A Conical Ion Diode with Self-Magnetic Insulation of Electrons


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studying the generation of a gigawatt-power pulsed ion beam formed by a diode in the mode of self-magnetic insulation of electrons are presented. Studies were carried out at the TEMP-4M accelerator in the mode of generating two pulses: the first is negative (500 ns, 150–200 kV) and the second is positive (150 ns, 250–300 kV). The formation of anode plasma occurs during the explosive emission of electrons during the first pulse. To improve the efficiency of generating an ion current, a conical geometry of the diode was proposed in which the electron-drift length exceeds that in the previous diode structures by factor of 2. It was found that the energy efficiency in the conical diode increased to 15–17%, while the ion-beam energy density at the focus increased to 2–3 J/cm2; the beam consisted of protons and carbon ions. The efficiency of suppression of the electron component of the total current in the diode was analyzed and the calculations of the electron-drift duration and ion acceleration were performed. It is shown that in the diode of the new design, efficient plasma formation occurs on the entire working surface of the graphite anode, while the plasma concentration may limit the ion current.

作者简介

Yu. Isakova

National Research Tomsk Polytechnic University

Email: aipush@mail.ru
俄罗斯联邦, Tomsk, 634050

A. Prima

National Research Tomsk Polytechnic University

Email: aipush@mail.ru
俄罗斯联邦, Tomsk, 634050

A. Pushkarev

National Research Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: aipush@mail.ru
俄罗斯联邦, Tomsk, 634050

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019