


Vol 105, No 6 (2017)
- Year: 2017
- Articles: 12
- URL: https://ogarev-online.ru/0021-3640/issue/view/9724
Condensed Matter
Magnetic properties of Li2RuO3 as studied by NMR and LDA + DMFT calculations
Abstract
We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.



On the origin of the shallow and “replica” bands in FeSe monolayer superconductors
Abstract
We compare the electronic structures of single FeSe layer films on SrTiO3 substrate (FeSe/STO) and KxFe2-ySe2 superconductors obtained from extensive LDA and LDA + DMFT calculations with the results of ARPES experiments. It is demonstrated that correlation effects on Fe-3d states are sufficient in principle to explain the formation of the shallow electron-like bands at the M(X)-point. However, in FeSe/STO these effects alone are apparently insufficient for the simultaneous elimination of the hole-like Fermi surface around the Γ-point which is not observed in ARPES experiments. Detailed comparison of ARPES detected and calculated quasiparticle bands shows reasonable agreement between theory and experiment. Analysis of the bands with respect to their origin and orbital composition shows, that for FeSe/STO system the experimentally observed “replica” quasiparticle band at the M-point (usually attributed to forward scattering interactions with optical phonons in SrTiO3 substrate) can be reasonably understood just as the LDA calculated Fe-3dxy band, renormalized by electronic correlations. The only manifestation of the substrate reduces to lifting the degeneracy between Fe-3dxz and Fe-3dyz bands near M-point. For the case of KxFe2-ySe2 most bands observed in ARPES can also be understood as correlation renormalized Fe-3d LDA calculated bands, with overall semi-quantitative agreement with LDA + DMFT calculations.



Effects of nonstoichiometry and ordering on the basic lattice constant of vanadium carbide VCy
Abstract
The effect of nonstoichiometry and ordering on the lattice constant aB1 of the basic lattice of vanadium carbide VCy(0.65 < y < 0.875) is studied. A change in the lattice constant of disordered carbide VCy at the reduction of the carbon content is considered using the direction of static displacements of atoms near a vacancy. A model for the calculation of the basic lattice constant aB1 of vanadium carbide is proposed taking into account nonstoichiometry and ordering. It is shown that the ordering of vanadium carbide VCy with the formation of V6C5 and V8C7 superstructures results in an increase in the basic lattice constant as compared to disordered carbide.



Spatial dynamics of hybrid electromagnetic spin waves in a lateral multiferroic microwaveguide
Abstract
Regimes of the formation of spatial structures at the propagation of hybrid electromagnetic spin waves in a system of laterally coupled multiferroics, which consist of parallel ferromagnetic microwaveguides with a ferroelectric layer, are studied experimentally and theoretically. Brillouin spectroscopy measurements at frequencies near the ferromagnetic resonance by the method of selection of mode patterns reveal a sharp increase in the spatial scales of transfer of power between microwaveguides. The calculations of the characteristics of propagation of electromagnetic spin wave in a lateral multiferroic structure with a finite width show that energy exchange between films is due to the features of intermodal coupling between waves. Higher transverse modes and electric-field-induced transformation of spectra of the electromagnetic spin waves in the adjacent multiferroics are studied experimentally and numerically.



Intersubband magnetoplasmon as a detector of the spin polarization in two-dimensional electron systems
Abstract
The magnetic field dynamics of intersubband collective excitations in two-dimensional electron systems based on MgxZn1-xO/ZnO heterostructures is studied by the Raman scattering method. It is found that, upon the change in the spin polarization under conditions of the transition from the filling factor ν = 2 to ν = 1, the energy of the intersubband magnetoplasmon changes considerably. The performed theoretical analysis shows that this effect is attributed to the concomitant change in the exchange interaction in the excitation energy.



Tricritical point for the three-dimensional disordered Potts model (q = 3) on a simple cubic lattice
Abstract
Slightly diluted magnetic systems described by the disordered three-dimensional Potts model with the number of spin states q = 3 are studied in the case of a simple cubic lattice. The position of the tricritical point in the phase diagram is determined using the histogram Monte Carlo technique.



Fields, Particles, and Nuclei
Search for sterile neutrinos in the neutrino-4 experiment
Abstract
An experimental search for sterile neutrinos has been carried out at a neutrino facility based on the SM-3 nuclear reactor in Dimitrovgrad, Russia. The movable detector with passive shielding against the external radiation may be positioned at a distance varying between 6 and 12 m from the center of the reactor. The antineutrino flux has for the first time been measured using a movable detector placed close to the antineutrino source. The accuracy of the measurements is largely restricted by the cosmic background. The results of the measurements performed at small and large distances are analyzed in terms of the sterile-neutrino model parameters Δm142 and sin22θ14.



Optics and Laser Physics
Light scattering at dielectric metasurfaces
Abstract
“Photonic graphene” structures—submicron two-dimensional dielectric structures with a honeycomb lattice— are fabricated by laser lithography. The transition from the regime of light scattering by a metasurface to that of Laue diffraction at a two-dimensional photonic structure in the optical range is studied experimentally and theoretically. The optical diffraction patterns make it possible to determine the number of unit cells in a finite microstructured sample with the naked eye.



Methods of Theoretical Physics
Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave
Abstract
An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.



Quantum Informatics
On the limiting characteristics of quantum random number generators at various clusterings of photocounts
Abstract
Various methods for the clustering of photocounts constituting a sequence of random numbers are considered. It is shown that the clustering of photocounts resulting in the Fermi–Dirac distribution makes it possible to achieve the theoretical limit of the random number generation rate.



Miscellaneous
Fast ignition of asymmetrically compressed targets for inertial confinement fusion
Abstract
It is shown that fast ignition can ensure the combustion of asymmetrically compressed targets for inertial confinement fusion with an efficiency close to the combustion of one-dimensionally compressed targets. This statement is valid not only for targets specially designed for fast ignition. Fast heating by an external energy source can ensure the ignition of a target designed for spark ignition, but where this ignition does not occur because inhomogeneities are formed in the temperature and density distributions owing to the development of hydrodynamic instabilities. The condition for ignition is the fast heating of the plasma in the combustion initiation region whose size is comparable with the sizes of compression inhomogeneities. Thus, fast ignition not only significantly reduces the ignition energy, but also is possibly a necessary stage in the inertial confinement fusion scheme when the spherically symmetric compression of a target requires very high engineering and financial expenses. The studies are based on the numerical simulation of the compression and combustion of inertial confinement fusion targets with one- and two-dimensional hydrodynamic codes.



Scientific Summaries
Generation of unipolar pulses in nonlinear media
Abstract
Methods recently proposed for generating unipolar pulses in nonlinear media in terahertz and optical electromagnetic ranges are reviewed. Such pulses have nonzero “electric area” (time integral of the field strength over the entire duration of a pulse) and, correspondingly, a significant component of the field with zero frequency, thus exhibiting quasistatic properties. Effective generation of unipolar pulses would allow, e.g., transferring mechanical momentum to charged particles and, thereby, controlling the motion of wave packets of matter, which can be useful for compact accelerators of charged particles and for other applications.


