Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti–6Al–4V с глобулярной морфологией зерен α-фазы. Плоскость прокатки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Промышленный сплав Ti–6Al–4V был получен практически в однофазном состоянии, сформированном мелкодисперсными глобулярными a-зернами со средним размером 12 мкм, при использовании термомеханической обработки, включающей горячую прокатку. Микротекстура и структура сплава были изучены методами рентгеновской дифрактометрии, просвечивающей и растровой электронной микроскопии, в том числе ориентационной. Обнаружено, что для a-зерен в плоскости прокатки выполняются ориентационные соотношения Бюргерса и обеспечиваются двойниковые ориентации. Установлено существенное рассеяние кристаллографических ориентаций a-зерен друг относительно друга (до 10–15°) для каждой группы близких ориентировок Бюргерса как результат пластической деформации прокаткой при высоких температурах. Выявлены кластеры микротекстурных областей в слоистой микроструктуре зерен, механизмы образования и взаимные кристаллографические разориентации микротекстурных областей и зерен в сплаве.

Об авторах

В. Г. Пушин

Институт физики металлов УрО РАН; Институт механики сплошных сред УрО РАН

Автор, ответственный за переписку.
Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108; ул. Академика Королева, 1, Пермь, 614013

Д. Ю. Распосиенко

Институт физики металлов УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

Ю. Н. Горностырев

Институт физики металлов УрО РАН; Институт механики сплошных сред УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108; ул. Академика Королева, 1, Пермь, 614013

Н. Н. Куранова

Институт физики металлов УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

В. В. Макаров

Институт физики металлов УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

Е. Б. Марченкова

Институт физики металлов УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

А. Э. Свирид

Институт физики металлов УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

О. Б. Наймарк

Институт механики сплошных сред УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. Академика Королева, 1, Пермь, 614013

А. Н. Балахнин

Институт механики сплошных сред УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. Академика Королева, 1, Пермь, 614013

В. А. Оборин

Институт механики сплошных сред УрО РАН

Email: pushin@imp.uran.ru
Россия, ул. Академика Королева, 1, Пермь, 614013

Список литературы

  1. Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 512 с.
  2. Полькин И.С. Упрочняющая термическая обработка титановых сплавов. М.: Металлургия, 1984. 96 с.
  3. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  4. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  5. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС, 2009. 520 с.
  6. Banerjee D., Williams J.C. Perspectives of titanium science and technology // Acta Mater. 2013. V. 61. P. 844–879.
  7. Bonisch M., Panigrahi A., Stoica M., Calin M., Ahrens E., Zehetbauer M., Skrotzki M., Eckert J. Giant thermal expansion and a-precipitation pathways in Ti-alloys // Nature Comm. 2017. V. 8. P. 1429.
  8. Mosheh A.O., Mikhaylovskaya A.V., Kotov A.D., Kwame J.S., Aksenov S.A. Superplasticity of Ti-6Al-4V titanium alloy: macrostructure evolution and constitutive modelling // Materials. 2019. V. 12. P. 1756.
  9. Котов А.Д., Михайловская А.В., Мослех А.О., Пурсело Т.П., Просвиряков А.С., Портной В.К. Сверхпластичность ультрамелкозернистого титанового сплава Ti-4% Al-1% V-3% Mo // ФММ. 2019. Т. 120. № 1. С. 63–72.
  10. Evans W.J., Gostelow C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy // Metall. Trans. A. 1979. V. 10. P. 1837–1846.
  11. Evans W.J., Bache M.R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 // Int. J. Fatig. 1994. V. 16. P. 443–452.
  12. Bache M., Cope M., Davies H., Evans W., Harrison G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature // Int. J. Fatigue. 1997. V. 19(93). P. 83–88.
  13. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // Int. J. Fatig. 2003. V. 25. P. 1079–1087.
  14. Sinha V., Mills M.J., Williams J.C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy // Metall. Mater. Trans. A. 2004. V. 35. № 10. P. 3141–3148.
  15. Tympel P.O., Lindley T.C., Saunders E.A., Dixon M., Dye D. Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V //Acta Mater. 2016. V. 103. P. 77–88.
  16. Toubal L., Bocher P., Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy // Int. J. of Fatigue. 2009. V. 31. P. 601–605.
  17. Pilchack A.L. Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth // Scripta Mater. 2013. V. 68. P. 277–280.
  18. Pilchack A.L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys // Scripta Mater. 2014. V. 74. P. 68–71.
  19. Cuddihy M.A., Stapleton A., Williams S., Dunne F.P.E. On cold dwell facet fatigue in titanium alloy aero-engine components // Int. J. Fatig. 2017. V. 97. P. 177–189.
  20. Xu Y., Joseph S., Karamched P., Fox K., Rugg D., Dunne F.P.E., Dye D. Predicting dwell fatigue life in titanium alloys using modelling and experiment // Nature communications. 2020. V. 11. P. 5868.
  21. Hu Z., Zhou X., Liu H., Yi D. The formation of microtextured region during thermo-mechanical processing in a near-b titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe // J. All. Comp. 2021. V. 853. P. 156964.
  22. Rezaei M., Zarei-Hanzaki A., Anousheh A.S., Abedi H.R., Pahlevani F., Hossain R., Sahajwalla V., Berto F. On the damage mechanisms during compressive dwell-fatigue of β-annealed Ti-6242S alloy // Int. J. Fatig. 2021. V. 146. P. 106158.
  23. Britton T.B., Birosca S., Preuss, M., Wilkinson A.J. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy // Scr. Mater. 2010. V. 62. № 9. P. 639–642.
  24. Littlewood P.D., Wilkinson A.J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading // Int. J. Fatigue. 2012. V. 43. P. 111–119.
  25. Warwick J.L.W., Jones N.G., Bantounas I., Preuss M., Dye D. In-situ observation of texture and microstructure evolution during rolling and globularisation on Ti-6Al-4V //Acta Mater. 2013. V. 61. 1603–1615.
  26. Kulkarni G., Hiwarkar V., Singh R. Texture evolution of Ti6Al4V during cold deformation // Int. J. Mater. Mechan. Manufact. 2019. V. 7. № 6. P. 250–253.
  27. Muth A., John R., Pilchak A., Kalidindi S.R., McDowell D.L. Analysis of Fatigue Indicator Parameters for Ti-6Al-4V microstructures using extreme value statistics in the transition fatigue regime // Int. J. of Fatigue. 2021. V. 153. P. 106441.
  28. Modina I.M., Dyakonov G.S., Stotskiy A.G., Yakovleva T.V., Semenova I.P. Effect of the texture of the ultrafine-grained Ti-6Al-4V titanium alloy on impact toughness // Materials. 2023. V. 16. P. 1318.
  29. Oborin V., Balakhnin A., Naimark O., Gornostyrev Y., Pushin V., Kuranova N., Rasposienko D., Svirid A., Uksusnikov A., Inozemtsev A., Gabov I. Damage-failure transition in titanium alloy Ti-6Al-4V under dwell fatigue loads // Fratturaed Integrità Strutturale. 2024. V. 18. № 67. P. 217–230.
  30. Naimark O., Bayandin Yu., Uvarov S., Bannikova I., Saveleva N. Critical Dynamics of Damage-Failure Transition in Wide Range of Load Intensity // Acta Mechanica. 2021. V. 232. P. 1943–1959.
  31. Naimark O., Oborin V., Bannikov M., Ledon D. Critical Dynamics of Defects and Mechanisms of Damage-Failure Transitions in Fatigue // Materials. 2021. V. 14. № 10. P. 2554.
  32. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен a-фазы. Поперечное сечение плиты, перпендикулярное направлению прокатки // ФММ. 2024. № 7. (в печати)
  33. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен a-фазы. Поперечное сечение плиты вдоль направления прокатки // ФММ. 2024. № 7. (в печати).
  34. Bohemen S.M.C., Kamp A., Petrov R.N., Kestens L.A.I., Sietsma J. Nucleation and variant selection of secondary a-plates in β Ti alloy //Acta Mater. 2008. V. 56. P. 5907–5914.
  35. Laine S. The role of twinning deformation of a-phase titanium. Cambridge: University of Cambridge. 2017. 224 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».