation of mesoporous silica from nonionic surfactant micelles bearing cholesterol // Chem. Lett. 2007. V. 36. № 1. P. 182–183. https://doi.org/10.1246/cl.2007.182
  50. Shchipunov Y., Postnova I. Cellulose mineralization as a route for novel functional materials // Adv. Funct. Mater. 2018. V. 28. № 27. P. 1705042. https://doi.org/10.1002/adfm.201705042
  51. Attard G.S., Glyde J.C., Göltner C.G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica // Nature. 1995. V. 378. № 6555. P. 366–368. https://doi.org/10.1038/378366a0
  52. Wang G. H., Zhang L.M. A biofriendly silica gel for in situ protein entrapment: Biopolymer-assisted formation and its kinetic mechanism // J. Phys. Chem. C. 2009. V. 113. № 9. P. 2688–2694. https://doi.org/10.1021/jp810736v
  53. Bravo-Flores I., Melendez-Zamudio M., Guerra-Contreras A., Ramirez-Oliva E., Alvarez-Guzman G., Zarraga-Nunez R., Villegas A., Cervantes J. Revisiting the system silanes-polysaccharides: The cases of THEOS-chitosan and MeTHEOS-chitosan // Macromol. Rapid Commun. 2023. V. 42. P. 2000612. https://doi.org/10.1002/marc.202000612
  54. Kuznetsova V.P., Belogolovina G.N. Synthesis of hydrohyalkoxysilames and urethans derived from them // J. General Chem. USSR Eng. Transl. 1969. V. 39. № 3. P. 515–517.
  55. Alexandridis P., Holmqvist P., Lindman B. Poly(ethylene oxide)-containing amphiphilic block copolymers in ternary mixtures with water and organic solvent: effect of copolymer and solvent type on phase behavior and structure // Colloid Surf. A. 1997. V. 129–130. P. 3–21.
  56. Ivanova R., Lindman B., Alexandridis P. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 1. Phase diagrams and structure identification // Langmuir. 2000. V. 16. № 8. P. 3660–3675. https://doi.org/doi: 10.1021/la991235v
  57. Shchipunov Y.A., Karpenko T.Y., Bakunina I.Y., Burtseva Y., Zvyagintseva T.N. A new precursor for the Immobilization of enzymes inside sol–gel derived hybrid silica nanocomposites containing polysaccharides // J. Biochem. Biophys. Methods. 2004. V. 58. № 1. P. 25–38. https://doi.org/10.1016/S0165-022X(03)00108-8
  58. Shchipunov Y.A., Burtseva Y.V., Karpenko T.Y., Shevchenko N.M., Zvyagintseva T.N. Highly efficient immobilization of endo-1,3- β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide/silica nanocomposites with regulated composition // J. Mol. Catal. B. Enzym. 2006. V. 40. № 1–2. P. 16–23. https://doi.org/10.1016/j.molcatb.2006.02.002
  59. Бакунина И.Ю., Недашковская О.И., Звягинцева Т.Н. Иммобилизация α-галактозидазы в гибридных нанокомпозитах, содержащих полисахариды // ЖПХ 2006. Т. 79. № 5. С. 839–844.
  60. Постнова И.В., Chen L.J., Щипунов Ю.А. Одностадийный синтез монолитного макропористого полиметилсилсесквиоксана, абсорбирующего нефть // Коллоид. журн. 2015. Т. 77. № 2. С. 262–264. https://doi.org/10.7868/S0023291215020147
  61. Shchipunov Y.A. Sol–gel derived biomaterials of silica and carrageenans // J. Colloid Interface Sci. 2003. V. 268. № 1. P. 68–76. https://doi.org/10.1016/s0021-9797(03)00457-0
  62. Постнова И.В., Chen L.J., Щипунов Ю.А. Синтез монолитного мезопористого силиката с регулярной структурой (SBA-15) и макропрами в нейтральном водном растворе при комнатной температуре // Коллоид. журн. 2013. Т. 75. № 2. С. 255–257. https://doi.org/10.7868/S0023291213020146
  63. Iler R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry. New York: Wiley. 1979.
  64. Corriu R., Anh N.T. Molecular chemistry of sol–gel derived nanomaterials. 2009.
  65. Hoffmann H., Meyer M., Zeitler I. Control of morphology inside the mesoporous gel-structure in silica-gels // Colloid Surf. A. 2006. V. 291. № 1–3. P. 117–127. https://doi.org/10.1016/j.colsurfa.2006.07.032
  66. Щипунов Ю.А., Крекотень А.В., Петухова М.В. Люминесцентный нанокомпозитный материал, синтезированный золь–гель методом в мицеллярном растворе алкилполиглюкозида с солюбилизированным люминолом // Коллоид. журн. 2008. Т. 70. № 6. С. 855–862. https://doi.org/10.1134/S1061933X08060185
  67. Postnova I., Bezverbny A., Golik S., Kulchin Y., Li H., Wang J., Kim I., Ha C.S., Shchipunov Y. Tailored hybrid hyperbranched polyglycidol-silica nanocomposites with high third-order nonlinearity // Int. Nano Lett. 2012. V. 2. № 1. P. 13–17. https://doi.org/10.1186/2228-5326-2-13
  68. Ciesla U., Schuth F. Ordered mesoporous materials // Micropor. Mesopor. Mater. 1999. V. 27. № 2–3. P. 131–149.
  69. Soler-Illia G. J.A.A., Sanchez C., Lebeau B., Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures // Chem. Rev. 2002. V. 102. № 11. P. 4093–4138. https://doi.org/10.1021/cr0200062
  70. Wan Y., Zhao D.Y. On the controllable soft-templating approach to mesoporous silicates // Chem. Rev. 2007. V. 107. № 7. P. 2821–2860. https://doi.org/10.1021/cr068020s
  71. Chircov C., Spoiala A., Paun C., Craciun L., Ficai D., Ficai A., Andronescu E., Turculet L.C. Mesoporous silica platforms with potential applications in release and adsorption of active agents // Molecules. 2020. V. 25. № 17. P. 3814. https://doi.org/10.3390/molecules25173814
  72. Meyer M., Fischer A., Hoffmann H. Novel ringing silica gel that do not shrink // J. Phys. Chem. B. 2002. V. 106. № 7. P. 1528–1533. https://doi.org/10.1021/jp013371q
  73. Husing N., Raab C., Torma V., Roig A., Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes // Chem. Mater. 2003. V. 15. № 14. P. 2690–2692. https://doi.org/doi: 10.1021/cm034036c
  74. Shchipunov Y., Postnova I., Sarin S. Bimodal SBA-15 and polymethylsilsesquioxane monoliths with regulated mesoporous structure and macroporosity // Colloid Polym Sci. 2015. V. 293. № 11. P. 3369–3380. https://doi.org/10.1007/s00396-015-3745-y
  75. Сергеева К.М., Постнова И.В., Щипунов Ю.А. Включение квантовых точек в силикатную матрицу с помощью совместимого прекурсора // Коллоид. журн. 2013. Т. 75. № 6. С. 779–765. https://doi.org/10.7868/S0023291213060153
  76. Proschenko D., Mayor A., Bukin O., Golik S., Chekhlenok A., Postnova I., Shchipunov Y.A., Kulchin Y. Interaction of the femtosecond laser pulses with the new silica nanocomposites containing Au and CdS // Adv. Mat. Res. 2014. V. 835–836. № 1. P. 60–63. https://doi.org/10.4028/www.scientific.net/AMR.834-836.60
  77. Nakamura T., Yamada H., Yamada Y., Gurtanyel A., Hartmann S., Husing N., Yano K. New strategy using glycol-modified silane to synthesize monodispersed mesoporous silica spheres applicable to colloidal photonic crystals // Langmuir. 2009. V. 26. № 3. P. 2002–2007. https://doi.org/doi: 10.1021/la902498p
  78. Постнова И.В., Chen L.J., Щипунов Ю.А. Формирование макропор в бимодальном силикате, синтезированном на темплате из блочного сополимера Р123 // Коллоид. журн. 2019. Т. 81. № 2. С. 224–231. https://doi.org/10.1134/S0023291219020137
  79. Kohler J., Feinle A., Waitzinger M., Husing N. Glycol-modified silanes as versatile precursors in the synthesis of thin periodically organized silica films // J. Sol-Gel Sci. Techn. 2009. V. 51. № 3. P. 256–263. https://doi.org/10.1007/s10971-009-1947-9
  80. Postnova I., Sarin S., Silant’ev V., Shchipunov Y. Evolution of block copolymer template structure during the synthesis of ordered mesoporous silica // Colloid Polym. Sci. 2017. V. 295. № 4. P. 549–554. https://doi.org/10.1007/s00396-017-4043-7
  81. Sergeev A.A., Voznesensky S.S., Galkina A.N., Kuznetsova Y.V., Popov I.D., Rempel A.A., Postnova I.V., Shchipunov Y.A. Nanocomposites based on CdS quantum dots for laser control devices // Solid State Phenomena. 2016. V. 245. № 1. P. 67–71. https://doi.org/10.4028/www.scientific.net/SSP.245.67
  82. Postnova I., Voznesenskiy S., Sergeev A., Galkina A., Kulchin Y., Shchipunov Y. Photonic materials prepared through the entrapment of quantum dots into silica // Colloid Surf. A. 2018. V. 536. P. 3–9. https://doi.org/10.1016/j.colsurfa.2017.09.020
  83. Postnova I., Shchipunov Y. Tannic acid as a versatile template for silica monoliths engineering with catalytic gold and silver nanoparticles // Nanomater. 2022. V. 12. № 23. P. 4320. https://doi.org/10.3390/nano12234320
  84. Postnova I., Khlebnikov O., Sarin S., Shchipunov Y. Nano/microfibrillated cellulose as a structure-directing template for one-stage synthesis of ladder polysilsesquioxane in diluted aqueous solutions at ambient conditions // ACS Appl. Polym. Mater. 2025. V. 7. № 7. P. 4177–4182. https://doi.org/10.1021/acsapm.4c03776
  85. Mitra A., Imae T., Shchipunov Y.A. Fibrous silica composite fabricated by the sol–gel processing on aggregates of amino acid surfactant // J. Sol-Gel Sci. Techn. 2005. V. 34. P. 127–130. https://doi.org/10.1007/s10971-005-1331-3
  86. Voznesensky S.S., Sergeev A.A., Galkina A.N., Kulchin Y., Shchipunov Y., Postnova I.V. Laser-induced photodynamic effects at silica nanocomposite based on cadmium sulphide quantum dots // Opt. Express. 2014. V. 22. № 2. P. 2105–2110. https://doi.org/10.1364/OE.22.002105
  87. Postnova I., Silantev V., Kim M.H., Song G.Y., Kim I., Ha C.S., Shchipunov Y. Hyperbranched polyglycerol hydrogels prepared through biomimetic mineralization // Colloid Surf. B. 2013. V. 103. P. 31–37. https://doi.org/doi: 10.1016/j.colsurfb.2012.10.026
  88. Proschenko D., Mayor A., Bukin O., Golik S., Postnova I., Shchipunov Y., Kulchin Y. Determination of nonlinear refractive index and two-photon absorption coefficients of new nanocomposite materials based on biosilicates using Z-scan method // Adv. Mat. Res. 2014. V. 1025–1026. P. 776–781. https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.776

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).