Investigation of the homogeneity of a high-power ion beam formed by a diode with a closed electron drift


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of an investigation of the energy-density distribution over the cross section of a pulsed ion beam formed with a passive-anode diode in the mode of magnetic insulation and a closed electron drift in the anode–cathode gap are presented. Diodes of two types are studied: with external magnetic insulation (Br diode) on the BIPPAB-450 accelerator (400 kV, 80 ns) and self-magnetic insulation of electrons (spiral diode) on the TEMP-4M accelerator (250 kV, 120 ns). In the investigated diodes, various processes are used to form anode plasma: a breakdown over the surface of a dielectric coating on the anode and ionization of the anode surface with accelerated electrons (Br diode), as well as explosive emission of electrons (spiral diode). To analyze the ion-beam energy density, thermal-imaging diagnostics is used with a spatial resolution of 1–2 mm. The energy-density is calculated from the one-dimensional Child–Langmuir relationship. It is shown that a continuous plasma layer is efficiently formed on the working anode surface for all the investigated diodes. The anode-plasma concentration is rather high, and the beam-energy density is limited by the space charge of ions, but not by the plasma concentration. It is found that, when the magnetic field in the Br-diode anode–cathode gap decreases or the electron current in the spiral diode increases, the energy density of the high-power ion beam rises significantly, but the beam homogeneity decreases.

作者简介

A. Pushkarev

Tomsk Polytechnic University

编辑信件的主要联系方式.
Email: aipush@mail.ru
俄罗斯联邦, pr. Lenina 30, Tomsk, 634050

Xiao Yu

School of Physics and Nuclear Energy Engineering

Email: aipush@mail.ru
中国, Beijing, 100191

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2016