Comparison of Filtering Techniques in Ultrasound Color Flow Imaging


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article considers filtering techniques used to suppress clutter signals from moving tissues and to improve reliability of blood flow estimation. It compares polynomial and adaptive bases such as the result of empirical mode decomposition and singular vectors obtained through Karhunen−Loève transform. Filtering techniques are examined using a computer-simulated model, Doppler flow phantom and in vivo data. Filters are compared in terms of computational complexity, ability to retrieve flow profile without errors and through ROC curve analysis. Polynomial regression filters with tissue phase shift compensation were found to be the best fit for clutter suppression in terms of computational demands and accuracy of velocity estimation.

Авторлар туралы

D. Leonov

Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow

Хат алмасуға жауапты Автор.
Email: d.leonov@npcmr.ru
Ресей, Moscow

N. Kulberg

Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow

Email: d.leonov@npcmr.ru
Ресей, Moscow

V. Fin

National Research University “Moscow Power Engineering Institute”

Email: d.leonov@npcmr.ru
Ресей, Moscow

V. Podmoskovnaya

National Research University “Moscow Power Engineering Institute”

Email: d.leonov@npcmr.ru
Ресей, Moscow

L. Ivanova

National Research University “Moscow Power Engineering Institute”

Email: d.leonov@npcmr.ru
Ресей, Moscow

A. Shipaeva

National Research University “Moscow Power Engineering Institute”

Email: d.leonov@npcmr.ru
Ресей, Moscow

A. Vladzimirskiy

Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow

Email: d.leonov@npcmr.ru
Ресей, Moscow

S. Morozov

Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow

Email: d.leonov@npcmr.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019