Modeling of Plane Detonation Waves in a Gas Suspension of Aluminum Nanoparticles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A physicomathematical model of detonation of a gas suspension of aluminum nanoparticles with allowance for the transition from the continuum to free-molecular flow regime and heat transfer between the particles is proposed. A formula for logarithmic interpolation for the thermal relaxation time in the transitional regime is derived. A semi-empirical model of Arrheniustype reduced kinetics of combustion is developed, which ensures good agreement with available experimental data. Steady (Chapman–Jouguet and overdriven) structures and also attenuating detonation waves in suspensions of nanoparticles are analyzed. Typical features of detonation in nanoparticle suspensions are found: the normal detonation regimes correspond to the solution in the Chapman–Jouguet plane with a sonic final state in terms of the equilibrium velocity of sound; combustion occurs in an almost equilibrium mixture in terms of velocities and temperatures; a strong dependence of the combustion region length on the amplitude of the leading shock wave is observed.

作者简介

T. Khmel

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

编辑信件的主要联系方式.
Email: khmel@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

A. Fedorov

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch

Email: khmel@itam.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018