Use of Neural Network-Based Deep Learning Techniques for the Diagnostics of Skin Diseases


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Melanoma is one of the most dangerous types of cancer. The accuracy of visual diagnosis of melanoma directly depends on the experience and specialty of the physician. Current development of image processing and machine learning technologies allows systems based on artificial neural convolutional networks to be created, these being better than humans in object classification tasks, including the diagnostics of malignant skin neoplasms. Presented here is an algorithm for the early diagnostics of melanoma based on artificial deep convolutional neural networks. This algorithm can discriminate benign and malignant skin tumors with an accuracy of at least 91% by examination of dermatoscopy images.

作者简介

D. Gavrilov

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: gavrilou@gmail.com
俄罗斯联邦, Dolgoprudny, Moscow Region

A. Melerzanov

Moscow Institute of Physics and Technology

Email: gavrilou@gmail.com
俄罗斯联邦, Dolgoprudny, Moscow Region

N. Shchelkunov

Moscow Institute of Physics and Technology

Email: gavrilou@gmail.com
俄罗斯联邦, Dolgoprudny, Moscow Region

E. Zakirov

Moscow Institute of Physics and Technology

Email: gavrilou@gmail.com
俄罗斯联邦, Dolgoprudny, Moscow Region

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019