Large-eddy simulation of a droplet-laden air-flow over a waved water surface
- 作者: Druzhinin O.A.1
-
隶属关系:
- Instiute of applied physics RAS
- 期: 卷 60, 编号 6 (2024)
- 页面: 869-880
- 栏目: Articles
- URL: https://ogarev-online.ru/0002-3515/article/view/282052
- DOI: https://doi.org/10.31857/S0002351524060025
- EDN: https://elibrary.ru/HVGXWO
- ID: 282052
如何引用文章
详细
Large-eddy simulation of the dynamics of a turbulent, droplet-laden air-flow over a waved water surface has been carried out. Sufficiently small droplets (with diameter up to 300 micron) are considered which allows us to neglect their deformation. Collisions between the droplets as well as their evaporation are also not taken into account. The droplet mass fraction is prescribed sufficiently small, such that their impact on the air-flow is negligible; the surface wave is prescribed and not affected by either droplets or air-wind. Numerical model is based on the solution of three-dimensional, filtered over subgrid-scale fluctuations, Eulerian equations of air-phase motion, and thr Lagrangian equations of individual droplets motion. A turbulent-viscosity concept is employed for the closure for the subgrid stresses in the air-velocity equations where the kinetic energy of the pulsations unresolved by the mesh is determined by the solution of a prognostic equation. The model is verified by a comparison with the results of a direct numerical simulation of the full equations of motion of the air and dispersed phases. Phase-averaged profiles of the air velocity and momentum flux and droplet concentration for different Reynolds numbers of the carrier flow and droplet injection scenarios are obtained.
全文:

作者简介
O. Druzhinin
Instiute of applied physics RAS
编辑信件的主要联系方式.
Email: druzhinin@ipfran.ru
俄罗斯联邦, Nizhny Novgorod ул. Ульянова 46, 603950
参考
- Белоцерковский О.М. Численное моделирование в механике сплошных сред. М.: Наука, 1984. 520 с.
- Глазунов А.В. Вихреразрешающее моделирование турбулентности с использованием смешанного динамического локализованного замыкания. Часть I. Формулировка, задачи, описание модели и диагностические численные тесты // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 1. С. 7–28.
- Филлипс О.М. Динамика верхнего слоя океана. Л.: Гидрометеоиздат, 1980. 319 с.
- Andreas E.L., Jones K.F., Fairall C.W. Production velocity of sea spray droplets // J. Geophys. Res . 2010. V. 115. C12065. doi: 10.1029/2010JC006458.
- Andreas E.L., Mahrt L., Vickers D. An improved bulk air–sea surface flux algorithm, including spray-mediated transfer // Q. J. R. Meteorol. Soc. 2015. V. 141. P. 642–654. doi: 10.1002/qj.2424
- Bortkovskii R.S. Air-sea exchange of heat and moisture during storms. Dodrecht: D. Reidel. 1987. 206 pp. doi: 10.1007/978-94-017-0687-2.
- Druzhinin O.A. On Droplet-Mediated Sensible and Latent Heat Transfer in the Marine Atmospheric Boundary Layer: “Polar Low” Versus “Tropical Cyclone” Conditions // Boundary-Layer Meteorology. 2021. V. 178. P. 43–62. https://doi.org/10.1007/s10546-020-00557-2
- Druzhinin O.A., Troitskaya Yu.I., Zilitinkevich S.S. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation // J. Geophys. Res. Oceans. 2017. V. 122. P. 1789–1807.
- Edson J.B., Fairall C.W. Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets // J. Geophys. Res. 1994. V. 99 (C12). P. 25295–25311.
- Gent P.R., Taylor P.A. A numerical model of the air flow above water waves // J. Fluid Mech. 1976. V. 77. P. 105–128.
- Fletcher C.A.J. Computational Techniques for Fluid Dynamics. 2nd ed. Springer, 1991. P. 493.
- Michałek W.R., Kuerten J.G.M., Zeegers J.C.H., Liew R., Pozorski J., Geurts B.J. A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow // Physics of Fluids. 2013. V. 25. P. 123302. doi: 10.1063/1.4849536
- Mueller J.A., Veron F. Impact of sea spray on air–sea fluxes. Part I: Results from Stochastic Simulations of Sea Spray Drops over the Ocean // J. Phys. Oceanogr. 2014. V. 44. P. 2817–2834. doi: 10.1175/JPO-D-13-0245.1.
- Peng T., Richter D. Sea spray and its feedback effects: assessing bulk algorithms of air–sea heat fluxes via direct numerical simulations // J. Phys. Oceanogr. 2019. V. 49. P. 1403–1421. doi: 10.1175/JPO-D-18-0193.1
- Piomelli U., Balaras E. Wall-layer models for large-eddy simulations // Annu. Rev. Fluid Mech. 2002. V. 34. P. 349–374.
- Pozorski J., Apte S.V. Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion // Int. J. Multiphase Flow. 2009. V. 35. No. 2. P. 118–128.
- Richter D.H., Dempsey A.E., Sullivan P.P. Turbulent transport of spray droplets in the vicinity of moving surface waves // J. Phys. Oceanogr. 2019. V. 49. P. 1789–1807. https://doi.org/10.1175/jpo-d-19-0003.1
- Robinson S.K. Coherent motions in the turbulent boundary layer // Annu. Rev.Fluid Mech. 1991. V. 23. P. 601–639. http://dx.doi.org/10.1146/annurev.fl.23.010191.003125.
- Thorpe S.A. Dynamical processes of transfer at the sea surface // Progress in Oceanography. 1995. V. 35. P. 315–352.
- Troitskaya Y.I., Ezhova E.V., Soustova I.A., Zilitinkevich S.S. On the effect of sea spray on the aerodynamic surface drag under severe winds // Ocean Dynamics. 2016. V. 66. P. 659–669. https://doi.org/10.1007/s10236-016-0948-9
- Troitskaya Yu., Kandaurov A., Ermakova O., Kozlov D., Sergeev D., Zilitinkevich S. Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds // Scientific Reports. 2017. V.7. P. 1614. https://doi.org/10.1038/s41598-017-01673-9
- Troitskaya Yu., Kandaurov A., Ermakova O., Kozlov D., Zotova A., Sergeev D. The Small-Scale Instability of the Air–Water Interface Responsible for the Bag-Breakup Fragmentation // J. Phys. Oceanography. 2023. V. 52. P. 493–517. doi: 10.1175/JPO-D-21-0192.1
- Sullivan P.P., Edson J.B., Hristov T., McWilliams J.C. Large eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves //J. Atmos. Sci. 2008. V. 65. P. 1225–1245. doi: 10.1175/2007JAS2427.1
- Wells M.R., Stock D.E. The effect of crossing trajectories on the dispersion of particles in a turbulent flow // J. Fluid Mech. 1983. V. 136. P. 31–62.
- Zeng X., Zhao M., Dickinson R.E. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data // J. Clim. 1998. V. 11. P. 2628–2644.
补充文件
