Fluctuation shift of the nematic–isotropic phase transition temperature


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G. Tamba, S.N. Sprunt, C. Welch, G.H. Mehl, A. Jakli, and J.T. Gleeson [Phys. Rev. Lett. 116, 217801 (2016)] to explain their experimental observation of the unprecedentedly large shift of the nematic–isotropic transition temperature is discussed. The proposed interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations, they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the magnitude of the order parameter in the nematic state. Therefore, it leads to additional (with respect to the mean field contribution) fluctuation shift of the nematic–isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuation shift increases with decrease in the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuation shift of the phase transition temperature.

Sobre autores

E. Kats

Landau Institute for Theoretical Physics

Autor responsável pela correspondência
Email: efim.i.kats@gmail.com
Rússia, Chernogolovka, Moscow region, 142432

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2017