ANDROMONOECY IN GALIUM ODORATUM (RUBIACEAE)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The manifestation of sexual polymorphism in the sweet woodruff Galium odoratum was studied in the Moscow region during 2021–2023. The plant is a common perennial herbaceous, long-rhizome, polycarpic sciophyte. We find that at low illumination (less than 15% of total sunlight) only perfect flowers are formed. With increasing illumination (to up to 60% of full sunlight in clear weather), both perfect and staminate flowers are formed on individual plants. The perfect flowers of G. odoratum are complete, actinomorphic, tetracyclic, and heteromeric. In contrast, in staminate flowers the gynoecium is reduced, but its rudiments are preserved in the form of sterile stigmas and very short stylodia. Perfect flowers are significantly larger than staminate ones. The inflorescence in G. odoratum is a panicle-shaped monotelic, heterocladial, conjunctive thyrsus. Staminate flowers in andromonoecious individuals are located only on shoots of order IV, and their proportion varies from 12% to 30%. We finally discuss the possible reasons for the manifestation of andromonoecy in flowering plants under the influence of various environmental factors.

Sobre autores

V. Godin

Central Siberian Botanical Garden SB RAS

Email: vn.godin@mpgu.su
Russia, 630090, Novosibirsk, Zolotodolinskaya Str., 101

Bibliografia

  1. Ajani Y., Bull-Hereñu K., Claßen-Bockhoff R. 2016. Pattern of floral development in Apiaceae-Apioideae. – Flora. 221: 38–45. https://doi.org/10.1016/j.flora.2016.02.004
  2. Anderson W.R. 1973. A morphological hypothesis for the origin of heterostyly in the Rubiaceae. – Taxon. 22 (5/6): 537–542. https://doi.org/10.2307/1218628
  3. Baker H.G. 1958. Studies in the reproductive biology of West African Rubiaceae. – J. West African Sci. Assn. 4: 9–24.
  4. Bawa K.S., Beach J.H. 1983. Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest. – Am. J. Bot. 70 (9): 1281–1288. https://doi.org/10.2307/2443418
  5. Beavon M.A., Chapman H.M. 2011. Andromonoecy and high fruit abortion in Anthonotha noldeae in a West African montane forest. – Plant Syst. Evol. 296 (3): 217–224. https://doi.org/10.1007/s00606-011-0488-1
  6. Bir Bahadur. 1968. Heterostyly in Rubiaceae: a review. – Osmania University J. Sci. 4: 207–238.
  7. Chen T., Zhu H., Chen J., Taylor C.M., Ehrendorfer F., Lantz H. Funston A.M., Puff C. 2021. – In: Flora of China. 19: 57–368. Beijing, St. Louis.
  8. Dempster L.T. 1973. The polygamous species of the genus Galium (Rubiaceae), section Lophogalium, of Mexico and southwestern United States. – Univ. Calif. Publ. Bot. 64: 1–36.
  9. Demyanova E.I. 1985. Distribution of gynodioecy in flowering plants. – Bot. Zhurn. 70 (10): 1289–1301 (In Russ.).
  10. Demyanova E.I. 1995. The study of anthecology and sexual polymorphism Seseli ledebourii G. Don fil. (Umbelliferae). – Bull. Perm Univ. Biol. 1: 45–54 (In Russ.).
  11. Demyanova E.I. 2011. The spectrum of sexual types and forms in the local floras of the Urals (Cis- and Trans-Urals). – Bot. Zhurn. 96 (10): 1297–1315 (In Russ.).
  12. Ehrendorfer F., Barfuss M.H.J., Manen J.-F., Schneeweiss G.M. 2018. Phylogeny, character evolution and spatiotemporal diversification of the species-rich and world-wide distributed tribe Rubieae (Rubiaceae). – PLoS ONE. 13 (12): e0207615. https://doi.org/10.1371/journal.pone.0207615
  13. Ellenberg H. 1974. Zeigerwerte der Gefasspflanzen Mitteleuropas. Gottingen. 97 s.
  14. Fedorov Al.A., Artyushenko Z.T. 1975. Organographia illustrata plantarum vascularum. Flos. Leningrad. 351 p. (In Russ.).
  15. Ganders F.R. 1979. The biology of heterostyly. – N. Z. J. Bot. 17 (4): 607–635. https://doi.org/10.1080/0028825X.1979.10432574
  16. Godin V.N. 2019. Distribution of gynodioecy in APG IV system. – Bot. Zhurn. 104 (5): 669–683 (In Russ.). https://doi.org/10.1134/S0006813619050053
  17. Godin V.N. 2020. Distribution of gynodioecy in flowering plants. – Bot. Zhurn. 105 (3): 236–252 (In Russ.). https://doi.org/10.31857/S0006813620030023
  18. Godin V.N., Arkhipova T.V., Ialamova J.I. 2021. Expression of sexual polymorphism in Heracleum sibiricum (Apiaceae) inflorescences in Moscow Region. – Bot. Zhurn. 106 (6): 540–555 (In Russ.). https://doi.org/10.31857/S0006813621060053
  19. Godin V.N., Arkhipova T.V., Vetlova M.A., Kuranova N.G. 2022. Andromonoecy and floral protandry of Oenanthe aquatica (Apiaceae). – Tomsk State University Journal of Biology. 58: 96–112. https://doi.org/10.17223/19988591/58/5
  20. Godin V.N., Dozorova S.V., Arkhipova T.V. 2019. Andromonoecy of Aegopodium podagraria (Apiaceae) in Moscow region. – Tomsk State University Journal of Biology. 45: 47–68 (In Russ.). https://doi.org/10.17223/19988591/45/3
  21. Goldberg E.E., Otto S.P., Vamosi J.C., Mayrose I., Sabath N., Ming R., Ashman T.-L. 2017. Macroevolutionary synthesis of flowering plant sexual systems. – Evolution. 71 (4): 898–912. https://doi.org/10.1111/evo.13181
  22. Halford D.A., Ford A.J. 2009. Two new species of Morinda L. (Rubiaceae) from north-east Queensland. – Austrobaileya. 8 (1): 81–90. https://doi.org/10.2307/41739110
  23. Jong de T.J., Shmida A., Thuijsman F. 2008. Sex allocation in plants and the evolution of monoecy. – Evol. Ecol. Res. 10 (8): 1087–1109.
  24. Kleopov Yu.D. 1990 Analiz flory shirokolistvennykh lesov Yevropeyskoy chasti SSSR [Analysis of the flora of broad-leaved forests of the European part of the USSR]. Kiev. 352 p. (In Russ.).
  25. Knuth P. 1898. Handbuch der Blütenbiologie. Bd. II. T. I. Leipzig. 697 s.
  26. Kurnayev S.F. 1980. Tenevyye shirokolistvennyye lesa Russkoy ravniny i Urala [Shadow broad-leaved forests of the Russian Plain and the Urals]. Moscow. 315 p. (In Russ.).
  27. Landolt E. 1977. Ökologische Zeigerwerts zur Sweizer Flora. – Veröff. Geobot. Inst. ETH. Zürich. 64. 1–208.
  28. Naiki A. 2012. Heterostyly and the possibility of its breakdown by polyploidization. – Plant Species Biol. 27 (1): 3–29. https://doi.org/10.1111/j.1442-1984.2011.00363.x
  29. Naghiloo S., Classen-Bockhoff R. 2016. Developmental analysis of merosity and sexual morphs in Rubiaceae: a case study in Rubia and Cruciata. – Flora. 222: 52–59. http://dx.doi.org/10.1016/j.flora.2016.03.010
  30. Pobedimova E.G. 1958. Genus 1392. Galium L. – In: The flora of the USSR. Vol. 23. Moscow, Leningrad. P. 287–381 (In Russ.).
  31. Puff C. 1978. The genus Galium L. (Rubiaceae) in Southern Africa. – J. S. Afr. Bot. 44 (3): 203–279.
  32. Puff C. 1986. A biosystematic study of the African and Madagascan Rubiaceae-Anthospermeae. – Plant Syst. Evol. Suppl. 3: 1–535. https://doi.org/10.1007/978-3-7091-8851-4
  33. Puff C., Chayamarit K., Chamchumroon V. 2005. Rubiaceae of Thailand. A pictorial guide to indigenous and cultivated genera. Bangkok. 245 p.
  34. Puff C., Robbrecht E., Buchner R., De Block P. 1996. A survey of secondary pollen presentation in the Rubiaceae. – Opera Bot. Belg. 7: 369–402.
  35. Reuther K., Claßen-Bockhoff R. 2010. Diversity behind uniformity – inflorescence architecture and flowering sequence in Apiaceae-Apioideae. – Plant Diver. Evol. 2010. 128 (1–2): 181–220. https://doi.org/10.1127/1869-6155/2010/0128-0009
  36. Robbrecht E. 1988. Tropical woody Rubiaceae. Characteristic features and progressions. Contributions to a new subfamilial classification. – Opera Bot. Belg. 1: 1–272.
  37. Robinsohn I. 1924. Die Färbungsreaktion der Narbe, Stigmatochromie, als morpho-biologische Blütenuntersuchungsmethode // Sitzungsberichte der Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Сlasse. Abt. I. 133 (7–8): 181–211.
  38. Ronse de Craene L.P. 2010. Floral Diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press. 441 p.
  39. Schönbeck-Temesy E., Ehrendorfer F. 1987. The vicarious differentiation of the alpine Galium serpylloides group (Rubiaceae), endemic to the W. Himalaya. – Plant Syst. Evol. 155 (1/4). 77–87. https://doi.org/10.1007/BF00936291
  40. Schulz A. 1888. Beiträge zur Kenntniss der Bestäubungseinrichtungen und der Geschlechtsvertheilung bei den Pflanzen. – Bibl. Bot. 10: 1–105.
  41. Schumann K. 1891. Rubiaceae. – In: Die natürlichen Pflanzenfamilien. 4 (4). Leipzig. P. 1–156.
  42. Sokal R.R., Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 4th edition. New York. 937 p.
  43. Soza V.L., Olmstead R.G. 2010. Evolution of breeding systems and fruits in New World Galium and relatives (Rubiaceae). – Am. J. Bot. 97 (10): 1630–1646. https://doi.org/10.3732/ajb.1000130
  44. Stevens P.F. 2021. APweb – www.mobot.org/MOBOT/research/APweb
  45. Thompson I.R. 2009. A revision of Asperula and Galium (Rubieae: Rubiaceae) in Australia. – Muelleria. 27 (1): 36–112. https://doi.org/10.5962/p.291946
  46. Troll W. 1969 Die Infloreszenzen: Typologie und Stellung im Aufbau des Vegetationskörpers. Bd. II. Jena. 630 s.
  47. Tucker S.C. 1991. Helical floral organogenesis in Gleditsia, a primitive caesalpinioid legume. – Am. J. Bot. 78 (8): 1130–1149. https://doi.org/10.2307/2444901
  48. Weberling F., Troll W. 1998. Die Infloreszenzen: Typologie und Stellung im Aufbau des Vegetationskörpers. B. II. T. 2. Jena. 483 s.
  49. Wong K.M., Turner I.M., Wang R., Harwood B., Seah W.W., Ng X.Y., Lim R.C.J., Lua H.K., Ma-hyuni R. 2019. Rubiaceae. – In: Flora of Singapore. Vol. 13. Singapore. P. 1–358. https://doi.org/10.26492/fos13.2019-01
  50. Zimmerman E., Prenner G., Bruneau A. 2013. Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. – Int. J. Plant Sci. 174 (2): 154–160. https://doi.org/10.1086/668789

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © В.Н. Годин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».