Influence of interstitial fluid dynamics on growth and therapy of angiogenic tumor. Analysis by mathematical model


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We have developed a spatially distributed mathematical model of angiogenic tumor growth in tissue with account of interstitial fluid dynamics and bevacizumab monotherapy. In this model the process of neovascularization is initiated by tumor cells in a state of metabolic stress, vascular endothelial growth factor (VEGF) being its main mediator. The model takes into consideration the convection flows arising in dense tissue due to active proliferation and migration of tumor cells as well as interstitial fluid inflow from blood vascular system, its outflow through lymphatic system and redistribution in the area of tumor growth. The work considers the diffusive approximation of interstitial fluid dynamics in tumor and normal tissue. Numerical study of the model showed that in absence of therapy a peritumoral edema is formed due to the increase of interstitial fluid inflow from angiogenic capillaries. In the case of rapid interstitial fluid outflow through lymphatic system and its fast transport from necrotic zone to normal tissue the regimes of full growth stop are observed in case of low-invasive tumor. Under bevacizumab monotherapy the peritumoral edema vanishes and low-invasive tumor may not only decelerate its growth, but also start shrinking for a large range of parameters.

Sobre autores

M. Kuznetsov

Lebedev Physical Institute

Autor responsável pela correspondência
Email: kuznetsovmb@mail.ru
Rússia, Moscow, 119991

V. Gubernov

Lebedev Physical Institute

Email: kuznetsovmb@mail.ru
Rússia, Moscow, 119991

A. Kolobov

Lebedev Physical Institute; Institute of Numerical Mathematics

Email: kuznetsovmb@mail.ru
Rússia, Moscow, 119991; Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2017