ANALYTICAL MODEL OF SHEAR FLOW OVER A THERMALLY HETEROGENEOUS SURFACE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

As is well known, one of the most important factors in the development of dangerous convective phenomena in the atmosphere is the vertical shear of the background wind speed. Therefore, the problems of theoretical description of the interaction of convection, thermal circulations with a shear flow are very relevant. A linear stationary problem of the interaction between a horizontal flow with a vertical shear and thermal circulations (density currents) existing over a thermally inhomogeneous horizontal surface is considered. It is assumed that in the absence of thermal inhomogeneities, there is a background flow with a constant vertical shear of velocity (Couette flow) in a stably stratified medium. Stationary disturbances caused by thermal inhomogeneities of the underlying surface, extended along the background flow, are studied. Thus, a linear stationary two-dimensional problem is considered in the Boussinesq approximation. Coriolis accelerations are not taken into account, since relatively small horizontal scales of inhomogeneities are assumed. The consideration is limited to one horizontal harmonic of disturbances. An essential dimensionless determining parameter is an analogue of the Rayleigh number R, in which the horizontal scale of the harmonic under consideration acts as a spatial scale. An approximate analytical solution is found. An essential new result is as follows: although thermal circulations penetrate relatively shallowly into a stably stratified medium, they can cause stationary disturbances of the background flow, which penetrate much deeper into the medium.

作者简介

L. Ingel

Research and Production Association Typhoon; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: lev.ingel@gmail.com
Obninsk, 249038 Russia; Moscow, 119017 Russia

A. Makosko

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

参考

  1. Ингель Л.Х. Возмущения сдвигового течения, вызванные взаимодействием с конвективными валами // МЖГ. 2006. № 3. С. 33–37.
  2. Bluestein H.B. Severe Convective Storms and Tornadoes. Observations and Dynamics. 2013. Berlin: Springer, 456 p.
  3. Ingel L.Kh., Makosko A.A. To the theory of convective flows in a rotating stratified medium over a thermally inhomogeneous surface / IOP Conf. Ser.: Earth Environ. Sci. 2022. 1040. 012023. https://doi.org/10.1088/1755-1315/1040/1/012023
  4. Markowski P., Richardson Y. Mesoscale Meteorology in Midlatitudes. Chichester: Wiley-Blackwell, 2010. 628 p.
  5. Stommel H., Veronis G. Steady convective motion in a horizontal layer of fluid heated uniformly from above and cooled non-uniformly from below // Tellus. 1957. V. 9. № 3. P. 401–407. https://doi.org/10.3402/tellusa.v9i3.9100

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).