Stable, metastable, and supercritical phases in solutions of globular proteins between upper and lower denaturation temperatures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The temperature trends of the standard thermodynamic functions of the native and denatured protein in solution are considered within the concept of excess mixing functions. It is assumed that some protein molecules adopt an intermediate state between native and denatured forms within the temperature range between cold and thermal denaturation and form metastable microphases as a result of a specific interaction with water. A phase diagram in the temperature–standard entropy coordinate plane representing an isobar family is proposed. Two limiting isobars are characterized by an entropy jump, which reflects the first-order phase transition between the native and denatured states. The isobars in the intermediate temperature range are represented as van der Waals curves, which reflect the equilibrium between the main phase of the molecules in native state and microphases. The difference between the phases disappears at critical points. It is assumed that the supercritical range is a macroscopically homogeneous single phase zone of reduced stability, which is represented by a dynamic system of monomers and oligomers of the native protein, monomers and clusters of the protein with partially unfolded structure. The phase diagram is collated with the elliptic phase diagram in the temperature–osmotic pressure plane.

作者简介

S. Rozhkov

Institute of Biology, Karelian Research Center

编辑信件的主要联系方式.
Email: rozhkov@krc.karelia.ru
俄罗斯联邦, Petrozavodsk, 185910

A. Goryunov

Institute of Biology, Karelian Research Center

Email: rozhkov@krc.karelia.ru
俄罗斯联邦, Petrozavodsk, 185910

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2017