Evolution of the Atmospheric Pressure Signal from Tonga Volcano when Moving Away from It

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A model of atmospheric pressure signal propagation from the eruption of the Hunga–Tonga—Hunga–Haʻapai volcano (hereafter abbreviated as Tonga) is proposed. The model is used to explain some peculiarities in the changes in the wave form of the observed signal with increasing distance from the volcano. The model is based on the solution of the linearized Korteweg de Vries (KDV) equation, which describes the change in the wave form of the Lamb wave as a function of distance from the source. We compare the observed and model signals obtained as a superposition of the Lamb wave and the acoustic modes calculated for three infrasound stations (IS22, IS24, and IS30). The energy of the volcanic eruption is estimated from the pressure amplitude and characteristic duration of the signal recorded at one of the infrasound stations closest to the volcano (IS24).

Sobre autores

I. Chunchuzov

Obukhov Institute of the Atmospheric Physics RAS

Autor responsável pela correspondência
Email: igor.chunchuzov@gmail.com
Russia, 119017, Moscow, Pyzhevsky per. 3

S. Kulichkov

Obukhov Institute of the Atmospheric Physics RAS

Email: igor.chunchuzov@gmail.com
Russia, 119017, Moscow, Pyzhevsky per. 3

O. Popov

Obukhov Institute of the Atmospheric Physics RAS

Email: igor.chunchuzov@gmail.com
Russia, 119017, Moscow, Pyzhevsky per. 3

V. Perepelkin

Obukhov Institute of the Atmospheric Physics RAS

Email: igor.chunchuzov@gmail.com
Russia, 119017, Moscow, Pyzhevsky per. 3

Bibliografia

  1. Tatsuya Kubota, Tatsuhiko Saito, Kiwamu Nishida, Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption // Science 2022. .https://doi.org/10.1126/science.abo4364
  2. Kulichkov S.N., Chunchuzov I.P., Popov O.E. et al. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami // Pure Appl. Geophys. 2022. V. 179. P. 1533–1548. https://doi.org/10.1007/s00024-022-03046-4
  3. Matoza R.S. et al., Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga// Science. 2022..https://doi.org/10.1126/science.abo7063
  4. Dolgikh G., Dolgikh S., Ovcharenko V. Initiation of Infrasonic Geosphere Waves Caused by Explosive Eruption of Hunga Tonga-Hunga Haʻapai Volcano // J. Mar. Sci. Eng. 2022. V. 10. № 8. P. 1061. https://doi.org/10.3390/jmse10081061
  5. Адушкин В.В., Рыбнов Ю.С., Спивак А.А. Геофизические эффекты извержения вулкана Хунга–Тонга–Хунга–Хаапай 15.01.2022 // Доклады Российской Академии Наук, 2022. Т. 504. № 2. С. 156–162.
  6. Pekeris C.L. The propagation of a pressure pulse in the atmosphere // Physical Review. 1948. V. 73. P. 145–154.
  7. Pierce A.D. and Posey J.W. Theory of excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions // Geophysical Journal of the Royal. Astronomical Society. 1971. V. 26. P. 341–368.
  8. Gossard E.E. and Hooke W.H. Waves in the Atmosphere. 1975. Elsevier, New York.
  9. Kulichkov S.N. Propagation of atmospheric Lamb waves along the Earth`s surface // Izvestiya, Atmospheric and Oceanic Physics. 1987. V. 23. № 12. P. 935–942.
  10. Gurbatov S.N., Rudenko O.V., “Statistical phenomena” in Nonlinear Acoustics // M. Academic Press. 1998. P. 377–398.
  11. Adam D. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere // Nature. 2022. V. 601. P. 497. https://doi.org/10.1038/d41586-022-00127-1
  12. Wright C.J., Hindley N.P., Alexander M.J., Barlow M., Hoffmann L., Mitchell C.N., et al. Tonga eruption triggered waves propagating globally from surface to edge of space // Earth and Space Science Open Archive (ESSOAr). 2022. Preprint server. https://doi.org/10.1002/essoar.10510674.1
  13. Ern M., Hoffmann L., Rhode S., Preusse P. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing // Geophysical Research Letters, 2022, V. 49. e2022GL098626. https://doi. org/https://doi.org/10.1029/2022GL098626
  14. Karpman V.I. Non-linear Waves in Dispersive Media, International Series of Monographs in Natural Philosophy, 1st Ed., 1975. V. 71.
  15. Press F. and Harkrider D. Propagation of acoustic-gravity waves in the atmosphere // J. Geophys. Res. 1962. V. 67. № 10. P. 3889–3902.
  16. Posey J.W. and Pierce A.D. Estimation of Nuclear Explosion Energies from Microbarograph Records. Nature, 1971. V. 232. P. 253.
  17. Зайцев А.И., Пелиновский Е.Н., Долгих Г.И., Долгих С.Г. Регистрация возмущений в Японском море, вызванные извержением вулкана Хунга—Тонга–Хаапай в архипелаге Тонга 15.01.2022 // Доклады РАН Науки о Земле. 2022, Т. 506. № 2. С. 259–264.
  18. Donn W.L. and Shaw D.M. Exploring the atmosphere with nuclear explosions // Rev. Geophys. 1967. V. 5. P. 53–82.
  19. Wexler H. and Hass W.A. Global atmospheric pressure effects of the October 30, 1961 Explosion // J. Geophys. Res. 1962. V. 67. P. 3875–3887.
  20. Wall M. Tonga undersea volcano eruption released up to 18 megatons of energy, https://www.space.com/tonga-volcano-eruption-18-megatons#, published January 25, 2022.
  21. Díaz J.S. and Rigby S.E. Energetic output of the 2022 Hunga Tonga–Hunga Ha‘apai volcanic eruption from pressure measurements // Shock Waves. Published online 2022. Springer. https://doi.org/10.1007/s00193-022-01092-4
  22. Vergos J., Hupe P., Listowski C. et al. IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis // Earth and Planetary Science Letters. 2022. V. 591. 117639. P. 1–13.
  23. Avilov K.V. Pseudo-differential parabolic equations of sound propagation in the slowly range-dependent ocean and their numerical solutions // Acoust. Phys. 1995. V. 41. №1. P. 1–7. https://www.ecmwf.int/.
  24. Adam D. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere // Nature. 2022. V. 601. 497. https://doi.org/10.1038/d41586-022-00127-1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (415KB)
3.

Baixar (71KB)
4.

Baixar (207KB)
5.

Baixar (344KB)
6.

Baixar (547KB)
7.

Baixar (94KB)
8.

Baixar (323KB)
9.

Baixar (570KB)
10.

Baixar (705KB)
11.

Baixar (288KB)


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».