DISPLACEMENT NORM IN THE PRESENCE OF AN INVERSE-SQUARE PERTURBING ACCELERATION IN THE REFERENCE FRAME ASSOCIATED WITH THE VELOCITY VECTOR

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The problem of motion of a zero-mass-point under the action of attraction to the central body and a small perturbing acceleration P′ = P/𝑟2 is considered, where 𝑟 is the distance to the attracting center and components of the vector P are assumed to be constant in a reference system with the axes directed along the velocity vector, the main normal and the angular momentum vector. Previously, for this problem, equations of motion in the mean elements and formulas for the transition from osculating elements to the mean ones in the first order of smallness were found; second-order quantities are neglected. If the perturbing forces are small, then the osculating orbit slightly deviates from the mean one. The difference 𝑑r between the position vectors on the osculating and mean orbit is a quasi-periodic function of time. In this work, the Euclidean (root-mean-square over the mean anomaly) norm ∥𝑑r∥2 of the displacement of the osculating orbit relative to the mean one is obtained. It turned out that ∥𝑑r∥2 depends only on the components of the vector P (positive definite quadratic form), the semi-major axis (proportional to the second power) and the eccentricity of the osculating ellipse. The norm ∥𝑑r∥2 is obtained in the form of series in powers of eccentricity 𝑒. The resulting expression holds up to 𝑒0 ≈ 0.995862; for 𝑒 > 𝑒0, ϱ = √∥𝑑r∥2 can take complex values. The results are applied to the problem of the motion of model bodies under the action of perturbing acceleration caused by the Yarkovsky effect. A comparison of the results with similar ones for the norm ∥𝑑r∥2 in the reference system associated with the radius vector was also carried out.

Авторлар туралы

T. Sannikova

Crimean Astrophysical Observatory of the Russian Academy of Sciences

Email: tnsannikova@craocrimea.ru
Nauchny, Russia

Әдебиет тізімі

  1. T.N. Sannikova and K.V. Kholshevnikov, Astron. Rep. 63(5), 420 (2019).
  2. В.А. Антонов, Е.И. Тимошкова, К.В. Холшевников, Введение в теорию ньютоновского потенциала (М.: Наука, 1988).
  3. К.В. Холшевников, В.Ш. Шайдулин, Вестн. СПбГУ. Сер. 1: Математика. Механика. Астрономия № 2, 86 (2009).
  4. N. Batmunkh, T.N. Sannikova, K.V. Kholshevnikov, and V.Sh. Shaidulin, Astron. Rep. 60(3), 366 (2016).
  5. К.В. Холшевников, В.Б. Титов, Задача двух тел. Учебное пособие (СПб.: Изд. СПбГУ, 2007).
  6. T.N. Sannikova, Astron. Rep. 68(3), 331 (2024).
  7. К.В. Холшевников, Н. Батмунх, К.И. Оськина, В.Б. Титов, Астрон. журн. 97(4), 348 (2020).
  8. T.N. Sannikova, Astron. Rep. 66(6), 500 (2022).
  9. А.М. Фоминов, Труды ИПА РАН 5, 313 (2000).
  10. М.Ф. Субботин, Введение в теоретическую астрономию (М.: Наука, 1968).
  11. Г.Н. Дубошин (ред.), Справочное руководство по небесной механике и астродинамике. Изд-е 2-е. (М.: Наука, Глав. ред. физ.-мат. лит., 1976).
  12. A. Cayley, Mem. Roy. Astron. Soc. 29, 191 (1861).
  13. M.P. Jarnagin, U.S. Nautical Almanac Office. Astron. Papers 18, 1060 (1965).
  14. А.М. Журавский, Справочник по эллиптическим функциям (М.-Л.: Изд. АН СССР, 1941).
  15. И.С. Градштейн, И.М. Рыжик, Таблицы интегралов, рядов и произведений (СПб.: БХВ-Петербург, 2011).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© The Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).