Quantitative Criteria of Chirality in Hierarchical Protein Structures


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Based on the theory of the formation of sign-alternating hierarchical structures in macromolecular systems, a quantitative approach was developed to assess the chirality sign of individual levels in hierarchical protein structures. Quantitative estimates are necessary for modeling the folding of proteins and their function as molecular machines. Mutual attraction between the α-carbon atoms of amino acids is a sufficient condition for characterizing the level in the hierarchical structure and determining the chirality sign of protein blocks. A quantitative estimate of the twist in helical (secondary) and superhelical (tertiary) structures is provided by the absolute value of the sum of vector cross products. The sign of the scalar product of the direction vector to the vector of the sum of vector products indicates the direction of the twist. Chiral maps were constructed for the secondary and tertiary structures of several proteins. The reliability of the maps was confirmed by analyzing the respective real structures.

Об авторах

A. Sidorova

Department of Physics, Moscow State University

Автор, ответственный за переписку.
Email: sky314bone@mail.ru
Россия, Moscow, 119991

E. Malyshko

Department of Physics, Moscow State University

Email: sky314bone@mail.ru
Россия, Moscow, 119991

A. Kotov

Department of Physics, Moscow State University

Email: sky314bone@mail.ru
Россия, Moscow, 119991

V. Tverdislov

Department of Physics, Moscow State University

Email: sky314bone@mail.ru
Россия, Moscow, 119991

M. Ustinin

Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: sky314bone@mail.ru
Россия, Pushchino, Moscow oblast, 142290

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).